USING ARPES IMAGING TO ANALYZE THE BAND STRUCTURE OF GRAPHENE

M. Golladay
27 July 2012
JUSTIFICATION

- Electronic properties of carbon have many industry applications
 - Transistors
- C-face epitaxial graphene is of particular interest
 - High quality
 - Multilayer samples retain single layer properties

Image courtesy of J. Hass et al.
Recall that:

\[\omega = \frac{2\pi}{T} \quad k = \frac{2\pi}{\lambda} \]

We can express \(E(k) \)
- “Dispersion curve”
- “Band structure”

In graphene, \(E(k) \) is linear:

\[E(k) = \hbar v_F k \]

Of interest to us is when two cones intersect.
STRUCTURE MODELS

Tight-Binding Model

- Characterized by:
 - Reduced v_F at intersection
 - van Hove singularity at intersection
 - High density of states at intersection

Continuum Formulation

- Characterized by:
 - Unchanged v_F at intersection
 - Degenerate point at intersection
 - Low density of states at intersection
EXAMINING THE INTERSECTION

Tight-Binding Model

Continuum Formulation
ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY

- Uses the photoelectric effect
- Measure energy and position of photoelectrons to construct three-dimensional dispersion curve
Analysis Techniques

Find intersection energy with $E(k_x)$
Examine constant energy surface at $E - E_F = -0.31 \text{ eV}$
As cones intersect, the low density of states is very visible…
Conclusions

- Work completed in 2010 demonstrated unchanged Fermi velocity at intersection point
- There is clearly no von Hove singularity – evidence suggests a degenerate point
- Tight-binding model is flawed
- More data must be analyzed to determine if continuum formulation is fully supported by experiment
IN THE CLASSROOM...

- **Negative Results and Experimenter Bias**
 - **Freshman Physics**
 - Discussion on Newton vs. Leibniz
 - Recreation of s’Gravesande’s clay experiment demonstrating the existence of kinetic energy
 - **AP/Honors Physics**
 - Research report on the evolution of a physical theory and the role of negative results and/or bias
 - examples: heat and *phlogiston*, Bohr/Einstein and quantum mechanics, cosmology, Michelson-Morley, Young’s Double Slit,...
 - **OPTIONAL:** More in-depth analysis of s’Gravesande’s experiment
ACKNOWLEDGEMENTS

- Drs. Ed and Leyla Conrad
- Graduate students: J. Hicks, M. Nevius, and F. Wang
- This research was made possible by funding from the NSF, and the STEP-UP program at Georgia Tech.