wifTechiclogsy

&Georgiaﬂmgﬁﬁﬁwﬁ@

Automated Bus Generation
for Multiprocessor SoC Design

Dissertation Defense

by
Kyeong Keol Ryu

Advisor: Vincent J. Mooney Il

School of Electrical and Computer Engineering
Georgia Institute of Technology

June 2004

© 2004 Georgia Institute of Technology

Georgialinsitbuunites
wif Techixwlewny

Outline

o Introduction

o Related Work

o Methodology for Bus System Generation
o Experiments and Results

o Conclusion

© 2004 Georgia Institute of Technology 2

&Georgiaﬂmgﬁﬁﬁwﬁ@

wifTechiclogsy

Introduction — Goal

High Performance

Multi-processor SoC Design

/
Our Approach:
e Use custom SoC buses

and custom bus interfaces
» Fast design space exploration

N

/
Other Approaches:
e Use standard SoC buses

and standard bus interfaces
as a generic approach

N

AU)

AU)

© 2004 Georgia Institute of Technology 3

Georgialinsitbuunites
wif Techixwlewny

Introduction — Motivation 1

o Hardware-software partitioning

ﬁ:DM Transmitter \
./ Threadl ~ ° Thread2
Threadl Thread?2 \ | Masterl |, " | Master2 |/ Slavel
Inverse . = NS wd
D T e Fast Fourier i i .
Symbol Mapping T s Busl D
(IFFT) Bus
Slave2 Bridge
Thread3 BUS? A
| ,,—-¢-~\ A
Data output and v
Cyclic extension /| Master3 | | Slave3
\ / \\\Thread;{/'l
Software SoC Hardware

© 2004 Georgia Institute of Technology 4

‘Y XKEX)
. ‘ . . .
eeo INtroduction — Motivation 2
o0
?2%C o Automatic custom bus
generation for a
multiprocessor System-on-a- 1
Chip (SoC)
Easy and quick design of an SoC
bus system

Fast design space exploration
across performance influencing
factors

Development of a bus synthesis
tool (BusSynth)

Register-transfer level HDL output

© 2004 Georgia Institute of Technology 5

Georgialinsitbuunites
wif Techixwlewny

Outline

o Introduction

o Related Work

SoC Bus Architectures

SoC Bus Interfaces

SoC Bus System Design Tools
Additional prior work

o Methodology for Bus System Generation
o Experiments and Results
o Conclusion

© 2004 Georgia Institute of Technology 6

&Georgiaﬂmgﬁﬁﬁwﬁ@

wifTechiclogsy

SoC Bus Architectures

o CoreConnect from IBM: PLB, OPB and DCR

o Advanced Microcontroller Bus Architecture
(AMBA) from ARM: AHB, ASB and APB

High High High High
Performance [Performance ™ Arbiter Performance Performance
CPU core Memory CPU core Memory
1 PLB DCR bus AHB/ASP
v L Arbiter
N L Addr
Hich i;x[nmaf Data Mioh
OPB = Bus — ke 1ig
s P Ter] A[)[} a:.
Bridge] l{’)tﬁ;f;‘w‘xna?u ™1 Interface |— DRAM Bridee Performance
A core Unit L 0 s DMA core
Keyboard UART -
Kevboard UART
0OPB .
Arbiter APB
PIO Timer
PIO Timer
CoreConnect AMBA

© 2004 Georgia Institute of Technology 7

Georgialinsitbuunites
wif Techixwlewny

SoC Bus Architectures (Continued)

o CoreFrame from Palmchip: PaimBus and Mbus
o Wishbone from Silicore: single bus type

CPU Subsystem 1

cPU I :

Memory cru i

; i
| CPU Bus !

e e

High High

oal Cache Performance Performance
dEnbLs sl 1
o CPU core Memory
Controllar Bridge
WISHBONE
MBus Memary Shared
PalmBus Subsyslem Memory
High

Arbiter Performance
NonDMA [| NonDMA DMA OMA DMA core
Peripheral Peripheral Peripheral Periphkeral
CoreFrame Wishbone

© 2004 Georgia Institute of Technology 8

Georgialinsitbuunites
wif Techixwlewny

SoC Bus Architectures (Continued)

o SiliconBackplane puNetwork from Sonics
Provision of fixed bandwidth by TDMA-based arbitration

DMA CPU DSP MPEG Open Core
[T [T [T THHHNI ~— Protocol

SiliconBackplane pNetwork

~ Wrapper

SRAM| [DRAM| |Input| |Output

o Our Case:

Custom bus architectures from BusSynth: GBAVI, GBAVIII,
BFBA, HybridBA and SplitBA

More suitable for user applications and better performance

© 2004 Georgia Institute of Technology 9

Georgialinsitbuunites
wif Techixwlewny

SoC Bus Interfaces

o Open Core Protocol (OCP) from Sonics
Bus interface for IP cores
Reconfigurable interface
Five versions: basic OCP and its four extensions

o Virtual Component Interface (VCI) from Virtual
Socket Interface Alliance (VSIA)
Basically a handshake protocol

A protocol for cycle-based point-to-point
communication

A data-orientated protocol (w/o the consideration of
Interrupt control, and scan test issues)

