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Background

Debugging is a repetitive process!

Detect an 
error

Restart the 
program

Determine 
the bug 

location(s)

Error-free 
program

Remove the 
bug(s) and 

recompile the 
program

Start the 
program
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Definition of Reverse Execution

Reverse execution:  Taking a program T from its 
current state Si to a previous state Sj

Source code level reverse execution: Reverse 
execution where Sj can be as early as one source 
code statement before state Si

Instruction level reverse execution: Reverse 
execution where Sj can be as early as one 
assembly instruction before state Si
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Previous Work

Debugging
Optimistic Simulations
Database Applications
Interactive Systems

Editors
Program development environments
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Previous Work in Reverse Execution

Restore earlier state
Periodic checkpointing
Incremental checkpointing

Regenerate part of earlier state
Source transformation

Build a reversible processor with reversible 
circuit elements (Pendulum)



8

Previous Work in Reverse Execution

12KB 12KB+ = 60KBMemory usage for state saving: 12KB + 12KB + + 12KB

8KB 4KB+ = 24KBMemory usage for state saving: 4KB + 4KB + + 4KB

Periodic Periodic checkpointingcheckpointing::

Incremental Incremental checkpointingcheckpointing::

= 4KB
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Previous Work in Reverse Execution

Sample () {
int x, y;
y = 0;
x += 10;
if (x > 15)

y++;
else

y--;
}

Source Transformation:Source Transformation:

Source code

Sample () {
int x, y;
save y;
y = 0;
x += 10;
if (x > 15) {

b = 0;
y++;

} else {
b = 1;
y--;

}
}

Transformed code

Sample_rev () {
int x, y;
if (b == 0) 

y--;
else

y++;
x -= 10;
restore y;

}
Reverse code

State saved for each destructive operation

Destructive operation: An operation whose target operand is different than its source operands

C. Carothers, K. Perumalla and R. Fujimoto, “Efficient Optimistic Parallel Simulations using 
Reverse Computation,” in Proceedings of ACM/IEEE/SCS Workshop on Parallel and Distributed
Simulation (PADS), Atlanta, USA, May 1999.
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Previous Work in Reverse Execution

Heavy use of state saving 

State saving = memory and time
overheads during forward execution

No direct instruction level reverse 
execution support
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Reverse Execution Methodology

Assumptions:Assumptions:
State that cannot be modified directly does not 
include debugging information 

E.g., condition status register

Physical memory is treated as a uniform entity 
Exact physical memory state is not preserved
E.g., a value not in cache can be brought into cache after 
recovery

Sequential execution model
Indirect calls are made to well-defined target points
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Reverse Execution Methodology
We define the state of a processor as follows:

S = ( PC , M' , R' )
PC : program counter
M' : directly modified memory values
R' : directly modified register values

In order to reverse execute a program, do the following:

Construct a reverse program RT for an input program T
Recover M' and R' by executing RT in place of T
Recover the program counter value by using the 
correspondence between T and RT
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Reverse Execution Methodology

Reverse Code Generation (RCG) steps:

1. Divide the original program into program partitions
2. Generate the reverse of the instructions. The reverse of 

an instruction is called a Reverse Instruction Group
(RIG)

3. Combine the RIGs
3.a Combine the RIGs to generate the reverse of each   

basic block (RBB)
3.b Combine the RBBs to generate the reverse of each 

partition
3.c Combine the reverse partitions to generate the 

reverse of whole program
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Reverse Execution Methodology

Partition the input program while constructing a call graph

Read an instruction α from current partition

Generate a RIG for α

Build a modified value graph for current partition

end of BB?

end of partition?

end of program?

Connect the RBB to reverse program

Connect the reverse partition to reverse 
program, go to next partition

Y
N

YN

end
Y

N

start
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Step 1: Program Partitioning

Partitions are regions of code delimited by “function 
call” or “indirect branch” instructions that may exist 
within the original code

e.g., in PowerPC instruction set:
bl : function call instruction
blr : branch to link register instruction (indirect)
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Step1: Program Partitioning
first partition 

of main

second partition 
of main

single partition 
of foo

main:
li r3,0x5
bl foo
addi r12, r12, 1
blr

foo:
li r11, 3
ori r12, r3, 15
divw r10, r3, r11
cmpwi r10, 100
bg L1
sub r11, r3, r12
b L2

