
Low Power Motion Estimation with Probabilistic

Computing
Charvi Dhoot

‡∏
, Vincent J. Mooney

§#&∏
, Lap Pui Chau

§∏
 and Shubhajit Roy Chowdhury

‡

‡International Institute of Information Technology, Hyderabad, India
§School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

#School of Computer Engineering, Nanyang Technological University, Singapore
&School of Electrical and Computer Engineering, Georgia Institute of Technology, Georgia, USA

∏Institute of Sustainable and Applied Infodynamics, Nanyang Technological University, Singapore

charvi.dhoot@research.iiit.ac.in, mooney@ece.gatech.edu, elpchau@ntu.edu.sg, src.vlsi@iiit.ac.in

Abstract— As Moore’s law approaches the low nanometer range,

predictions have been made that computing via future technology

nodes may no longer be correct due to, for example, the presence

of noise sources such as thermal noise. Probabilistic computing, a

term coined for computing via devices that yield a

probabilistically correct output, has earlier been shown as a

means for realizing energy efficient computing in signal

processing applications. In this paper, we explore the application

of probabilistic computing for low power motion estimation. It is

observed that motion estimation itself exhibits high resilience to

erroneous computation. Simulations show that energy savings up

to 44% can be achieved in motion estimation using full search

block matching with probabilistic computing with a minor

impact (under 0.5 dB) on the required quality of the output. A

scheme of error correction based on the motion vector

distribution is proposed that further increases the possible energy

savings with full search block matching up to 57%.

Keywords- PCMOS architecture, probabilistic computing, error

resilient design, low power design, motion estimation

I. INTRODUCTION

Motion estimation has been a landmark innovation in video

compression. It has been able to provide a tremendous

breakthrough in video applications such as online

conferencing, live streaming, etc., due to its ability to encode

videos at very low bitrates [1]. However, motion estimation is

also known to be the most computationally expensive unit of a

video encoder, accounting between 66% and 94% of the

encoder computational complexity [2]. This along with the

growth in the popularity of handheld devices and other mobile

systems using video applications places an additional demand

for low power solutions to motion estimation.

It is believed that the upcoming CMOS technology will

bring about a revolution in the domain of ultra-low power

computing. The operability of these technologies at extremely

low voltages has brought about the notion of voltage scaling as

a solution for energy reduction. However, it is also predicted

that with the reduction in the voltage levels, the noise

immunity of these devices will decrease enough to result in

variability in their output. Hence, computing through this

technology may, in the future, be “probabilistically” correct.

This calls for design of algorithms that are able to gain these

energy savings while having the resilience with respect to the

probabilistic nature of computations [3].

Probabilistic computing has been shown as an effective

solution for image processing applications where unperceived

degradations in the visual quality are allowed [4]. Our

approach will differ in the case of motion estimation because

degradation in the performance of motion estimation leads to

an increase in the number of bits required for encoding. In this

paper, we show techniques to lower energy consumption even

with a constraint on the allowed degradation in quality.

The non-deterministic behavior of modern silicon

technologies can be modeled due to various phenomena. We

consider a thermal noise based model, a phenomenon which

some predict will affect the performance of the future

technology nodes [5]. It should be noted, however, that our

approach in applying probabilistic computing is generic

enough to encompass other sources of errors which can be

modeled by a Gaussian distribution [6,8].

The organization of this paper is as follows. Section 2

briefly discusses some important prior work in probabilistic

computing and low power motion estimation. Section 3

provides a background on motion estimation required to

understand the subsequent sections. Section 4 discusses the

proposed methodologies, these being the application of

probabilistic computing to motion estimation and an error

correction scheme based on an observed phenomenon in video

sequences. Section 5 presents experimental results based on

these methodologies, and the final section concludes the paper.

