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Abstract— As Moore’s law approaches the low nanometer range, 

predictions have been made that computing via future technology 

nodes may no longer be correct due to, for example, the presence 

of noise sources such as thermal noise. Probabilistic computing, a 

term coined for computing via devices that yield a 

probabilistically correct output,  has earlier been shown as a 

means for realizing energy efficient computing in signal 

processing applications. In this paper, we explore the application 

of probabilistic computing for low power motion estimation. It is 

observed that motion estimation itself exhibits high resilience to 

erroneous computation. Simulations show that energy savings up 

to 44% can be achieved in motion estimation using full search 

block matching with probabilistic computing with a minor 

impact (under 0.5 dB) on the required quality of the output. A 

scheme of error correction based on the motion vector 

distribution is proposed that further increases the possible energy 

savings with full search block matching up to 57%. 

Keywords- PCMOS architecture, probabilistic computing, error 

resilient design, low power design, motion estimation  

I.  INTRODUCTION  

Motion estimation has been a landmark innovation in video 

compression. It has been able to provide a tremendous 

breakthrough in video applications such as online 

conferencing, live streaming, etc., due to its ability to encode 

videos at very low bitrates [1]. However, motion estimation is 

also known to be the most computationally expensive unit of a 

video encoder, accounting between 66% and 94% of the 

encoder computational complexity [2]. This along with the 

growth in the popularity of handheld devices and other mobile 

systems using video applications places an additional demand 

for low power solutions to motion estimation. 

It is believed that the upcoming CMOS technology will 

bring about a revolution in the domain of ultra-low power 

computing. The operability of these technologies at extremely 

low voltages has brought about the notion of voltage scaling as 

a solution for energy reduction.  However, it is also predicted 

that with the reduction in the voltage levels, the noise 

immunity of these devices will decrease enough to result in 

variability in their output. Hence, computing through this 

technology may, in the future, be “probabilistically” correct. 

This calls for design of algorithms that are able to gain these 

energy savings while having the resilience with respect to the 

probabilistic nature of computations [3]. 

Probabilistic computing has been shown as an effective 

solution for image processing applications where unperceived 

degradations in the visual quality are allowed [4]. Our 

approach will differ in the case of motion estimation because 

degradation in the performance of motion estimation leads to 

an increase in the number of bits required for encoding. In this 

paper, we show techniques to lower energy consumption even 

with a constraint on the allowed degradation in quality. 

The non-deterministic behavior of modern silicon 

technologies can be modeled due to various phenomena. We 

consider a thermal noise based model, a phenomenon which 

some predict will affect the performance of the future 

technology nodes [5]. It should be noted, however, that our 

approach in applying probabilistic computing is generic 

enough to encompass other sources of errors which can be 

modeled by a Gaussian distribution [6,8]. 

The organization of this paper is as follows. Section 2 

briefly discusses some important prior work in probabilistic 

computing and low power motion estimation. Section 3 

provides a background on motion estimation required to 

understand the subsequent sections. Section 4 discusses the 

proposed methodologies, these being the application of 

probabilistic computing to motion estimation and an error 

correction scheme based on an observed phenomenon in video 

sequences. Section 5 presents experimental results based on 

these methodologies, and the final section concludes the paper. 

II. PRIOR WORK 

Prior work in the domain of probabilistic computing has 

established that energy savings can grow exponentially with 

probability of error [8,9]. Furthermore, methods for modeling 

thermal noise based probabilistic primitives such as logic 

gates, adders, etc., have also been explored and established 

[6]-[9]. George et al. showed that probabilistic computing 

combined with an intelligent design of primitives may lead to 

a significant amount of energy savings while also minimizing 

the error introduced in the application [4].   
Low power motion estimation is an extensively studied 

domain of research. Variants of efficient algorithms and 
architectural implementations for these algorithms have been 
proposed [10]-[12]. Much of this work is based on algorithmic 
modifications and does not consider voltage scaling as a 
solution for low power motion estimation. Voltage scaling for 
low power motion estimation with errors occurring because of 
delay based variations (due to, e.g., scaled supply voltage or 
process variations) has earlier been used by Varatkar et al. [13]. 
They propose an error correction scheme to achieve energy 
savings. Our approach uses a different noise model but mainly 
differs in terms of the error correction scheme proposed. The 
error correction scheme proposed in this paper is based on a 
property of real video sequences and is more suitable for full 
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search block matching algorithm compared to the one in [13], 
proposed originally for three step search algorithm. 

