Updates on the campus response to coronavirus (COVID-19)

Ph.D. Dissertation Defense - Siyu Yang

Event Details

Tuesday, September 29, 2020

9:00am - 11:00am


For More Information


Event Details

TitleTiny Piezoelectric Energy Harvesting CMOS Charger


Dr. Gabriel Rincon-Mora, ECE, Chair , Advisor

Dr. William Hunt, ECE

Dr. Farrokh Ayazi, ECE

Dr. Deepakraj Divan, ECE

Dr. Josephine Yu, Math

Abstract: Wireless microsystems embedded in smart homes, industries, and human bodies can save money, energy, and lives. Piezoelectric transducer can draw kinect energy from ambient vibrations to constantly replenish the batteries. Tiny piezoelectric transducers, however, only draw a small portion of the energy from vibration. Moreover, the charger is lossy, and imposes limits on the operation. The objective of this research is to study, evaluate, design, build, test, and assess energy-harvesting CMOS battery chargers that draw and output the most power possible from ambient motion with centimeter-scale piezoelectric transducers that fit on wireless microsystems. Among the state of the art, synchronous discharge with asymmetrical pre-charging can output the most power with only one inductor. Pre-charging symmetrically draws the same or even more power under the same breakdown limit, and loses less ohmic loss because of lower inductor current. On the other hand, direct inductor transfers can further reduce ohmic loss by transferring more energy than the inductor carries. As a result, the proposed series switched-inductor bridge charger that can output 6.8x higher than an ideal bridge is the best synchronous discharge charger. The proposed recycling switched-inductor charger further improves by drawing the highest power using one inductor without the extra charger, can output 12x higher than an ideal bridge and 76% of the theoretical maximum power the transducer can draw, and, as a result, can prolong lifetime and expand functionality for wireless microsystems. 

Last revised September 8, 2020