II. PRIOR WORK

Prior work in the domain of probabilistic computing has

established that energy savings can grow exponentially with

probability of error [8,9]. Furthermore, methods for modeling

thermal noise based probabilistic primitives such as logic

gates, adders, etc., have also been explored and established

[6]-[9]. George et al. showed that probabilistic computing

combined with an intelligent design of primitives may lead to

a significant amount of energy savings while also minimizing

the error introduced in the application [4].
Low power motion estimation is an extensively studied

domain of research. Variants of efficient algorithms and
architectural implementations for these algorithms have been
proposed [10]-[12]. Much of this work is based on algorithmic
modifications and does not consider voltage scaling as a
solution for low power motion estimation. Voltage scaling for
low power motion estimation with errors occurring because of
delay based variations (due to, e.g., scaled supply voltage or
process variations) has earlier been used by Varatkar et al. [13].
They propose an error correction scheme to achieve energy
savings. Our approach uses a different noise model but mainly
differs in terms of the error correction scheme proposed. The
error correction scheme proposed in this paper is based on a
property of real video sequences and is more suitable for full

mailto:elpchau@ntu.edu.sg
mailto:src.vlsi@iiit.ac.in

search block matching algorithm compared to the one in [13],
proposed originally for three step search algorithm.

III. BACKGROUND

Motion estimation exploits the fact that there typically
exists a high degree of commonality between two adjacent
frames in a video sequence. It describes the movement of
objects in a frame with respect to the previous frame through
motion vectors. The encoding of the frame is done through
these motion vectors. At the decoder, these vectors are used to
reconstruct the frame. The reconstruction process is known as
motion compensation. There are various approaches followed
to determine the required motion vectors. The most popularly
employed approach is block-matching.

A. Motion Estimation via Block Matching

2p+1

2p+1

Current FramePrevious Frame

(0,0)

Current Block

(x,y)

(0,0)

Search Area

Fig. 1. Block-Matching

In a block-matching approach, the current frame in the

video sequence is divided into non-overlapping macro-blocks

of size N × N pixels (e.g., N=16). For each macro-block in the

current frame, a displacement motion vector (MV) is

calculated with respect to the best match for this block in the

previous frame. The search for the matching block is

constrained within a search area of size (2p+1)×(2p+1) pixels,

where the parameter p varies from 7 to 31 chosen according to

the type of video sequences to encode. An algorithm is used to

determine the number and place of search points in the search

area for an efficient search.

The criterion for arriving at the best match out of the

candidate macro-blocks is sum of absolute differences (SAD).

SAD is calculated by summing up the absolute difference

between pixel luminance values of the current block „a‟ and

the corresponding pixel luminance values of the candidate

block „b‟.





NN

ji

jibjiaSAD
,

),(),(

B. Motion Estimation in Video Encoding

The quality of motion estimation is critical to video

encoding. Video encoding through motion estimation is done

through motion vectors as opposed to Discrete Cosine

Transform (DCT) and quantization that encode pixel values of

the frame. Thus, compression through motion estimation is

able to achieve much lower bitrates. The video encoding

procedure is illustrated in Fig. 2. The encoded frames can be

characterized as either intra or inter-coded frames. Intra coded

frame or I-frames are reference frames and are encoded via

DCT and quantization only. Inter coded frames or P-frames

are encoded via motion estimation as well as DCT and

quantization. DCT and quantization are required in P-frames

to encode the difference frame, i.e., the difference between the

original frame and the motion compensated frame. In this

paper, we avoid usage of other inter coded frames such as B-

frames to keep the discussion simple. The order in which the

intra and inter-coded frames are arranged is specified by the

Group of Pictures (GOP) structure. Each GOP begins with an

I-frame. The number of frames between two I-frames is the

GOP size. We use a GOP size of 15.

Quantization leads to lossy compression. The amount of

quantization to apply for encoding is governed by the

Quantization Parameter (QP). The value for QP varies from 1

to 31. When a lower bitrate is desired, QP is increased, which

increases the compression loss. In the event that the

performance of motion estimation degrades, the video encoder

either increases QP to lower the quality but maintain a fixed

bitrate, or, in applications where the quality cannot be

compromised, it increases the bits required to encode the

frame at a fixed QP. In most wireless and storage applications

the bitrate is critical. Hence, in this paper, we consider low

power motion estimation at a fixed bitrate only.