L1:  addi r12, r10, 1
sub r11, r12, r3

L2:  mullw r12, r11, r10
blr

main:
li r3,0x5
bl foo
addi r12, r12, 1
blr

foo:
li r11, 3
ori r12, r3, 15
divw r10, r3, r11
cmpwi r10, 100
bg L1
sub r11, r3, r12
b L2

L1:  addi r12, r10, 1
sub r11, r12, r3

L2:  mullw r12, r11, r10
blr
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Methodology (Continued)

Reverse Code Generation (RCG) steps:

1. Divide the program into program partitions (single entry-
single exit regions).

2. Generate the reverse of the instructions. The reverse of 
an instruction is called a Reverse Instruction Group
(RIG)

3. Combine the RIGs
3.a Combine the RIGs to generate the reverse of each   

basic block (RBB)
3.b Combine the RBBs to generate the reverse of each 

partition
3.c Combine the reverse partitions to generate the 

reverse of whole program
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Step 2: RIG Generation 

Three techniques to generate a RIG:

1. Re-define technique

2. Extract-from-use technique

3. State saving technique
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start

Step 2: RIG Generation (Cont.)

exit

r1 = r2 + r3

r4 = r1 + r3

r1 = r2 - 4

r1 = r2

r2 < 0

PP

Find the definitions of r1 reaching PP
Recover r1 by selectively re-executing
the found definitions or by selectively 
extracting the found definitions out of 
later uses of those definitions

α

false true

if r2 < 0
r1 = r4 – r3 r1 = r2

r1 = r2 + r3

else
RIG for α : or

Extract-from-use Re-define
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start

Step2: RIG Generation (Cont.)

r1
3 = Φ(r1

1,r1
2)

exit

Rename Values
Generate a directed graph called 
modified value graph (MVG)

r1 = r2 + r3

r4 = r1 + r3

r1 = r2 - 4

r1 = r2

r2 < 0

PP

PP''

Find the definition of r1 reaching PP

r1
1

r2
0 r3

0

r1
2

r4
0

r4
1

r1
3

r1
0

r1
4

r 2
0 < 0 r2 0 ≥ 0Φ

Recover r1 using available nodes 
at PP''

r1 = r4 – r3

if r2 < 0
r1 = r2

r1 = r2 + r3

else
RIG for α : or

α

r1
1 r1

2

r1
4

r4
1

Select 
operator

false true

+

+
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Methodology (Continued)

Three steps to generate a complete reverse program:

1. Divide the program into program partitions (single entry-
single exit regions).

2. Generate the reverse of the instructions. The reverse of 
an instruction is called a Reverse Instruction Group
(RIG)

3. Combine the RIGs
3.a Combine the RIGs to generate the reverse of each   

basic block (RBB)
3.b Combine the RBBs to generate the reverse of each 

partition
3.c Combine the reverse partitions to generate the 

reverse of whole program
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Step 3.a: Constructing the RBBs

i1
i2

i3
i4

i5
i6
i7

BB1

BB2 BB3

BB4

RIG2RBB1

RIG1

RIG4RBB2

RIG3

RIG7RBB3

RIG6

RIG8RBB4

RIG5

Bottom-up placement order within BBs

i8
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Step 3.b: Combining the RBBs

start

exit

α2

α3
α4

α5
α6

α8 α7

α9

?

?

?
α1BB1

BB2 BB3

BB4

BB: Basic Block

BB6

start

exit

RIG9
RBB6

RBB5 RBB4

RBB3
RBB2

RBB1

RIG7 RIG8

RIG4
RIG3

RIG6
RIG5

RIG2
RIG1

cb

cb

cb

RBB: Reverse of a BB
cb: Conditional branch

BB5
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Step 3.c: Combining the Reverse 
Partitions

m1 g1

h

g2m2

end

start

A0

A0

A2
A2

A2

A4

A3

A3

A1

mm11

mm22

gg11

gg22

hh

A0

A2

A1

A3

A4

main:
cmp r1, r2
bl g; // call g

…
blr // return

g: 
…
mtlr r0 // set a func. ptr.
bclrl // call by the func. ptr.

