Determination of pre/post process surface roughness and comparison with copper film adhesion on multiple polymer substrates

Prepared by Martin Aguilera
Work supported by the Packaging Research Center at Georgia Tech
Motivation

- EU Directive
 - Restrict lead-based solder by July 1, 2006
 - Companies given exceptions

- Effect on manufacturing
 - Higher solder temperatures
 - CTE consideration
 - Layer adhesion
Scope of Project

- Board polymer research
 - Boards provided by Company A for chemical copper coating
 - Boards returned to Company A for adhesion testing (Peel Strength Test)

- Board surface roughness
 - Tested before copper coating allowing comparison to peel strength
Scope of Project

- Two types of roughness:
 - Micro-roughness (~100 Å)
 - Macro-roughness (>1000 Å)

- Examine which type of roughness is most affected by chemical roughening process

- Correlation between types of roughness for each board and peel strength
 - To determine which, if either, is the dominant mode for adhesion
Adhesion Theory

- Two main modes of adhesion
 - Chemical
 - Based on oxide formation
 - Mechanical
 - Based on surface energy reduction
Adhesion Theory

- Epoxy chemical structure
 - Oxygen group allows for oxide formation and chemical bond
 - Adhesion is based on surface area

Generic epoxy

Copper film
Adhesion Theory

- Mechanical Adhesion
 - Surface Energy
 - Asymmetry of chemical bonds
 - Additional layer relieves surface energy (bonding)

- Adhesion is based on surface roughness and area
Expected Results

- Chemical process is expected to increase micro-roughness more due to scale of reaction.

- Both types of adhesion depend on surface area:
 - Boards with a higher surface roughness will have a higher peel strength.

- Both types of roughness increase surface area:
 - It is unclear which type of roughness will correlate with peel strength better.
Methods: Sample Preparation

- 4 types of 5x5” boards (2 per type)
 - 1 board of each type set aside

- Placed in Atotech Permanganate Etch

- 1x5” section cut
 - Set aside as post process
 - 1x4” section set to Company A

- 4x5” boards were plated with electroless copper film (~1µm)

- Boards were plated with electrolytic copper (~18µm)
Methods: Sample Preparation

- Dupont photoresist film was applied and developed according to peel test pattern
- Copper was etched off and samples were sent back to Company A for testing
Methods: Sample Testing

- All un-plated board surface roughness measurements made with Veeco DekTak 3030
- Surfaces were taped to platform and leveled
- DekTak function used to determine surface roughness
 - Deviation from a linear approximation between two selected points
Methods: Sample Testing

- Micro-roughness was determined over a 5 micron range

- Macro-roughness was determined over a 315 micron range

- 5 locations were averaged to determine the board roughness
 - 7 trials were performed at each location
Methods: Peel Test

- Samples of plated board and post-process boards were sent to Company A
 - Peel Strength Tests were performed
 - Macro-scale surface roughness was performed over a 215x315 micron area using AFM

- Company A returned data for analysis
Results: Effect on macro-roughness

- Roughness increases by a varied amount
- Polymer 91-51 shows a lack of significant increase in macro-roughness
- Polymer 120-2 has greatest end macro-roughness
Results: Effect on micro-roughness

- Smaller percentage in micro-roughness
- Similar increases across polymers
- Polymer 120-2 has greatest end micro-roughness

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Pre-Process</th>
<th>Post-Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-51</td>
<td>88.56</td>
<td>93.54</td>
</tr>
<tr>
<td>91-50</td>
<td>102.96</td>
<td>180.08</td>
</tr>
<tr>
<td>120-1</td>
<td>109.18</td>
<td>138.9</td>
</tr>
<tr>
<td>120-2</td>
<td>147.48</td>
<td>238.18</td>
</tr>
</tbody>
</table>

Percent Change:
- 66.5%
- 48.5%
- 74.9%
- 118.2%
Results: Correlation to Peel Strength

- Peel strength shows a stronger correlation with macro-roughness than micro-roughness.
- Polymer 91-51 shows significantly smaller peel strength.
- Polymers 120-1 & 2 have greatest peel strength.

<table>
<thead>
<tr>
<th></th>
<th>Macro (A)</th>
<th>Micro (A)</th>
<th>Peel Strength (lbf/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120-2</td>
<td>8990</td>
<td>238.18</td>
<td>1.908</td>
</tr>
<tr>
<td>120-1</td>
<td>7680</td>
<td>180.08</td>
<td>2.176</td>
</tr>
<tr>
<td>91-50</td>
<td>2510</td>
<td>138.9</td>
<td>1.66</td>
</tr>
<tr>
<td>91-51</td>
<td>1890</td>
<td>147.48</td>
<td>0.469</td>
</tr>
</tbody>
</table>
Board 91-51
- Deciding board for results
- Originally had a decrease in macro-roughness with etching
- Contained two distinct roughness sections

Measuring techniques
- AFM vs. DekTak
- Surface roughness vs. surface area
Future Work

- Six more samples are being tested in the next few weeks
- Improvement of micro/macro definitions to line up with current theory
- Investigate whether micro or macro-roughness has a larger effect on surface area
Effect on Classroom: Lesson

- Lesson based on understanding statistical significance of data
 - Students will learn statistical concepts
 - Standard Deviation
 - Confidence Intervals
 - Sample Sizing
 - Students will learn to use Excel
Effect on Classroom: Lesson

- Data collected as a class will be used to establish formulae and procedures
 - Measuring height using a 12” ruler
 - Use varying values to motivate question of how we know when to stop taking data
Effect on Classroom: Lesson

- In class lab
 - Students collect data
 - Students hand calculate values for small set of data
 - Students use Excel to calculate values for a larger set of data from lab

- Two assessments
 - Small worksheet with questions after classroom work
 - Excel spreadsheet with data to evaluate and electronic submission
References

Questions