Hardware Support for Real-Time
Embedded Multiprocessor System-
on-a-Chip Memory Management

Mohamed Shalan
Vincent Mooney

School of Electrical and Computer Engineering
Georgia Institute of Technology

Outline -

s Introduction.
= |he SoCDMMU.
= RTOS Support.

s Comparison to a Fully Shared-Memory
Multiprocessor System.

s Conclusion.

May 6, 2002 | cograta-cis 2

Introduction o
kit y
= In few years, we will have chips with one-
billion transistors.

= Chips will no longer be a stand-alone system
components but “Silicon boards”.

= A typical Chip will consist of multiple PE’s of
various types, large global on-chip memory,
analog components, and network interfaces.

May 6t, 2002 PeS—— 3

System-on-a-Chip (SoC) ,_

Analog Interface

Network Interface

DSP 1

RISC 1

Custom Logic

DSP 2

L1 Cache

L1 Cache

SoCDMMU

RISC 2

L1 Cache

Global Memory
(DRAM/SRAM)

B

= This architecture is suitable for Embedded Multimedia

applications, which require great processing power
and large volume data management.

May 6th, 2002

4

==

SoC o
g
= The existence of Global on-chip memory, f
arises the need for an efficient way to
dynamically allocate it among the PE's
(example: 16MB of global memory broken

into 256 blocks each of size 64KB
NN

FE,

(O

May 6th, 2002

Problem o

oble -

= How to deal with the allocation of the
large global on-chip memory between

the PE's. ?

May 6th, 2002

Solution 1 o

s Custom Memory Configuration (Static)
s Pros:

« Easy.
= Deterministic.

s Cons:

» Inefficient memory utilization.

» System modification after implementation is
very difficult if not impossible.

May 6th, 2002

="

Solution 2 -
s Shared memory multiprocessor
(Dynamic)
= Pros

» Flexible.
« Efficient memory utilization.

x Cons

» Worst case execution time is very high if not
not deterministic.

May 6th, 2002

="

SoCDMMU

s The SoC Dynamic Memory Management Unit
(SoCDMMU) is a Hardware Unit, to be a part
of the SoC, that deals with the memory

allocation/de-allocation among the PE’s.

s The SOCDMMU allows a fast and deterministic
dynamic way to allocate/de-allocate the
Global Memory among the PE's.

May 6t, 2002 —_— 9

Outline -

s Introduction.
= |he SoCDMMU.
= RTOS Support.

s Comparison to a Fully Shared-Memory
Multiprocessor System.

s Conclusion.

May 6, 2002 | cograta-cis 10

PE-SoCDMMU Interface

PE, PE,
Cache Cache

PE,

Cache

SoCDMMU |

Global Memory

DMMU

Busy

Memory Bus

command/satatus

A

A

PE

RD

WR

May 6th, 2002

11

SoCDMMU Commands

n/a Size Virtual Block no. 0oo
SWID Size Virtual Block no. 001
SWID n/a Virtual Block no. 010

n/a n/a Virtual Block no. 011

MNew Virtual Block no. Old Virtual Block no. 100

G alloc ex

G alloc rw

G alloc _ro

G de-alloc

Move

* Note that either a processor or hardware can issue commands

May 6th, 2002

:

12

Levels of Memory Management »

B

= The SOCDMMU dynamically | 557 ——
allocates the global on-a-
chip memory among the \ /
PE's (Level 2). SoCDMMU

I Global Memory

= Each PE handles the local
dynamic memory allocation
among the
processes/threads (Level 1).

May 6th, 2002

=

Execution Times

il
= Synthesized using the AMI 0.5u .

» Size: 41k gates.
s Clock Speed: 100MHz.

Command Number of Cycles

G alloc ex 4

G alloc rw 4

G alloc ro 3

(r dealloc 4
4-Pmc;ssms WCET 16

May 6th, 2002

="

14

Outline -

s Introduction.
= |he SoCDMMU.
= RTOS Support.

s Comparison to a Fully Shared-Memory
Multiprocessor System.

s Conclusion.