…
blr // return

h:
…
blr // return

Push addresses on the 
dynamically taken edges into 
stack
Pop the addresses from stack 
during reverse execution and 
branch to reverses of popped 
addresses

A2A2
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Recovering the Program Counter

Input Input 
ProgramProgram

0x0 0x4000

0x4 0x3FFC

0x8 0x3FE0

… …

Input Input 
instruction instruction 

addressaddress

RIG RIG 
addressaddress

Designates the entry point into 
the reverse program for every 
instruction in the input program

Program being 
debugged

Reverse of the 
input program

RCG 
algorithm

ReverseReverse
ProgramProgram

InversionInversion
TableTable
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Complexity
N : number of nodes in an MVG ≅ # of 

assembly instructions in a code 
M : average degree of a node (# of 

neighbors)
K : maximum number of repetitive 

applications of re-define and 
extract-from-use techniques allowed

M is independent of total code size for 
fixed partition size

Complexity = O(N×MK)

On a 1 GHz CPU, 1 iteration ≅ 1 nsec

N = 1,000,000, M = 10, K = 3 1 sec

Byte Recover (Node n)
{

if (n.available == true) 
return true;

∀m  ∈ children(n) do {
stat = Recover(m);

if stat != available
break;

}
∀m  ∈ parents(n) do {

stat = Recover(m);
if (stat == available) {

∀z  ∈ siblings(n) do {
stat = Recover(z);
if (stat != available)

break;
}

}
if (stat == available)

break;
}
Write_RIG();

}
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Program Slicing
Static SliceStatic Slice: A set of program statements that 
may influence a variable V at statement S.

C = (V, S) is a static slicing criterion.

Dynamic SliceDynamic Slice: A set of program statements 
that influence a variable V at an execution 
instance q of statement S given a set of 
program inputs X.

C = (X, V, Sq) is a dynamic slicing criterion.
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Program Slicing
Two ways to influence a variable:

Data dependency
y = z;
x = y + 1;
x is data dependent on y and z

Control dependency
if (y < 0)

x = 1;
x is control dependent on y

A slice is a set of all statements that compute 
dependencies of a variable
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Program Slicing
Pass = 0 ;
Fail = 0 ;
Count = 0 ;
while (!eof()) {

TotalMarks=0;
scanf("%d",Marks);
if (Marks >= 40)

Pass = Pass + 1;
if (Marks < 40)

Fail = Fail + 1;
Count = Count + 1;
TotalMarks = TotalMarks+Marks ;

}
average = TotalMarks/Count;
/* This is the point of interest */
printf("The average is %d\n",average) ;
PassRate = Pass/Count*100 ;
printf(“Pass rate is %d\n",PassRate) ; 

while (!eof()) {
TotalMarks=0;
scanf("%d",Marks);
Count = Count + 1;
TotalMarks = TotalMarks+Marks;

}
average = TotalMarks/Count;
printf("The average is %d\n",average) ; 

Original ProgramOriginal Program

Slice Slice w.r.tw.r.t. “. “averageaverage””

Example is taken from Prof. Mark Harman’s webpage at http://www.brunel.ac.uk/~csstmmh2/exe1.html
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Previous Work in Program Slicing
Static Slicing (Weiser)

Control flow graph analysis
No runtime information

Static Slicing (Ottenstein et al.)
Program dependency graph analysis
No runtime information

Dynamic Slicing (Korel and Laski)
Control flow graph analysis
Program execution trajectory

Dynamic Slicing (Agrawal et al.)
Dynamic dependence graph (DDG) analysis
Program execution trajectory
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RCG with Slicing (RCGS)

Reverse 
execution
along a 

dynamic slice

Dynamic 
slicing
table

Global MVG

Reduced
reverse 
program

Input 
program

Reverse 
program

Green arrows indicate the actions performed by the debugger

Orange arrows indicate the base static analysis performed only once per program
Blue arrows indicate the extended static analysis performed for each dynamic slice

Full-scale 
reverse 
execution

Forward
execution

local MVGs
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Contributions of RCGS

Reverse execution along a dynamic slice
Faster reverse execution

No complete execution trajectory is required
Less runtime memory usage 

Not only reveals dynamic slice instructions but 
also obtains runtime values of variables

More efficient debugging
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Reverse Execution Along a Dynamic Slice

stw %r0,0x4(%r1)
li %r8,0x64
li %r10,0x1
ori %r12,%r10,0x0
li %r11,0x1

cmpw %r8,%r11
blt- 0x1000c0

add     %r9,%r12,%r10
ori %r10,%r12,0x0
ori %r12,%r9,0x0
addi %r11,%r11,0x1
b       0x1000a4

bclr 0x14,0x0

Determine data dependencies 
statically

Determine control flow 
dynamically

Merge static information with 
dynamic information to reverse 
execute along the dynamic slice
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Generation of a Reduced Reverse Program
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Experimentation Platform