Fig. 2. Video Encoder

C. Full Search Block Matching Algorithm (FSBMA) and

Systolic Array Architecture

In the full search block matching algorithm, all pixel

locations in the search area are considered as candidate

locations. This algorithm is preferred in video codecs such as

H.264 as it yields the most optimal results in terms of the

visual quality. However, it is also computationally very

expensive. Due to its computational complexity, many low

power architectural implementation variants for this algorithm

are proposed [10]-[12]. We consider this algorithm to show

the possible energy savings with probabilistic computing with

minor degradation in the required quality of the output.

Systolic array architectures are widely used to model the

architecture used for calculating the motion vector when the

block matching algorithm used is FSBMA [14,15]. The

popularity of systolic array architectures is because of the

nature of computations required and the regularity in memory

access for the computations required in FSBMA. The systolic

array architecture for block size N=16 is illustrated in Fig. 3

[14]. Blocks AD and A contribute to calculating the SAD.

Block M is a comparator that determines the minimum SAD.

The functionality of the blocks AD, A and M is illustrated in

Fig. 4. The systolic array architecture described thus makes up

the datapath architecture for motion estimation.

IV. PROPOSED METHODOLOGY

The computational intensity of motion estimation is due to

the fact that in a given video sequence the number of frames to

process is very large. In a full architectural implementation for

motion estimation for FSBMA, the datapath architecture

accounts for 75% of the involved processing [11]. In this

section we propose a method to model a Probabilistic CMOS

(PCMOS) based datapath architecture for low power motion

estimation. This section also describes an error correction

scheme that can further enhance the possible energy savings

possible with PCMOS.

AD

AD

AD

AD

A

1,1

1,2

2,13,1

1,3

2,23,2

2,3

1,1 2,1

1,2

3,3

3,1

2,2 3,2

1,3 2,3 3,3

0

M

1,16 2,161,162,16

Current

Block Pixels

Candidate

Block Pixels

Fig. 3. Systolic Array Architecture

AD

a

X Y

|X-Y|+a

A

a

b

a+b
M

a

b

min(a,b)

Fig. 4. Block level details for Systolic Array Architecture

A. Modeling the PCMOS Architecture for Motion Estimation

The systolic array architecture described in Fig. 3 for

motion estimation consists of adders of bit width ranging from

8 to 16 bits. These are in turn modeled as ripple carry adders.

Also, the architecture has to be modeled as a sequential circuit

running on a clock to facilitate memory accesses and

computations at the right timings. Thus, blocks AD, A and M

require registers. At the gate level implementation, the basic

building blocks of the systolic array architecture are full

adders, D-flip flops, inverters and Exor gates. Inverters are

used in blocks AD and M for subtraction, and Exor gates are

used in block AD for absolute value computation. These gates

are modeled as probabilistic gates with the exception of

inverters and Exor gates which account for a small percentage

(less than 10%) of the total energy consumed in the systolic

array architecture described in Fig. 3.

The modeling of probabilistic gates is done through the

methodology described in [6]. The methodology involves

coupling a Gaussian noise source at the output of each

gate [8]. The noise source is modeled as a voltage controlled

voltage source with gain equal to the noise RMS. The choice

of noise RMS is such that no errors are observed at the output

of each probabilistic gate at the nominal supply voltage for the

technology node used. Errors begin to show up at the output of

the probabilistic gate when its supply voltage is scaled down.

By modeling the gates in such a manner we have tried to

emulate what may be observed in a future technology node,

say at 16nm.

The modeling described in [6,7] shows that the error rates

observed in Hspice based simulations for larger circuits such

as ripple carry adders built through probabilistic gates such as

full adders, can be emulated through C-based simulations.