May 6, 2002 | cograta-cis 15

RTOS Support

= Introduction.
= Atalanta Memory Management.
= Atalanta Support for the SocDMMU

May 6th, 2002 16

Introduction

ik

—__—=ﬂ,f
Conventional memory allocation algorithms (e.g., Buddy-
heap) are not suitable for Real-Time systems because
they are not deterministic and/or the WCET is high.

This is mainly because of memory fragmentation and
compaction. Also, most allocation algorithms usually use
linked lists that does not have constant search time.

An RTOS uses a different approach to make the
allocation deterministic.

An RTOS usually divides the memory into fixed-sized
allocation units and any task can allocate only one unit at
a time (e.qg., uC-0S, eCOS, VRTXsa, pSOS, Atalanta).

We choose to extend Atalanta, but any RTOS can be
similarly extended.

|
May 6, 2002 e 17

Atalanta Memory Management

Overview e

B

= Atalanta is an open source
RTOS developed at GaTech.

s Atalanta allows tasks to obtain

s Partition fixed-sized memory blocks from
o partitions made of a contiguous
" e . Jse memory area.
) | = Allocation and de-allocation of

these memory blocks are done
In @ constant time.

= No partition can be created at
the run-time.

May 6th, 2002

Ceguain i8

Atalanta Memory Management
API Functions e
———_g;

3

m asc_partition_gain
= Get free memory block from a partition (non-blocking).

m gsc_partition_seek
= Get free memory block from a partition (blocking).

m asc_partition_free
= Free a memory block.

s 3gsc_partition_reference
= Get partition information

May 6th, 2002

Atalanta Support for the SocDMMU
Objectives e
—_____=ﬁ,f
= Extend the Atalanta RTOS with hardware support for
real-time Dynamic Memory Management.

a Best of both worlds: deterministic real-time RTOS behaviour
plus dynamic allocation of global memory like general
purpose operating systems

= Use the same Memory Management API Functions.

= Allow multiple real-time applications to run on the
SoC, including determinstic transition times among
applications (e.g., which may have just been
downloaded)

May 6, 2002 |coorata 20

==

Atalanta Support for the SocDMMU

Facts

m The SOCDMMU needs to know where the allocated
physical memory will be placed in the PE address

space.

m The PE address space is much larger than the
physical address space (64 MB* vs. 4GB).

m The PE-Address Space Fragmentation can be
overcome by:

m Using the SOCDMUU move Command (pointers
problems).

m Replicate the physical address space.

* A typical global on-chip memory size for billion transistor multiprocessor SoC

May 6, 2002 f\ﬂ Gograla 11 21

Atalanta Support for the SocDMMU

New API New Functions .
"

Function Name Description

asc _partition create Create a partition by requesting memory
_ allocation from the SOCDMMU if necessary.

asc _partition delete Delete a partition and de-allocate memory
o block if required.

asc_memory find Find a place in the PE address space to which
— — to map the allocated memory.

May 6t 2002 22

="

Atalanta Support for the SocDMMU
Example of how to use SO CDMMU in Atalanta ('QW
———_s?

Memory Memory
FIFO Buffer 1 Buffer 2
DSP1 DSP2

= DSP1 and DSP2 are used to perform the Orthogonal Frequency
Division Multiplexing (OFDM).

= DSP1 reads the incoming data from the FIFO and performs FFT,
then it passes it to DSP2 through the shared memory buffer 1.

s DSP2 performs the rest of the OFDM processing and then writes
the modulated data into memory buffer 2.