Background Debug 
Mode (BDM) Interface

PC
Windows 2000 

MBX860
MPC860 processor

4MB DRAM, 2MB Flash 
RTC, four 16-bit timers, watchdog 
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Comparisons

Reverse Execution with Incremental 
State Saving (ISS)

Save state before each instruction
Reverse Execution with Incremental 
State Saving for Destructive 
Instructions (ISSDI)

Save state before each destructive 
instruction

Reverse Execution with RCG
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Benchmarks

4636LZW

6908ADPCM encoder

3308Matrix multiply

3104Selection sort

Executable object size (bytes)Executable object size (bytes)BenchmarkBenchmark

ADPCM: Adaptive Differential Pulse Code Modulation
LZW: Lempel Ziv Welch
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Benchmarks

194,451,339LZW (16KB input data)
16,063,096LZW (4KB input data)

1,380,413LZW (1KB input data)

1,496,649ADPCM (128KB input data)
751,280ADPCM (64KB input data)
378,294ADPCM (32KB input data)

457,183,831Matrix multiply (400x400)
472,044Matrix multiply (40x40)

650Matrix multiply (4x4)

198,539,130Selection sort (10000 inputs)
2,000,202Selection sort (1000 inputs)

21,187Selection sort (100 inputs)

Raw Execution Time Raw Execution Time 
((decrementerdecrementer ticks)ticks)BenchmarkBenchmark

1 tick = 0.4 microseconds on MBX860
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Experiment 1

Instrument each benchmark with state 
saving instructions at appropriate points 
for ISS, ISSDI and RCG
Forward execute each instrumented 
benchmark from the beginning until the 
end
Measure forward execution times
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Instrumented Forward Execution Time

ISS: Incremental State Saving, ISSDI: Incremental State Saving for Destructive Instructions

1.31X1.53X288077045378614957439424024LZW (16KB input data)

1.34X1.52X238132303194283836319691LZW (4KB input data)

1.31X1.52X205465726992873126206LZW (1KB input data)

1.20X1.31X246423229505623223166ADPCM (128KB input data)

1.20X1.31X123211014752761611572ADPCM (64KB input data)

1.20X1.31X616101737720805972ADPCM (32KB input data)

1.90X2.32X4586916378705399811064415269Matrix multiply (400x400)

1.88X2.29X4762438957031092872Matrix multiply (40x40)

1.70X2.02X70811971432Matrix multiply (4x4)

1.27X1.40X280677488356208073394063091Selection sort (10000 inputs)

1.27X1.40X284102935952133979802Selection sort (1000 inputs)

1.24X1.38X311133849642984Selection sort (100 inputs)

ISSDI/ISSDI/
RCGRCG

ISS/ISS/
RCGRCGRCGRCGISSDIISSDIISSISSBenchmarkBenchmark
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Forward Execution Time Overhead
98.4898.97102.88

79.4181.70 79.74

41.3742.0446.90

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Selection Sort
(100)

Selection Sort
(1000)

Selection Sort
(10000)

ISS

ISSDI

RCG

%
 O

ve
rh

ea
d

120.31
131.52 132.82

84.15
90.4189.75

0.330.898.92
0.00

20.00
40.00
60.00
80.00

100.00
120.00
140.00

Matrix Multiply
(4x4)

Matrix Multiply
(40x40)

Matrix Multiply
(400x400)

ISS

ISSDI

RCG

126.47 126.11 125.98

95.54 94.7198.86

48.84 48.1548.25

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

LZW (1KB) LZW (4KB) LZW (16KB)

ISS

ISSDI

RCG

115.36114.51113.05

96.37 97.1495.01

64.00 64.6562.86

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00

ADPCM
(32KB)

ADPCM
(64KB)

ADPCM
(128KB)

ISS

ISSDI

RCG

%
 O

ve
rh

ea
d

%
 O

ve
rh

ea
d

%
 O

ve
rh

ea
d

instrumented execution time – raw execution time
raw execution time

Overhead = 
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Experiment 2

Reverse execute each benchmark from 
the end until the beginning (by 
executing the reverse versions)

