
Software Streaming
via Block Streaming

Pramote Kuacharoen*, Vincent J. Mooney III+ and Vijay K. Madisetti&
{pramote, mooney, vkm}@ece.gatech.edu

+Assistant &Professor, *School of Electrical and Computer Engineering
+Adjunct Assistant Professor, College of Computing

Georgia Institute of Technology
Atlanta, Georgia, USA

This research is funded by the State of Georgia under the Yamacraw initiative.

DATE Conference, March 6, 2003

Georgia Institute of Technology
Patent Pending

Outline

� Introduction
� Objectives
� Related Work
� Block Streaming
� Performance Analysis
� Simulation Results
� Conclusion

2

Introduction

3

Client

� Download time can be very long, delaying
the program execution

� Resource Utilization may not be efficient
since unneeded parts are also downloaded

• Sends a request to download a
program

• Downloads the program
• Waits for the completion of download
• Starts program execution

Objectives
� To stream software (especially embedded applications)

to remote devices
� To reduce the amount of time from when the application

is selected to download to when the application can be
executed (application load time)

� To reduce the amount of time when the application is
suspended or stalled during execution due to missing
code (application suspension time)

� To efficiently utilize resources such as bandwidth and
memory

� To support a wide range of applications (real-time and
non-real-time applications)

� To facilitate software updating since the latest version of
software is always downloaded to the client device

4

Applications for streaming

� Likely to change over time to support
new functionality such as game
software

� Have many features, only a few
features are needed such as financial
software

� Run on a device which has limited
resources

5

Related Work (1)

� Java applet implementation
� Requires JVM
� Allows applets to run without obtaining all classes
� Uses on-demand downloading for each class file,

potentially making too many connections and
causing the application to be suspended while a
class file is being sent

� Can avoid making too many connections by
bundling and compressing class files into one file,
which in turn delays program execution

� Our method uses both background streaming
and on-demand streaming

6

Related Work (2)

� Raz, Volk and Melamed [7]
� Divides an application into a set of modules
� Replaces functions in each module w/ stub functions
� The streaming behavior varies depending on the size

of each module, causing difficulties in predicting
application suspension time

� Target: general purpose computers
� Streaming at the level of modules

� In our method, the size of delivery units can be
fixed and we support embedded devices

7

Related Work (3)

� Eylon et al. [8]
� Divides an application into fixed size of streamlets
� Requires virtual file system
� Requires OS support
� May not be applicable for a small memory footprint

and slower or lower-power processor embedded
device

� Our method does not need a virtual file system

8

Related Work (4)

� Source code streaming [9]
� Sends the application source code to the devices,

exposing the intellectual property contained the
source code

� Compiles the application at load time, increasing the
application load time

� Requires a compiler at the client device which
occupies a significant amount of storage space

� Our method does not expose the intellectual
property and does not need a compiler to
reside at the client

9

Block Streaming Concept

10

Source Code

#include <stdio.h>
int main()

int i;

1000111010010010010001
1000101111010011101001
0111101100010010100011
1010010010010001100010
1111010011101001011110
1100010010100011101001
0010010001100010111101
0011101001011110110001
0010100011101001001001
0001100010111101001110
1001011110110001001010
0011101001001001000110
0010111101001110100101
1110110001001010001110
1001001001000110001011
1101001110100101111011
0001001010001110100100
1001000110001011110100
1110100101111011000100
1010001110100100100100
0110001011110100111010
0101111011000100100010
0110100100100100010010

Binary Image
1000111010010010010001
1000101111010011101001
0111101100010010100011
1010010010010001100010
1001011110110001001011

1000111010010010010001
1000101111010011101001
0111101100010010100011
1010010010010001100010
1001011110110001001011

1000111010010010010001
1000101111010011101001
0111101100010010100011
1010010010010001100010
1001011110110001001011

Stream-enabled Application

Block Streaming: Binary Instructions

� Instruction categories
� Arithmetic (e.g., add, subtract)
� Logical (e.g., and, or, shift)
� Data transfer (e.g., load, store)
� Conditional branch (e.g., branch less than, branch on

equal)
� Unconditional branch (e.g., return, branch)

� Exiting and entering a block
� A branch or jump instruction
� A return instruction
� An exception instruction
� After executing the last instruction of the block

11

Block Streaming: Handling Branches

� We called a branch instruction that may cause the
processor to execute an instruction in a different
block an off-block branch

� Code modification
� Branches: modify if is an off-block branch
� Last instruction of the block: if the following block is not yet

loaded and the last instruction is not a goto or a return
instruction, add an instruction to stream in the following block

� Return instruction: do nothing, caller code already in memory
� Exception instruction: stream exception code prior to the

current block

12

Block Streaming: Example (1)

13

if (i==1)
i=0;

else
i=1;

cmpwi 0,0,1
bc 4,2,.L3
li 0,0
stw 0,8(31)
b .L4

.L3:
li 0,1
stw 0,8(31)

.L4: …

Block Streaming: Example (2)

14

cmpwi 0,0,1
bc 4,2,load2_1
li 0,0
stw 0,8(31)
b load2_2

load2_1: …

load2_2: …

bc 4,2,.L3

b .L4

.L3:
li 0,1
stw 0,8(31)

.L4:
…

load3_0: …

b load3_0

Performance Metrics

� Overhead
� Transmission and memory overhead (12

bytes/off-block branch). However, if some
blocks are not loaded, software streaming saves
resources

� Runtime overhead
� Application load time
� Application suspension time

15

Performance Enhancement (1)

16

Background Streaming

Client

Performance Enhancement (2)

17

On-demand Streaming

Client

Simulation Environment

18

VCS Seamless
CVE XRAY

MemoryMPC750 MPC750

Main processor I/O processor

Softstream Tools

� Softstream Generator
� Generates stream-enabled application from the

original binary image
� Softstream Loader

� Loads blocks into memory and invokes the
application

� Softstream Linker
� Modifies code at runtime

19

Simulation Scenario

� Adaptive autonomous robot exploration
� Impossible to write and load software for all

possible environments
� The mission control needs to update the

robot software over a 128Kbps link
� The new code is 10MB
� The robot must run the software to react to

the new environment within 120 s

20

Simulation Results (1)

21

0.037.0313%20480512

0.063.5156%102401K

0.640.3516%102410K

6.400.0352%103100K

32.770.0069%200.5M

65.540.0034%101M

131.070.0017%52M

327.680.0007%25M

655.360.0003%110M

Load time (s)Added
code/block

Total # of
blocks

Block size
(bytes)

Simulation Results (2)

� Sending the whole software takes over 10
minutes: the deadline is missed

� Using software streaming with the first
blocks of size of 1MB, the new software can
be executed within 66 seconds: the deadline
is met

� The application load time improves by a
factor of more than 10X

22

Conclusion

� Embedded software streaming allows an
embedded device to start executing an
application while the application is being
transmitted.

� Our streaming method can lower application
load time, bandwidth utilization and memory
usage

� We verified our streaming method using a
hard/software co-simulation platform

23

Future Work

� Branch prediction algorithm
� Software profiling
� APIs for controlling background streaming

24