III. BACKGROUND 

Motion estimation exploits the fact that there typically 
exists a high degree of commonality between two adjacent 
frames in a video sequence. It describes the movement of 
objects in a frame with respect to the previous frame through 
motion vectors. The encoding of the frame is done through 
these motion vectors. At the decoder, these vectors are used to 
reconstruct the frame. The reconstruction process is known as 
motion compensation. There are various approaches followed 
to determine the required motion vectors. The most popularly 
employed approach is block-matching. 

A. Motion Estimation via Block Matching 
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Fig. 1. Block-Matching 

In a block-matching approach, the current frame in the 

video sequence is divided into non-overlapping macro-blocks 

of size N × N pixels (e.g., N=16). For each macro-block in the 

current frame, a displacement motion vector (MV) is 

calculated with respect to the best match for this block in the 

previous frame. The search for the matching block is 

constrained within a search area of size (2p+1)×(2p+1) pixels, 

where the parameter p varies from 7 to 31 chosen according to 

the type of video sequences to encode. An algorithm is used to 

determine the number and place of search points in the search 

area for an efficient search.  

The criterion for arriving at the best match out of the 

candidate macro-blocks is sum of absolute differences (SAD). 

SAD is calculated by summing up the absolute difference 

between pixel luminance values of the current block „a‟ and 

the corresponding pixel luminance values of the candidate 

block „b‟. 
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B. Motion Estimation in Video Encoding 

The quality of motion estimation is critical to video 

encoding. Video encoding through motion estimation is done 

through motion vectors as opposed to Discrete Cosine 

Transform (DCT) and quantization that encode pixel values of 

the frame. Thus, compression through motion estimation is 

able to achieve much lower bitrates. The video encoding 

procedure is illustrated in Fig. 2. The encoded frames can be 

characterized as either intra or inter-coded frames. Intra coded 

frame or I-frames are reference frames and are encoded via 

DCT and quantization only. Inter coded frames or P-frames 

are encoded via motion estimation as well as DCT and 

quantization. DCT and quantization are required in P-frames 

to encode the difference frame, i.e., the difference between the 

original frame and the motion compensated frame. In this 

paper, we avoid usage of other inter coded frames such as B-

frames to keep the discussion simple. The order in which the 

intra and inter-coded frames are arranged is specified by the 

Group of Pictures (GOP) structure. Each GOP begins with an 

I-frame. The number of frames between two I-frames is the 

GOP size. We use a GOP size of 15. 

Quantization leads to lossy compression. The amount of 

quantization to apply for encoding is governed by the 

Quantization Parameter (QP). The value for QP varies from 1 

to 31. When a lower bitrate is desired, QP is increased, which 

increases the compression loss. In the event that the 

performance of motion estimation degrades, the video encoder 

either increases QP to lower the quality but maintain a fixed 

bitrate, or, in applications where the quality cannot be 

compromised, it increases the bits required to encode the 

frame at a fixed QP. In most wireless and storage applications 

the bitrate is critical. Hence, in this paper, we consider low 

power motion estimation at a fixed bitrate only. 

 
Fig. 2. Video Encoder 

C. Full Search Block Matching Algorithm (FSBMA) and 

Systolic Array Architecture 

In the full search block matching algorithm, all pixel 

locations in the search area are considered as candidate 

locations. This algorithm is preferred in video codecs such as 

H.264 as it yields the most optimal results in terms of the 

visual quality. However, it is also computationally very 

expensive. Due to its computational complexity, many low 

power architectural implementation variants for this algorithm 

are proposed [10]-[12]. We consider this algorithm to show 

the possible energy savings with probabilistic computing with 

minor degradation in the required quality of the output.  

Systolic array architectures are widely used to model the 

architecture used for calculating the motion vector when the 

block matching algorithm used is FSBMA [14,15]. The 

popularity of systolic array architectures is because of the 

nature of computations required and the regularity in memory 

access for the computations required in FSBMA. The systolic 

array architecture for block size N=16 is illustrated in Fig. 3 

[14]. Blocks AD and A contribute to calculating the SAD. 

Block M is a comparator that determines the minimum SAD. 

The functionality of the blocks AD, A and M is illustrated in 

Fig. 4. The systolic array architecture described thus makes up 

the datapath architecture for motion estimation.  

