Path-Based Edge Activation for
Dynamic Run-Time Scheduling

Vincent J. Mooney |11

Assistant Professor
Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA USA

Outline

= Motivation

= Previous Work

= Path-Based Edge Activation
= Example

= Synthesis Flow

= Experimental Results

= Future Work

M otivation

= Dynamic Hard-Real-Time Systems

= Previous work by author limited to DAGs
= Application examples have control flow

= Extend run-time system to handle CDFG

Robotics Example: Concurrent
Control Laws

matrlx
VeCtor
multipl

Previous Work

m “ Scheduling of Conditional Process Graphs
for the Synthesis of Embedded Systems,”
Eles, et. al., DATE, 1998.

® “Hardware/Software Co-Design of Run-
Ime Systems,” Ph.D. thesis, Stanford,
1998.

® “Hardware/Software Co-Design of Run-
Time Schedulers for Real-Time Systems,”
to appear in Design Automation of
Embedded Systems.

Conditional Process Graphs.
Figure 4 (page 136), Processor pe,

P3

P11

P14

P1/

a) Optimal schedule of the path corresponding to DMCK

P11

P3

P15

P1/

b) Optimal schedule of the path corresponding to DACMK

P11

P3

P14

P1/

c) Adjusted schedule of the path corresponding to DACMK

Conditional Process Graphs

= Conditionals (e.g., D, C, K) are broadcast to
all processing elements

m Activation times (start times) for tasks fixed
based on values of conditionals (or subset of
conditionals)

= Focus on handling late arriving conditionals

= |n case where al conditionals are ready at
the beginning, schedule merging may result
INn known suboptimal solution

Previous Work (author)

CPU corel
start

start n start |

Task Control

M Associate start and done event with each task
B Control of hardware tasks
o Start signal (bit)
+ done signal (bit)
B Control of software tasks
¢ Start vector encapsulates all sw start events
¢ done vector encapsulates all sw done events

Run Time Scheduler Implementation

M Start with control flow of hw- and sw-tasks
B Hardware implementation:

¢ put FSM corresponding to the control flow
+ cycle based semantics
+ can predictably satisfy hard real-time constraint

B Software Implementation:;
¢ preemptive static priority scheduler
+ Can execute different threads
+ keepstrack of which threads are suspended
o direct execution of software tasks by ISR
¢ all sw tasks run to completion (no suspension)
B Mixed implementation can leverage advantage of

hardware and software

{oh0,0h1,cjd} G

f5(ts Xz

ohl,snk

f3*(t3 Xai)

Constructive Heuristic
@ on DAG

*
X3k

24,020

¥
35,012

¥

¥

24,020
43,812
35,012

(cjd,ohl,snk)}

ohl,snk
cjd,snk
ohl,snk

X,* ={(oh0,0h1,snk),(oh1,cjd,snk),

Constructive Heuristic
Scheduling Algorithm:;
Result

Final Result:
ohO -- priority 1
cjd -- priority 2
ohl -- priority 3

WCET: 39,012

Path-Based Edge Activation

= Extend scheduling to handle CDFG, not just DAG
= Conditional edges
¢ active only If a particular path chosen

+ apath is defined by a set of values of conditional
choices in the CDFG

= For each path, insert conditional edges to minimize
WCET

¢ assumption: conditional values evaluated early
enough for all conditional edge insertions

Example

task hw/sw wecet(cycles)

NEVER = {oh0, ohl, cjd}

No static order can achieve better than a WCET of 49,013

Centralized Control

= Done signals arrive to hardware run-time
scheduler (no broadcast)

= Dynamic ordering of software tasks must be
done by hardware run-time scheduler

m Use hardware-driven software execution
m | SR executes a software task
o a0v.: fast

¢ disadv.. software tasks not interruptable

Scheduling Assumptions

B A CDFG represents the set of tasks
¢ limited number of paths
M One rate constraint for the graph
B A NEVER set specifies mutually exclusive sw-tasks

B Each sw-task, once started, runs to completion
+ limits solution space

B Hw-sw communication accounted for
¢ In task WCET
¢ 3S a separate task

M | nterrupts come only from the hw run-time sched.

case: c=1

WCET = 38,013

case: c=0

WCET = 39,859

case: c=1 case: c=0

WCET of 39,859 achievable with dynamic order

Algorithm

Solve order(CDFG,NEVER)

beginmodule
for each path determined by a unique set of conditional values
begin
DAG = subset of CDFG determined by path
Schedule DAG using constructive heuristic scheduling
Add conditional edgesto enforce DAG schedule
end
endmodule

Tool Flow

—
—
~

R Serra2 Run-Time Mp core,
’ 4 Scheduler Synthesis ' RAM size,

etc.
etc.
% (behavioral Verilog

A

SERRAZ2 Run-Time Scheduler
Synthesis Tool

Thalia2 conditional
Key: edges &
B - tool RTS control ESM™\—assembly code
in RTL Verilog

RTS assembly code

Bl -=tool

Example and Experimental Results

Software #Lines #Lines WCET ™ HWt'ttaSkS
Task of C Asmbly GBS

cjd 286
ohO 90
ohl 693
Int-ser-rtn N/A

Verilog for
1177 14878 BC, use LS|

237 2954 10K library

3263 20581 M Verilog mode
26 20 of MIPS core
with Interrupts

Hw-task #LinesV Area WCET ™M 19% decrease

mvm 629
114 2362
CQ 2897
rtsched-hw 484

33645 4400 in WCET:
42168 11500 39859 (49013)

50587 11000 M Used _VCST'V'
413 99701 to verify result

Future Work

= Extend to handle late arriving conditionals
= Extend to allow Interruptable software tasks