This is useful in estimating degradation in the output quality of

motion estimation. Hspice simulations can be used to

characterize the probability of error for a probabilistic gate at

the scaled supply voltage values. The calculations made

through the architecture can then be modeled in C as per the

computations at the gate level in the circuit, and false bit

flipping can be introduced in the C-based calculations using

the probability of error for the specific gate. Thus, C based

simulations can be used to determine the error tolerance of

motion estimation, thereby aiding in making the choice of the

appropriate operating supply voltage for the circuit. The

energy consumption for the PCMOS architecture at the

appropriate supply voltage is calculated using Hspice. A

detailed discussion follows in Section 5.

B. Error Correction Scheme based on Motion Vector

Statistics

In real video sequences, it is often observed that much of

the scene remains stationary (background, fixed objects, etc).

Also, the displacement of most of the objects in the video is

usually very small over a set of adjacent frames. Based on this

notion, we can postulate that a large percentage of motion

vectors will be equal to (0, 0), and an even larger percentage

will be concentrated within (±r, ±r), where r is a small value.

A preliminary analysis with some example video sequences

showed that in a search area of size 23×23, a motion vector

was found to lie within an area of 5×5 almost 50% of the time,

with this value being as high as 97% in the case of videos with

slow motion. This observation has been used in the past for

proposing center biased searches [16,17]. We use it to propose

the following scheme for correction of errors introduced by

the PCMOS architecture. This scheme for error correction

requires that there be two systolic arrays working at different

operating voltages (resulting in increased area, see

Section 5.A), one of which always works at 1.2 V while the

decision on the voltage selection for the other unit is described

in Section 5. The scheme works by dividing the search area

into two regions as shown in Fig. 5. The candidate blocks in

Fig. 5 in region 1, which is smaller and more probable to have

the best matching block, are evaluated using the error-free

architecture operating at 1.2 V. Region 2 in Fig. 5, outside of

region 1, is evaluated using an architecture operating at a

lower voltage value. The decision on the size of region 1 is

made through QP that can be taken as feedback from the

quantization block in the video codec. We know that QP in a

video encoder, coding at a fixed bitrate, increases when the

quality of motion estimation degrades. This property can be

used to vary the size of region 1 as per the needs of the video

sequence being encoded. The size of region 1 is controlled by

the range parameter „r‟. In the steps for the error correction

scheme shown below, QPTH, η1 and η2 are parameters that

facilitate the decision on what value of „r‟ to choose based on

the value of QP. Parameter r1 is the maximum value that „r‟

can assume. The approach we use is as follows:

Step 1: Select an initial range parameter „r‟.

Step 2: For each macro-block in the current frame,

Step 2.1: Divide the search area into two regions.

Step 2.2: Determine the best matching block in region 1

using the full search algorithm and the architecture

maintained at 1.2 V.

 Step 2.3: Determine the best matching block in region 2

using the full search algorithm and the architecture

running at a scaled supply voltage. Calculate SAD for the

winner candidate in this region with an arithmetic unit

maintained at 1.2 V; note that this arithmetic unit is

already present in the proposed architecture for the

scheme for calculations required in Step 2.2.

 Step 2.4: Compare the SAD for the best matching blocks

in Step 2.2 and Step 2.3, and select the one with the

smaller SAD as the final best matching macro block.

Store the motion vector corresponding to this block.

Step3: After every 5
th

 frame, if QP > η1 × QPTH and r < r1,

then r = r+1,

 else if QP < η2 × QPTH and r > 0, then r = r-1.

Continue from Step 2.

1. 2p+1

2p+1

2r+1

2r+1

2.

Search Area

Previous Frame

Fig. 5. Search Area Division

In the proposed scheme, QPTH, η1, η2 and r1 are determined
empirically. The range parameter „r‟ is changed after every 5

th

frame for the results of the previous change in „r‟ to reflect in
the quality of motion estimation. The error correction in this
scheme is in terms of selection of the correct motion vector
which is more likely to be present in region 1. Note that most
video sequences have more than 50% of their motion vectors
lying within a small region around the current block position.
Thus, the increase in energy consumption with the error
correction scheme proposed above is negligibly small.