IV. PROPOSED METHODOLOGY 

The computational intensity of motion estimation is due to 

the fact that in a given video sequence the number of frames to 

process is very large. In a full architectural implementation for 

motion estimation for FSBMA, the datapath architecture 

accounts for 75% of the involved processing [11]. In this 



section we propose a method to model a Probabilistic CMOS 

(PCMOS) based datapath architecture for low power motion 

estimation. This section also describes an error correction 

scheme that can further enhance the possible energy savings 

possible with PCMOS.  
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Fig. 3. Systolic Array Architecture 
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Fig. 4. Block level details for Systolic Array Architecture 

A. Modeling the PCMOS Architecture for Motion Estimation 

The systolic array architecture described in Fig. 3 for 

motion estimation consists of adders of bit width ranging from 

8 to 16 bits. These are in turn modeled as ripple carry adders. 

Also, the architecture has to be modeled as a sequential circuit 

running on a clock to facilitate memory accesses and 

computations at the right timings. Thus, blocks AD, A and M 

require registers. At the gate level implementation, the basic 

building blocks of the systolic array architecture are full 

adders, D-flip flops, inverters and Exor gates. Inverters are 

used in blocks AD and M for subtraction, and Exor gates are 

used in block AD for absolute value computation. These gates 

are modeled as probabilistic gates with the exception of 

inverters and Exor gates which account for a small percentage 

(less than 10%) of the total energy consumed in the systolic 

array architecture described in Fig. 3.  

The modeling of probabilistic gates is done through the 

methodology described in [6]. The methodology involves 

coupling a Gaussian noise source at the output of each 

gate [8]. The noise source is modeled as a voltage controlled 

voltage source with gain equal to the noise RMS. The choice 

of noise RMS is such that no errors are observed at the output 

of each probabilistic gate at the nominal supply voltage for the 

technology node used. Errors begin to show up at the output of 

the probabilistic gate when its supply voltage is scaled down. 

By modeling the gates in such a manner we have tried to 

emulate what may be observed in a future technology node, 

say at 16nm. 

The modeling described in [6,7] shows that the error rates 

observed in Hspice based simulations for larger circuits such 

as ripple carry adders built through probabilistic gates such as 

full adders, can be emulated through C-based simulations. 

This is useful in estimating degradation in the output quality of 

motion estimation. Hspice simulations can be used to 

characterize the probability of error for a probabilistic gate at 

the scaled supply voltage values. The calculations made 

through the architecture can then be modeled in C as per the 

computations at the gate level in the circuit, and false bit 

flipping can be introduced in the C-based calculations using 

the probability of error for the specific gate. Thus, C based 

simulations can be used to determine the error tolerance of 

motion estimation, thereby aiding in making the choice of the 

appropriate operating supply voltage for the circuit. The 

energy consumption for the PCMOS architecture at the 

appropriate supply voltage is calculated using Hspice. A 

detailed discussion follows in Section 5. 

B. Error Correction Scheme based on Motion Vector 

Statistics  

In real video sequences, it is often observed that much of 

the scene remains stationary (background, fixed objects, etc). 

Also, the displacement of most of the objects in the video is 

usually very small over a set of adjacent frames. Based on this 

notion, we can postulate that a large percentage of motion 

vectors will be equal to (0, 0), and an even larger percentage 

will be concentrated within (±r, ±r), where r is a small value. 

A preliminary analysis with some example video sequences 

showed that in a search area of size 23×23, a motion vector 

was found to lie within an area of 5×5 almost 50% of the time, 

with this value being as high as 97% in the case of videos with 

slow motion. This observation has been used in the past for 

proposing center biased searches [16,17]. We use it to propose 

the following scheme for correction of errors introduced by 

the PCMOS architecture. This scheme for error correction 

requires that there be two systolic arrays working at different 

operating voltages (resulting in increased area, see 

Section 5.A), one of which always works at 1.2 V while the 

decision on the voltage selection for the other unit is described 

in Section 5. The scheme works by dividing the search area 

into two regions as shown in Fig. 5. The candidate blocks in 

Fig. 5 in region 1, which is smaller and more probable to have 

the best matching block, are evaluated using the error-free 

architecture operating at 1.2 V. Region 2 in Fig. 5, outside of 

region 1, is evaluated using an architecture operating at a 

lower voltage value. The decision on the size of region 1 is 

made through QP that can be taken as feedback from the 

quantization block in the video codec. We know that QP in a 

video encoder, coding at a fixed bitrate, increases when the 

quality of motion estimation degrades. This property can be 

used to vary the size of region 1 as per the needs of the video 

sequence being encoded. The size of region 1 is controlled by 

the range parameter „r‟. In the steps for the error correction 

scheme shown below, QPTH, η1 and η2 are parameters that 

facilitate the decision on what value of „r‟ to choose based on 

the value of QP. Parameter r1 is the maximum value that „r‟ 

can assume. The approach we use is as follows:   

Step 1:   Select an initial range parameter „r‟. 