May 6th, 2002 23

Atalanta Support for the SocDMMU
Example of how to use SO CDMMU in Atalanta (2,}W
———————-——————————________J=====================lll===ll===llll£iihﬁ

DSP1

#defi ne BUF1 0x10

SYS _ERRCR €;
SYS_PARTI TI ON p1;
SYS MEM ni;

pl=asc_partition_create(2,1, DMMJ_ RW BUFL, &e);
ml= asc_partition_gain(pl, &e);

asc_partition_free(pl, ni, &e);

May 6th, 2002

="

Atalanta Support for the SocDMMU
Example of how to use SO CDMMU in Atalanta (3,}W
———————-——————————________J=====================lll===ll===llll£iihﬁ

DSP2

#defi ne BUF1 0x10
#defi ne BUF2 0x20

SYS_ERRCR e¢;
SYS_PARTI TI ON p1;
SYS_MEM i,
SYS_PARTI TI ON p2;
SYS_MEM n®;

pl=asc_partition_create(2,1, DMMJ_ RO BUFL, &e);
ml= asc_partition_gain(pl, &e);
p2=asc_partition_create(4,1, DMMJ_EX, BUF2, &e) ;
ml= asc_partition_gain(p2, &e);

asc_partition_free(p2, n2, &) ;

May 6th, 2002 25

d

==

Outline -

s Introduction.
= |he SoCDMMU.
= RTOS Support.

s Comparison to a Fully Shared-Memory
Multiprocessor System.

s Conclusion.

May 6, 2002 | cograta-cis 26

Comparison to a Fully Shared-

Memory Multiprocessor System e
e —

B

ARM9 ARM9 ARM9 ARM9

L1$ L1$ L1$ L1$

Bus
....... L. Arbiter

Global Memory

= Global memory of 16MB; each L1 $ is 64 kB

= A handheld device that utilizes this SoC can be used for OFDM
communication as well as other applications (MPEG2 video player).

= Initially the device runs an MPEG2 video player. When the device
detects an incoming signal it switches to the OFDM receiver. The
switching time (which includes the time for memory management)
should be short or the device might loose the incoming message.

May 6, 2002 ﬂﬂh@eﬁ.ﬁ 27

Comparison to a Fully Shared-

Memory Multiprocessor System e
—=B;f

e Memory Requirements

MPEG-2 Player |OFDM Receiver
2 Kbytes 34 Kbytes
500 Khbytes 32 Kbytes
5 Kbytes 1 Kbytes
1500 Kbytes 1.5 Kbytes
1.5 Kbytes 32 Kbytes
0.5 Kbytes 8 Kbytes
32 Kbytes

May 6t, 2002 ii“d Gogratar 28

Comparison to a Fully Shared-

Memory Multiprocessor System e
s e ————— '\

3

Memory Management Execution time during transition
from the MPEG2 player to the OFDM Receiver

Average # of Average # of Total

cycles/Allocation | Cycles/Deallocation | (Cycles)
w/o SoCDMMU 106 83 280
Using SoOCDMMU** | 28 14 1240
Speedup 378% 590% 440%

** Using ARM SDT2.5 embedded malloc() and free() functions

Note that WCET comparison would show much larger speedup.

| el -

May 6th, 2002

Outline -

s Introduction.
= |he SoCDMMU.
= RTOS Support.

s Comparison to a Fully Shared-Memory
Multiprocessor System.

s Conclusion.

May 6, 2002 | cograta-cis 30

Conclusion and Future Work -
Py
= We Described a new apFroach to handle on-chip
memory allocation/de-allocation among PE’s on SoC.

Also, we showed how to extend the Atlanta RTOS to
support the SoCDMMU.

= Our example shows a multiprocessor SoC that utilizes
the SOCDMMU has 440% overall speedup of the
application transition time over fully shared memory
that does not utilize the So CDMMU.

= For the future work, we plan to develop a tool that
automatically generates (synthesizes) a customized
SoCDMMU that works for a given number of
processors and global memory size.

More details at the poster!

May 6, 2002 f\ﬂ Gograla 11 31

Questions

32