V. RESULTS

In this section, we discuss the energy savings possible in

the datapath architecture through the methodologies proposed

in Section 4. Our base case for comparing the achieved energy

savings is the error-free systolic array architecture described in

Fig. 3. We model this architecture in Hspice in the Synopsys

90nm generic library, and operate it at the nominal supply

voltage for this technology, which is 1.2 V for error-free

operation. Case 1 and Case 2 correspond to uniformly voltage

scaled PCMOS architecture and the proposed error correction

scheme using uniformly voltage scaled PCMOS respectively.

We first describe the experimental setup for modeling the

PCMOS datapath architecture and estimating the energy

consumption through the architecture. Next, the experimental

setup for motion estimation and the performance metrics used

are explained. Also, the method used for estimating the error

in the performance of motion estimation is described. Then, an

analysis with some example video sequences is carried out to

validate the thinking behind the error correction scheme

proposed. The possible energy savings at a fixed quality for

the two cases is presented. The output quality at fixed energy

savings is also compared for the two schemes.

A. Experimental Setup for PCMOS based Datapath

Architecture and Energy Estimation

The Hspice simulations of the datapath architecture were

carried out using a 90nm generic library from Synopsys. The

basic components in the datapath architecture were identified

as full adders, D-flip flops, inverters and Exor gates. The

datapath architecture was modeled at the transistor level in

Hspice. A clock frequency of 125 MHz was used. This was

chosen in order to process a video with frame size 352x288 at

20 fps and block size N=16 by the systolic array architecture

used. The chosen frame rate and frame size are the ones

required by most videophones today.

The transistor level circuit used for full adders is a 24

transistor mirror adder circuit [18], and the circuit used for D-

flip flops is described in [19]. The circuit used for the D-flip

flop is a dynamic edge triggered flip flop which holds data

only for a short period of time. This design for the flip flop

suits the requirements of the architecture used as the outputs

from the registers are processed every clock cycle. Full adders

and D-flip flops account for 90% of the total energy

consumed. So, noise based PCMOS models based on the

method described in [6] were developed only for full adders

and D-flip flops. The RMS value for noise source was chosen

for the components in a manner that no errors were observed

at the nominal supply voltage of 1.2 V. The noise RMS value

chosen was 0.2 V. This predicts a future node, e.g., 16 nm.

To calculate the probability of error for the full adder and

flip flop, we simulate the PCMOS based netlists of these gates

at the scaled voltage values. The range of voltage values used

was 1.2, 1.15, 1.10 down till 0.5 V, the step size being 0.05 V.

The lowest voltage used was 0.5V which conformed to the

delay requirements of the architecture to process the video at

the specified frame rate. The operability of the current

technology nodes, e.g., 90nm for voltage values lower than

0.5 V has been shown in [20]. At the scaled supply voltage,

the blocks AD, A and M in the architecture become erroneous.

However, block M is a comparator and needs to make correct

decisions. Hence, block M was maintained at the supply

voltage of 1.2 V. The output of block A was level shifted to

the voltage value of 1.2 V using level shifters. The circuit used

for level shifting is described in [21].

The energy consumption through the architecture was

calculated using Hspice. The inputs to the architecture were

test vectors from the video sequences used to show the energy

savings. The video sequences used are described in the

following sections. Case 1 requires the components AD and A

of the architecture to run only at one of the voltage levels

specified, and block M to run at 1.2 V. Hence, energy

consumption was calculated by simulating the entire systolic

array architecture circuit by scaling down the voltage supply

uniformly for all components of blocks AD and A to the

required voltage level and using level shifters before block M

in Hspice. Case 2 requires two parallel architectures

maintained at different voltage levels, 1.2 V and a lower

voltage value. If the average power consumed by the two

architectures circuits for Case 2 at the different supply

voltages is P1 and P2, and the percentage of calculations made

through the two architectures, determined by the range

parameter „r‟, are C1 and C2, then the energy consumption for

Case 2 was estimated as (P1×C1 + P2×C2) × T, where T is

time period of clock cycle required per calculation. The values

of C1 and C2 were determined over 100 frames of the video

sequence for a good estimate. Note that static power is less

than 1%.