Step 2:   For each macro-block in the current frame,  

Step 2.1: Divide the search area into two regions. 

Step 2.2: Determine the best matching block in region 1 

using the full search algorithm and the architecture 

maintained at 1.2 V. 

 Step 2.3: Determine the best matching block in region 2 

using the full search algorithm and the architecture 

running at a scaled supply voltage. Calculate SAD for the 

winner candidate in this region with an arithmetic unit 



maintained at 1.2 V; note that this arithmetic unit is 

already present in the proposed architecture for the 

scheme for calculations required in Step 2.2. 

 Step 2.4: Compare the SAD for the best matching blocks 

in Step 2.2 and Step 2.3, and select the one with the 

smaller SAD as the final best matching macro block. 

Store the motion vector corresponding to this block. 

Step3:  After every 5
th

 frame, if QP > η1 × QPTH and r < r1,  

then r = r+1, 

 else if QP < η2 × QPTH and r > 0, then r = r-1. 

Continue from Step 2.   

1. 2p+1

2p+1

2r+1

2r+1

2.

Search Area

Previous Frame

 
Fig. 5. Search Area Division  

In the proposed scheme, QPTH, η1, η2 and r1 are determined 
empirically. The range parameter „r‟ is changed after every 5

th
 

frame for the results of the previous change in „r‟ to reflect in 
the quality of motion estimation. The error correction in this 
scheme is in terms of selection of the correct motion vector 
which is more likely to be present in region 1. Note that most 
video sequences have more than 50% of their motion vectors 
lying within a small region around the current block position. 
Thus, the increase in energy consumption with the error 
correction scheme proposed above is negligibly small. 

V. RESULTS 

In this section, we discuss the energy savings possible in 

the datapath architecture through the methodologies proposed 

in Section 4. Our base case for comparing the achieved energy 

savings is the error-free systolic array architecture described in 

Fig. 3. We model this architecture in Hspice in the Synopsys 

90nm generic library, and operate it at the nominal supply 

voltage for this technology, which is 1.2 V for error-free 

operation. Case 1 and Case 2 correspond to uniformly voltage 

scaled PCMOS architecture and the proposed error correction 

scheme using uniformly voltage scaled PCMOS respectively.  

We first describe the experimental setup for modeling the 

PCMOS datapath architecture and estimating the energy 

consumption through the architecture. Next, the experimental 

setup for motion estimation and the performance metrics used 

are explained. Also, the method used for estimating the error 

in the performance of motion estimation is described. Then, an 

analysis with some example video sequences is carried out to 

validate the thinking behind the error correction scheme 

proposed. The possible energy savings at a fixed quality for 

the two cases is presented. The output quality at fixed energy 

savings is also compared for the two schemes.   

A. Experimental Setup for PCMOS based Datapath 

Architecture and Energy Estimation 

The Hspice simulations of the datapath architecture were 

carried out using a 90nm generic library from Synopsys. The 

basic components in the datapath architecture were identified 

as full adders, D-flip flops, inverters and Exor gates. The 

datapath architecture was modeled at the transistor level in 

Hspice. A clock frequency of 125 MHz was used. This was 

chosen in order to process a video with frame size 352x288 at 

20 fps and block size N=16 by the systolic array architecture 

used. The chosen frame rate and frame size are the ones 

required by most videophones today.   

The transistor level circuit used for full adders is a 24 

transistor mirror adder circuit [18], and the circuit used for D-

flip flops is described in [19]. The circuit used for the D-flip 

flop is a dynamic edge triggered flip flop which holds data 

only for a short period of time. This design for the flip flop 

suits the requirements of the architecture used as the outputs 

from the registers are processed every clock cycle. Full adders 

and D-flip flops account for 90% of the total energy 

consumed. So, noise based PCMOS models based on the 

method described in [6] were developed only for full adders 

and D-flip flops. The RMS value for noise source was chosen 

for the components in a manner that no errors were observed 

at the nominal supply voltage of 1.2 V. The noise RMS value 

chosen was 0.2 V. This predicts a future node, e.g., 16 nm. 

