ECE Course Outline


Organic Optoelectronics (3-0-3)

Catalog Description
Fundamental understanding of the optical and electronic properties of organic materials and devices that form the basic of the emerging technological area of printed flexible optoelectronics.
No Textbook Specified.
Topical Outline
Role of semiconducting plastics in current technologies; reviews of the basic concepts of chemistry; terminology; molecules, polymers, supramolecular structures; molecular weight, number average molar mass; weight average molar mass; heterogeneity index; glass transition temperature.

Bohrs classical model of the hydrogen atom; Aufbau process; electronic configuration of elements; molecular orbitals; ? and A orbitals; dipole moment; ionization potential and electron affinity.

Linear optical properties of dielectrics: Maxwells equations in CGS and SI units; polarizability, complex dielectric function, propagation equation, complex refractive index, dispersion, Lorentz oscillator; Fourier representation; crystal optics, tensor notation, index ellipsoid.

Introduction to nonlinear optics; properties of the nonlinear susceptibility tensor; contracted notation.

Nonlinear optical properties of molecules: first and second hyperpolarizabilities; structure-property relationships in nonlinear organic materials; two-level model.  Eulers angles and the transformation matrix; oriented gas model, Maxwell Boltzmann distributions, order parameters.

Introduction to electro-optics; electro-optic modulators: properties and applications.

Introduction to modern xerography.

Photogeneration in organic solids; Onsager model for photogeneration.  Charge transport in organic solids; disorder formalism; positional and energetic disorder; time-of-flight experiments.  Charge injection into organic solids; childs law; space-charge limited current method; introduction to photorefractivity; Kukhtarev model for photorefractivity.

Two-beam coupling in photorefractive materials; photopolymers and holographic storage

Light emission in organic solids; the linear harmonic oscillator; transition selection rules; fluorescence, and phosphorescence; Forster and Dexter energy transfer.  Flat panel display technologies; Physics of liquid-crystal displays; organic light-emitting diodes: materials, devices and applications; fundamentals of radiometry

Organic photovoltaic cells; solar spectrum; equivalent circuit; conversion efficiency, excitonic solar cells, electrochemical solar cells.  Organic field-effect transistors; organic memories; flexible organic circuits.