Note that for Case 2 additional control logic will be

required to multiplex the data from memory between the two

systolic arrays, i.e., pixel data of the search area pixels in

region 1 (Fig. 5) and current block data to be given to systolic

array-1 working at 1.2 V, and pixel data in region 2 (Fig. 5) to

be given to systolic array-2 working at a lower voltage. The

control logic will have to facilitate one additional block

memory access required for the calculation of the final motion

vector (Step 2.3 in Section 4.B). Also, the area of the datapath

architecture will be approximately doubled because of the

presence of two systolic arrays as shown in Fig. 6. In the

energy savings quoted in this paper, we account only for the

energy savings in the datapath architecture as it makes up for

most (about 75%) of the involved processing in case of full

search algorithm [11].

Datapath Architecture

Systolic Array -1

Control Logic

Memory

Systolic Array -2

Fig. 6. Motion Estimation Architecture Details for Case 2

B. Experimental Setup for Motion Estimation

The input video sequences to motion estimation are CIF

video sequences of size 352x288 at 20 fps. Four video

sequences with motion characteristics varying from slow to

fast have been considered to show the results. The parameter p

for the search area is chosen to be 11, appropriate for the video

sequences considered. The simulations are carried out in the

MPEG-2 Test Model 5 codec, at main profile and main level

[22]. The GOP size used is 15. The performance of the two

cases is evaluated by fixing the average quality degradation

ΔPSNR of the motion compensated frame within 0.5 dB from

the base case. PSNR is calculated as

  






















WH

ji

MCI jiFjiFWH

PSNR
,

,

2

2

),(),())/(1(

255
log10

where H and W are the dimensions of the frame.),(jiFI

and),(jiFMC
are the pixel luminance values for the input and

the motion compensated frames. To estimate the performance
of motion estimation for the PCMOS architecture, we perform
C-based simulations. The 8-bit pixel inputs from the current
and candidate blocks are converted into binary values. The
calculations are then performed as they would occur in any
hardware according to the manner in which logic gates are
connected in the circuit. False bit flipping is introduced for full
adders and D-flip flops as per the probability of errors
characterized earlier through Hspice simulations [6,7]. The
final output from the circuit is converted back to its decimal
value to be used in the motion estimation code. For Case 2, QP
is made available by the MPEG-2 codec.

C. Motion Vector Distribution

The motion vector distribution for some standard video

sequences characterized by different motion types was

analyzed. Table 1 shows the percentage of motion vectors for

these video sequences found within (±r, ±r), where r is varied

from 0 to 2. The analysis in Table 1 shows that a significant

percentage of motion vectors exist within a range of (±2, ±2).

Even sports video sequences such as „Stefan‟, which are

characterized by fast motion, exhibit this characteristic. This

analysis validates the idea behind the error correction scheme

proposed in Section 4.B.

Table 1. Motion Vector Distribution

MV (0,0) (±1,±1) (±2,±2)