To calculate the probability of error for the full adder and 

flip flop, we simulate the PCMOS based netlists of these gates 

at the scaled voltage values. The range of voltage values used 

was 1.2, 1.15, 1.10 down till 0.5 V, the step size being 0.05 V. 

The lowest voltage used was 0.5V which conformed to the 

delay requirements of the architecture to process the video at 

the specified frame rate. The operability of the current 

technology nodes, e.g., 90nm for voltage values lower than 

0.5 V has been shown in [20]. At the scaled supply voltage, 

the blocks AD, A and M in the architecture become erroneous. 

However, block M is a comparator and needs to make correct 

decisions. Hence, block M was maintained at the supply 

voltage of 1.2 V. The output of block A was level shifted to 

the voltage value of 1.2 V using level shifters. The circuit used 

for level shifting is described in [21]. 

The energy consumption through the architecture was 

calculated using Hspice. The inputs to the architecture were 

test vectors from the video sequences used to show the energy 

savings. The video sequences used are described in the 

following sections. Case 1 requires the components AD and A 

of the architecture to run only at one of the voltage levels 

specified, and block M to run at 1.2 V. Hence, energy 

consumption was calculated by simulating the entire systolic 

array architecture circuit by scaling down the voltage supply 

uniformly for all components of blocks AD and A to the 

required voltage level and using level shifters before block M 

in Hspice. Case 2 requires two parallel architectures 

maintained at different voltage levels, 1.2 V and a lower 

voltage value. If the average power consumed by the two 

architectures circuits for Case 2 at the different supply 

voltages is P1 and P2, and the percentage of calculations made 

through the two architectures, determined by the range 

parameter „r‟, are C1 and C2, then the energy consumption for 

Case 2 was estimated as (P1×C1 + P2×C2) × T, where T is 

time period of clock cycle required per calculation. The values 

of C1 and C2 were determined over 100 frames of the video 

sequence for a good estimate.  Note that static power is less 

than 1%. 



Note that for Case 2 additional control logic will be 

required to multiplex the data from memory between the two 

systolic arrays, i.e., pixel data of the search area pixels in 

region 1 (Fig. 5) and current block data to be given to systolic 

array-1 working at 1.2 V, and pixel data in region 2 (Fig. 5) to 

be given to systolic array-2 working at a lower voltage. The 

control logic will have to facilitate one additional block 

memory access required for the calculation of the final motion 

vector (Step 2.3 in Section 4.B). Also, the area of the datapath 

architecture will be approximately doubled because of the 

presence of two systolic arrays as shown in Fig. 6. In the 

energy savings quoted in this paper, we account only for the 

energy savings in the datapath architecture as it makes up for 

most (about 75%) of the involved processing in case of full 

search algorithm [11]. 

Datapath Architecture

Systolic Array -1

Control Logic

Memory

Systolic Array -2

 
Fig. 6. Motion Estimation Architecture Details for Case 2 

B. Experimental Setup for Motion Estimation 

The input video sequences to motion estimation are CIF 

video sequences of size 352x288 at 20 fps. Four video 

sequences with motion characteristics varying from slow to 

fast have been considered to show the results. The parameter p 

for the search area is chosen to be 11, appropriate for the video 

sequences considered. The simulations are carried out in the 

MPEG-2 Test Model 5 codec, at main profile and main level 

[22]. The GOP size used is 15. The performance of the two 

cases is evaluated by fixing the average quality degradation 

ΔPSNR of the motion compensated frame within 0.5 dB from 

the base case. PSNR is calculated as  
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where H and W are the dimensions of the frame. ),( jiFI

 

and ),( jiFMC
are the pixel luminance values for the input and 

the motion compensated frames. To estimate the performance 
of motion estimation for the PCMOS architecture, we perform 
C-based simulations. The 8-bit pixel inputs from the current 
and candidate blocks are converted into binary values. The 
calculations are then performed as they would occur in any 
hardware according to the manner in which logic gates are 
connected in the circuit. False bit flipping is introduced for full 
adders and D-flip flops as per the probability of errors 
characterized earlier through Hspice simulations [6,7]. The 
final output from the circuit is converted back to its decimal 
value to be used in the motion estimation code. For Case 2, QP 
is made available by the MPEG-2 codec. 