Three versions : PVCI, BVCI and AVCI

© 2004 Georgia Institute of Technology 10

Georgialinsitbuunites
wif Techixwlewny

SoC Bus Interfaces (Continued)

o Interface logic blocks (wrappers)
OCP and VCI: provision of a generic interface
Our case:

o Custom wrappers: provision of a customized interface
to each specific IP block

o Examples: MBI for a memory, CBI for a processing
element, and ABI for an arbiter

o More suitable interfaces due to custom architecture
and lead to better system performance

© 2004 Georgia Institute of Technology 11

Georgialinsitbuunites
wif Techixwlewny

SoC Bus System Tools

o CoWare N2C from CoWare

A design environment for an SoC

Bus generator and simulator to design a bus
architecture for an SoC

o Platform Express from Mentor Graphics
An IP block and bus integration tool for an SoC

IP block assembling by dragging and dropping library
components

AMBA and CoreConnect

o CoCentric System Studio from Synopsys

A SystemC simulator and specification environment
for HW architectures and SW algorithms

Bus architecture solutions: DesignWare AMBA IP
blocks and ARM processors

© 2004 Georgia Institute of Technology 12

Georgialinsitbuunites
wif Techixwlewny

SoC Bus System Tools (Continued)

o Magillem from Prosilog
A tool for importing IPs and graphically creating SoCs
Supports:

o Standard on-chip buses: AMBA and
CoreConnect

o Standard bus interfaces: OCP and VCI

o BusSynth

Generation of SoC bus systems with the standard
buses as well as customized buses.

Single bus architecture as well as multiple and hybrid
bus architectures: GBAVI, GBAVIII, BFBA, HybridBA
and SplitBA

Interconnect delay aware bus architecture generation

© 2004 Georgia Institute of Technology 13

Georgialinsitbuunites
wif Techixwlewny

Additional Prior Work

o M. Gasteier et al. ('96), “Bus-Based Communication
Synthesis on System-Level”

Automatic generation of communication topologies on system-
level

A single global bus topology
o R.A. Bergamaschi et al. ("00), “Designing Systems-on-Chip
using Cores”
Assembling an SoC using IP blocks and their properties
A single type of bus topology
o TIMA lab. ('02): component-based design and wrapper
generation
Support: point-to-point connection and a shared bus
o Shin et al. ('04), “Fast Exploration of Parameterized Bus
Architecture for Communication-Centric SoC Design”
A single type of bus topology
o BusSynth
?variety of bus types including multiple and heterogeneous
ype

Interconnect delay aware bus generation
© 2004 Georgia Institute of Technology 14

Georgialinsitbuunites
wif Techixwlewny

Additional Prior Work (Continued)

o Pai Chou et al. ('99), “IPCHINOOK”: An
Integrated IP-based Design Framework for
Distributed Embedded Systems”

A component-based approach to SoC system building

o BusSynth

various customized bus architectures by using user
options

© 2004 Georgia Institute of Technology 15

Georgialinsitbuunites
wif Techixwlewny

Outline

o Introduction
o Related Work

o Methodology for Bus System
Generation

Overview

Bus System Structure

Bus System Generation

Bus System Examples

Interconnect Delay Aware Generation

o Experiments and Results
o Conclusion

© 2004 Georgia Institute of Technology 16

Georgialinsitbuunites
wif Techixwlewny

«+ Methodology Overview
o BusSynth

User options

Interconnect delay
estimation

Custom bus systems in Iy
Register-Transfer Level
(RTL) HDL code : BusSynth I:>
O Bus systems TT
Hierarchical structure to -
module, Bus Access Note

build an SoC bus system:
(BAN), bus subsystem and
bus system

Each layer is assembled in
a configurable manner

© 2004 Georgia Institute of Technology 17

. . . &Gﬁefgrrgiﬁﬂmga&ﬁﬁwﬁ@
e Techieled
00" Y e
0" T O
Scees BUS S msS mpl
soeee DUS yste tructure — an exa ple
0000
0000
Bus System
o o Y
BB
Arbiter ABI
GBI SB1
Memory MBI
PU_A CBI CBI CPU_I
GBI SB1 SB2 GBI
Memory MB MB Memory
CPU_B o o CPU_J
GBI SB1 SB2 GBI
Memory MBI MB Memory

BAN: Bus Access Node, IL: Interface Logic, SB: Segment of Bus, BB: Bus Bridge, MBI: Memory-Bus
Interface, CBIl: CPU/PE-Bus Interface, GBI: Generic Bus Interface, ABI: Arbiter-Bus Interface,

© 2004 Georgia Institute of Technology 18

0. -
oo Bus System Generation

User Option Input |

For each Subsystem i

BUs Access Node (BAN)
Generation

Bus Subsystem Generation

of Subsystem > 1
Bus System Generation

ynthesizable

Module

Library

Verilog HDL code

© 2004 Georgia Institute of Technology 19

® N -
oo Bus System Generation

For each Subsystem i

[F"Bus Access Node (BAN)