Susie 59.13% 87.69% 91.49%

Mobile Calendar 26.7% 96.54% 97.55%

Flower Garden 7.5% 54.08% 79.02%

Stefan 36.32% 48.12% 54.79%

D. Experimental Results

Table 2 shows the energy savings possible in the datapath

architecture with Case 1 and Case 2 when degradation is

constrained to be within 0.5 dB. The circuit supply voltage is

varied for Case 1 for different video sequences to see the best

possible energy savings. However, for implementation, an on

the fly decision on the circuit supply voltage for different

video sequences may not be practical. For Case 2, we fix the

supply voltage for the two parallel Systolic Arrays (SA1 and

SA2) at 1.2 V and 0.55 V. The quality degradation constraint

of 0.5 dB is achieved in Case 2 by varying the range parameter

according to QP. In a video codec, QP is different for each

macro block in a frame. We use the average QP for a frame,

which is derived by averaging over the QP values for the

macro-blocks in the frame [22]. We multiply the average QP

for the frame with the number of macro-blocks in the frame, in

this case 396. The scaling of average QP by number of macro-

blocks provides more accurate results and is not required to be

calculated separately as this value can be taken from the

MPEG codec. We set QPTH, η1 and η2 as QPmean, 1.0200 and

1.0065 respectively, where QPmean is the mean QP for a frame

in the codec when operated for the error-free architecture,

scaled by the number of macro blocks in a frame (in this case

396). The upper limit on „r‟, i.e., „r1‟ is set as 4.

Fig. 7 illustrates the improvement in average PSNR and

visual quality of the motion compensated frames when the

energy consumption through Case 1 and Case 2 is

approximately same. The architecture in Case 1 is maintained

at a supply voltage of 0.65 V for the comparison, and the two

parallel architectures for Case 2 are maintained at 1.2 V and

0.55 V. Both cases account for same energy savings of

approximately 57% in Fig. 7.

6. CONCLUSION

It is shown that probabilistic computing provides an effective

solution to low power motion estimation. Furthermore, a novel

scheme proposed in this paper is able to enhance the energy

savings to as high as 57% energy and is able to improve the

PSNR by about 1.2X over probabilistic computing alone. The

paper thus shows that algorithmic solutions such as the error

correction scheme proposed in this paper can be used to

further exploit the achievable energy savings via probabilistic

computing.

Table 2. Energy savings with PSNR loss less than 0.5 dB

Video Sequences Base Case: No

energy savings

PSNR (dB)

Case 1 Case 2

Avg. PSNR
(dB)

Energy

Savings

Circuit

Supply

Voltage (V)

Avg. PSNR

(dB)

Energy

Savings

Average

range

parameter

„r‟

Circuit

Supply

Voltage (V)

(SA1, SA2)

Susie 35.74 35.35 34% 0.95 35.23 56% 2.73 1.2, 0.55

Mobile Calendar 23.82 23.44 44% 0.85 23.36 57% 2.18 1.2, 0.55

Flower Garden 25.69 25.37 44% 0.85 25.22 57% 2.42 1.2, 0.55

Stefan 25.64 25.27 44% 0.85 25.12 52% 4.00 1.2, 0.55

 PSNR = 30.08 dB PSNR = 35.23 dB

(a)

 PSNR = 20.92 dB PSNR = 23.36 dB

(b)

 PSNR = 23.13 dB PSNR = 25.22 dB

(c)

Fig. 7. Motion compensated frames for three different video sequences

(a) Susie (b) Mobile Calendar and (c) Flower Garden for Case 1 (left) and
Case 2 (right) at approximately same energy savings of 57%

REFERENCES

[1] “H.264. http://iphome.hhi.de/suehring/tml/”

[2] P. Kuhn, Complexity Analysis and VLSI Architectures for MPEG-4

Motion estimation, Boston, MA: Kluwer, 1999.

[3] K. V. Palem, “Energy Aware Algorithm Design via Probabilistic

Computing: From Algorithms and Models to Moore‟s law and Novel

(Semiconductor) Devices,” Proceedings of the International

conference on Compilers, Architecture and Synthesis for Embedded

Systems (CASES’03), pp. 113-116, Oct. 2003.

[4] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem, “Probabilistic

arithmetic and energy efficient embedded signal processing,”

Proceedings of the 2006 International Conference on Compilers,

Architectures and Synthesis for Embedded Systems, pp. 158-168, Oct.

2006.

.[5] L. B. Kish, “End of Moore‟s law: Thermal (noise) death of integration

in micro and nano electronics,” Physics Letters A, vol. 305, no. 3-4,

pp. 158-168, 2002.

[6] A. Singh, A. Basu, K.V. Ling, and V. Mooney, “Modeling Multi-

output Filtering Effects in PCMOS,” Proceedings of the VLSI Design

and Test Conference (VLSIDAT 2011), April 2011.

