MODELING THE ELECTRONIC BEHAVIOR OF TWISTED BILAYER GRAPHENE

M. GOLLADAY
SHILOH HIGH SCHOOL, SNELLVILLE, GA
DR. MARKUS KINDERMANN
25 JULY 2014
FERMI SURFACES

• PREDICTS MATERIAL PROPERTIES
 • ELECTRICAL, THERMAL, MAGNETIC, OPTICAL

• IN GRAPHENE, FERMI SURFACE SHAPE IMPLIES BALLISTIC TRANSPORT
 • DIRAC CONES

\[E(k) = \hbar v_F k \]
Each point is a Dirac cone!
WHAT ARE LIFSHITZ TRANSITIONS?

• A TOPOLOGICAL SHIFT IN THE FERMI SURFACE

• OLD JOKE… A TOPOLOGIST IS A MATHEMATICIAN WHO CAN’T TELL THE DIFFERENCE BETWEEN A DONUT AND A COFFEE CUP!
Why do we care?

Lifshitz transitions correlate with drastic changes in electronic properties
BUILDING A THEORY OF INTERLAYER INTERACTION

- CONSIDER A GRAPHENE BILAYER WHERE ONE LAYER IS ROTATED AT A SMALL ANGLE WITH RESPECT TO THE OTHER
We’re leaving reciprocal space – let’s translate the \(\Delta k \) vectors to a central point. Every \(\Delta k \) is a ‘hop’ between layers!
HOPPING THROUGH THE PROJECTION LATTICE
We are most interested in the \{1,1\} and the \{3,2\} stars.
SO... NOW WHAT??

• ADDING A HAMILTONIAN TERM ASSOCIATED WITH THIS “HOPPING” BEHAVIOR ALLOWS US TO ACCURATELY MODEL THE FERMI SURFACE

• WE FURTHER ADD A “BIAS VOLTAGE” TERM

 • CERTAIN VOLTAGES CAUSE STARS TO RESONATE, ALTERING THE FERMI SURFACE
CONCLUSIONS

- WORK IS ONGOING
 - RICHNESS OF \{3,2\} STAR NEEDS TO BE EXPLORED
 - CONVERGENCE PROBLEM NEEDS TO BE ADDRESSED
 - IMPLICATIONS OF THE PRESENCE OF LIFSHITZ TRANSITIONS REQUIRE FURTHER INVESTIGATION
IN THE CLASSROOM...

• COMPUTATIONAL MODELING OF 2D MOTION

• STUDENTS INTERACT WITH A COMPUTATIONAL PROJECTILE SIMULATION USING EXCEL MACROS

• STUDENTS COMPARE SIMULATION DATA WITH EXPERIMENTAL PROJECTILE RANGE DATA
ACKNOWLEDGEMENTS

• DR. LEYLA CONRAD AND DR. MARKUS KINDERMANN
• STEVEN CARTER AND DR. HRIDIS PAL
• THIS RESEARCH WAS MADE POSSIBLE BY FUNDING FROM THE NSF, AND THE STEP-UP PROGRAM AT GA TECH