C. Motion Vector Distribution 

The motion vector distribution for some standard video 

sequences characterized by different motion types was 

analyzed. Table 1 shows the percentage of motion vectors for 

these video sequences found within (±r, ±r), where r is varied 

from 0 to 2. The analysis in Table 1 shows that a significant 

percentage of motion vectors exist within a range of (±2, ±2). 

Even sports video sequences such as „Stefan‟, which are 

characterized by fast motion, exhibit this characteristic. This 

analysis validates the idea behind the error correction scheme 

proposed in Section 4.B. 

Table 1. Motion Vector Distribution 

MV (0,0) (±1,±1) (±2,±2) 

Susie  59.13% 87.69% 91.49% 

Mobile Calendar 26.7% 96.54% 97.55% 

Flower Garden 7.5% 54.08% 79.02% 

Stefan 36.32% 48.12% 54.79% 

D. Experimental Results 

Table 2 shows the energy savings possible in the datapath 

architecture with Case 1 and Case 2 when degradation is 

constrained to be within 0.5 dB. The circuit supply voltage is 

varied for Case 1 for different video sequences to see the best 

possible energy savings. However, for implementation, an on 

the fly decision on the circuit supply voltage for different 

video sequences may not be practical. For Case 2, we fix the 

supply voltage for the two parallel Systolic Arrays (SA1 and 

SA2) at 1.2 V and 0.55 V. The quality degradation constraint 

of 0.5 dB is achieved in Case 2 by varying the range parameter 

according to QP. In a video codec, QP is different for each 

macro block in a frame. We use the average QP for a frame, 

which is derived by averaging over the QP values for the 

macro-blocks in the frame [22]. We multiply the average QP 

for the frame with the number of macro-blocks in the frame, in 

this case 396. The scaling of average QP by number of macro-

blocks provides more accurate results and is not required to be 

calculated separately as this value can be taken from the 

MPEG codec. We set QPTH, η1 and η2 as QPmean, 1.0200 and 

1.0065 respectively, where QPmean is the mean QP for a frame 

in the codec when operated for the error-free architecture, 

scaled by the number of macro blocks in a frame (in this case 

396). The upper limit on „r‟, i.e., „r1‟ is set as 4. 

Fig. 7 illustrates the improvement in average PSNR and 

visual quality of the motion compensated frames when the 

energy consumption through Case 1 and Case 2 is 

approximately same. The architecture in Case 1 is maintained 

at a supply voltage of 0.65 V for the comparison, and the two 

parallel architectures for Case 2 are maintained at 1.2 V and 

0.55 V. Both cases account for same energy savings of 

approximately 57% in Fig. 7. 

6. CONCLUSION 

It is shown that probabilistic computing provides an effective 

solution to low power motion estimation. Furthermore, a novel 

scheme proposed in this paper is able to enhance the energy 

savings to as high as 57% energy and is able to improve the 

PSNR by about 1.2X over probabilistic computing alone. The 

paper thus shows that algorithmic solutions such as the error 

correction scheme proposed in this paper can be used to 

further exploit the achievable energy savings via probabilistic 

computing. 



 
Table 2. Energy savings with PSNR loss less than 0.5 dB

Video Sequences Base Case: No 

energy savings 

PSNR (dB) 

Case 1 Case 2 

 

Avg. PSNR 
(dB) 

Energy 

Savings  

Circuit 

Supply 

Voltage (V) 

 

Avg. PSNR 

(dB) 

Energy 

Savings  

Average 

range 

parameter  

„r‟ 

Circuit 

Supply 

Voltage (V) 

(SA1, SA2) 

Susie 35.74 35.35 34% 0.95 35.23 56% 2.73 1.2, 0.55 

Mobile Calendar 23.82 23.44 44% 0.85 23.36 57% 2.18 1.2, 0.55 

Flower Garden 25.69 25.37 44% 0.85 25.22 57% 2.42 1.2, 0.55 

Stefan 25.64 25.27 44% 0.85 25.12 52% 4.00 1.2, 0.55 

 
   PSNR = 30.08 dB         PSNR = 35.23 dB 

(a) 

  
  PSNR = 20.92 dB        PSNR = 23.36 dB 

(b) 

  
             PSNR = 23.13 dB           PSNR = 25.22 dB 

(c) 

Fig. 7. Motion compensated frames for three different video sequences 

(a) Susie (b) Mobile Calendar and (c) Flower Garden for Case 1 (left) and 
Case 2 (right) at approximately same energy savings of 57% 
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