[7] A. Bhanu, M. S. K. Lau, K. V. Ling, V. J. Mooney III, and A. Singh,

“A More Precise Model of Noise Based PCMOS Errors,” Fifth IEEE

International Symposium on Electronic Design, Test & Applications

(DELTA ’10), pp. 99-102, Jan. 2010.

 [8] Suresh Cheemalavagu, Pinar Korkmaz, Krishna V. Palem, Bilge E. S.

Akgul, and Lakshmi N. Chakrapani, “A Probabilistic CMOS switch

and its Realization by Exploiting Noise,” Proceedings of IFIP-VLSI

SoC , Oct. 2005.

[9] S. Cheemalavagu, P. Korkmaz, and K. V. Palem, “Ultra low-energy

computing via probabilistic algorithms and devices: CMOS device

rimitives and the energy-probability relationship,” Proceedings of the

2004 International Conference on Solid State Devices and Materials,

pp. 402–403, Sep. 2004.

[10] M. A. Elgamel, A. M. Shams, and M. A. Bayoumi, “A comparative

analysis of low power motion estimation VLSI architectures,” in

Proceedings of IEEE Workshop Signal Processing, pp. 149-158, 2000.

[11] R. S. Richmond ІІ and D. S. Ha, “A low-power motion estimation

block for low bit-rate wireless video,” Proceedings of IEEE Workshop

Signal Processing, pp. 60-63, Aug. 2001.

[12] S. S. Lin, P. C. Tseng, and L. G. Chen, “Low-power parallel tree

architecture for full search block-matching motion estimation,”

Proceedings of the 2004 International Symposium on Circuits and

Systems (ISCAS '04), vol. 2, pp. II - 313-316, May 2004.

[13] G. V. Varatkar and N. R. Shanbhag, “Error-Resilient Motion

Estimation Architecture,” IEEE Transactions on VLSI Systems, vol.

16, no. 10, pp. 1399-1412, Oct. 2010.

[14] T. Komarek and P. Pirsch, “Array architectures for block matching

algorithms,” IEEE Transactions on Circuits and System, vol. 36, no.

10, pp. 1301-1308, Oct. 1989

[15] Liang Lu, J.V. Mc Canny, and S. Sezer, “Systolic Array Based

Architecture for Variable Block-Size Motion Estimation,” Adaptive

Hardware and Systems (AHS), pp. 160-165, Aug. 2007.

[16] R. Li, B. Zeng, and M. L. Liou, “A New Three-Step Search Algorithm

for Block Motion Estimation,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 4, no. 4, pp. 438-442, Aug. 1994.

[17] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A Novel

Unrestricted Center-Biased Search for Block Motion Estimation,”

IEEE Transactions on Circuits and Systems for Video Technology, vol.

8, pp. 369-377, Aug. 1998.

[18] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated

 Circuits: A Design Perspective, 3rd ed. Prentice Hall, 2003.

[19] http://en.wikipedia.org/w/index.php?title=File:TSPC_FF_R.png

License: Creative Commons Attribution 3.0, Contributors: Jon

Guerber.

[20] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and Threshold

Voltage Scaling for Low-Power CMOS,” IEEE Journal of Solid-State

Circuits, vol. 31, no. 3, pp. 395–400, Mar. 1999.

[21] Kyoung-Hoi Koo, Jin-Ho Seo, Myeong-Lyong Ko, and Jae-Whui Kim,

“A New Level-up Shifter for High Speed and Wide Range Interface in

Ultra Deep Sub-Micron”, IEEE International Symposium on Circuits

and Systems, 2005, (ISCAS ‘05), vol. 2, pp. 1063- 1065, May 2005.

 [22] “MPEG-2 Test Model-5. http://www.mpeg.org/MPEG/MSSG/tm5

http://ieeexplore.ieee.org.ezlibproxy1.ntu.edu.sg/xpl/mostRecentIssue.jsp?punumber=9255