Measure reverse execution times
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Reverse Execution Time
ISSDI/ISSDI/
RCGRCG

ISS/ISS/
RCGRCGRCGRCGISSDIISSDIISSISSBenchmarkBenchmark

0.74X0.78X367192713728724Selection sort (100 inputs)

--3516414--Selection sort (1000 inputs)

-----Selection sort (10000 inputs)

0.60X0.66X1325784880Matrix multiply (4x4)

0.53X0.61X1088827578556660189Matrix multiply (40x40)

--1070219421--Matrix multiply (400x400)

0.82X0.86X765036628958656702ADPCM (32KB input data)

0.82X-15288071257770-ADPCM (64KB input data)

--3057176--ADPCM (128KB input data)

--2619106--LZW (1KB input data)

--30596864--LZW (4KB input data)

--371045637--LZW (16KB input data)
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Experiment 3

Forward execute each instrumented 
benchmark from the beginning until the 
end

Measure memory usage for state 
saving
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Memory Usage for State Saving

354X589X1331471140784336LZW (16KB input data)

112X185X3513916364970LZW (4KB input data)

35X57X98.434255630LZW (1KB input data)

2X2.5X246447676175ADPCM (128KB input data)

2X2.5X123223843088ADPCM (64KB input data)

2X2.5X61611921544ADPCM (32KB input data)

1404X2206X125017550062756883Matrix multiply (400x400)

143X224X12.618012820Matrix multiply (40x40)

14X21X0.172.353.6Matrix multiply (4x4)

55X82X7237397913593389Selection sort (10000 inputs)

27X40X15140656032Selection sort (1000 inputs)

6.3X9X7.546.968.2Selection sort (100 inputs)

ISSDI /
RCG

ISS /
RCG

RCG 
(KB)

ISSDI 
(KB)

ISS    
(KB)
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Experiment 4

Forward execute original 400x400 
matrix multiply from the beginning to  
various intermediate points and 
measure the execution times
Reverse execute 400x400 matrix 
multiply using RCG from the end to 
various intermediate points and 
measure reverse execution times
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Program Re-execute Approach vs. RCG

0

100

200

300

400

500

0 100 200 300 400

Outermost loop iteration count

Ti
m

e 
(s

ec
on

ds
)

Forward execution Reverse execution via RCG

400x400 matrix multiply
starting point 
for reverse 
execution

starting point 
for forward 
execution
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Experiment 5

Extract three slices for each benchmark 
Reverse execute each benchmark fully 
starting from end of each slice until 
beginning of each slice
Reverse execute each benchmark 
along computed slices only
Measure the reverse execution times
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Full-scale Reverse Execution vs. 
Reverse Execution Along a Slice
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(128KB input)

LZW                
(128KB input)

full reverse execution reverse execution along a dynamic slice
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Full-scale Reverse Execution vs. 
Reverse Execution Along a Slice

3.56E+02

2.72E+05

2.68E+08

1.41E+02
1.63E+019.67E+00

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08
1.00E+09

4x4 multiply 40x40 multiply 400x400 multiply

tim
e 

(m
ic

ro
se

co
nd

s)

full reverse execution reverse execution along the dynamic slice

1.42E+02

1.33E+04

1.30E+06 6.54E+05

6.71E+03

7.28E+01

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07

10 integers 100 integers 1000 integerstim
e 

(m
ic

ro
se

co
nd

s)

Matrix Multiply

Selection Sort



54

Experiment 6

Extract three slices for each benchmark
Measure average runtime memory 
requirement for reverse execution 
along three slices with RCGS 
Measure average runtime memory 
requirement for reverse execution 
along three slices with ISS plus 
execution trajectory (ET) approach
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Runtime Memory Requirements
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RCGS memory usage ISS memory usage ET memory usage
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Reverse Debugger

Execute forward Step forward Execute backward Step backward

Memory 
window

Breakpoint 
window

Register 
window

Source 
window
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Reverse Debugger

19Number of files

~7000Number of C lines

Reverse Debugger Code SpecsReverse Debugger Code Specs
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Conclusion

Reduced debugging time with localized re-
executions
Very low time and memory overheads in 
forward execution by using reverse code
Reverse execution up to an assembly 
instruction level granularity
Dynamic slicing support to speed up 
reverse execution without execution 
trajectory requirement
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Thank you!Thank you!