Generation

T

Module
Library

Y

Synthesizable
Verilog HDL

Bus Subsystem Generation

of Subsystem > 1

Bus System Generation

o Module Library

PE: MPC750, MPC755,
MPC7410 and ARM9TDMI

[memory] comp: SRAM and
DRAM

CBI_[PE]

MBI_[memory]

ABI

GBI_[bus_type]: GBAVI,
GBAVIII and BFBA
BB_[bb_type]: GBAVI and
SplitBA

ARB _[arb_type]: Priority and
Round Robin
SB_[bus_type]

© 2004 Georgia Institute of Technology 20

000 M ol
selce | |

coe Bus System Generation (Continued)
[X

o Wire Library

Format

%wire <library_name>;

w_name w_width m1_name ml_pname
m1l wmsb ml wilsb m2_name m2_pname
m2_wmsb m2_wilsb;

BusSynth
User Option Input *

For each Subsystem i

[F"Bus Access Node (BAN) %endwire;
Generation
! An example:
Eus Subsystem Generation BANL " vipc7ss
Module ,

addr_ pohe
pe[31:0] |
reset_b

Library

w_addr[31:0]
CBI_MPC75

-

of Subsystem > 1
Bus System Generation
%wire bani;

Synthesizable w_addr 32 MPC755 addr _pe 31 0
Verilog HDL code CBI_MPC755 addr_cbi 31 O;
~ %endwire;
© 2004 Georgia Institute of Technology 21

Wire
Library

o909 | SosuaL
00 &l B
oo . .

3T Bus System Generation (Continued)
o0 o User input list

BusSynth Bus System
* o Number of Bus Subsystems
Bus Subsystem (for each Bus Subsystem)
o Number of buses
For each Subsystem i o Number of BANs:
Bus Properties (for each bus)
o Bus Type: GGBA, GBAVI, GBAVIII, BFBA,

HybridBA or SplitBA
o address bus width
o data bus width
o Bi-FIFO depth for BFBA and HybridBA
BAN Properties (for each BAN)
o CPU Type: MPC750, MPC755,

User Option Input %

[F"Bus Access Node (BAN)

Generation

T

Bus Subsystem Generation

of Subsystem > 1

Module
Library

< MPC7410 or ARM9TDMI
1y o Non-CPU Type: DCT or MPEG2 decoder
Wire o Number of global memories
Library m g o Number of local memories

Memory Properties

Synthesizable o Type: SRAM, DRAM, DPRAM or FIFO
Verilog HDL cod o Address bus width
— ' o Data bus width

© 2004 Georgia Institute of Technology 22

Bus System Generation (Continued)

Georgialinsitbuunites
wif Techixwlewny

o Example: user input for SplitBA

Bus System

Bus Subsystem’

BAN1

BANZ

F

MPCT55

=

F
MPC755

i

t_ﬁ

F

CBI_
MPC755 |

p-
CBI_

MF'C?ﬁﬁ_i

<

BAN3

o+ |

4> BE_ g

SplitEs

Bus Subsystem2

B AN4 BANS
m r
MPC755 MPC755
Sl
e e
MPC?ﬁﬁA‘ MF’C?S_ﬁ_‘
r h
— Ly

BANE&

Arbiter =

| R

MBI

t

SRAM

L

SplitBA

1. Bus System: # of Bus Subsystems =2
2. Bus Subsystem:
- Bus Subsystem1: # of buses = 1 and # of BANs = 3
- Bus Subsystem?2: # of buses =1 and # of BANs = 3
3. Bus Properties:

- Bus Subsystem1: GGBA, address bus width = 32 and Data bus width: 64
- Bus Subsystem2: GGBA, address bus width = 32 and data bus width: 64

4. BAN Properties:
For Bus Subsystem1l1
- BAN1: CPU Type = MPC755, non-CPU Type = None,
of global memories = 0 and # of local memories = 0
- BAN2: CPU Type = MPC755, non-CPU Type = None,
of global memories = 0 and # of local memories = 0
- BAN3: CPU Type = None , non-CPU Type = None,
of global memories = 1 and # of local memories = 0
For Bus Subsystem?2
- BAN4: CPU Type = MPC755 , non-CPU Type = None ,
of global memories = 0 and # of local memories = 0
- BAN5: CPU Type = MPC755 , non-CPU Type = None ,
of global memories = 0 and # of local memories = 0
- BANG6: CPU Type = None , non-CPU Type = None,
of global memories = 1 and # of local memories = 0
5. Memory Properties:

- BAN3: Type = SRAM, address bus width = 21 and data bus width = 64
- BANG: Type = SRAM, address bus width = 21 and data bus width = 64
© 2004 Georgia Institute of Technology 23

000 M ol
selce | |

coe Bus System Generation (Continued)
[X

O Bus Subsystem Generation

BusSynth

: BusSubSys (module_name_array MNA,
ban_name_array BN, subsys no N,

wire_library WL, module_library ML)

For each Subsystem i

BUs Access Node (BAN)
Generation

BAN Integration

of Subsystem > 1
Bus System Generation

ynthesizable

Look up module k name in Module Library ML
and extract or generate the corresponding
RTL code for each module k

Module

Library

¥
Call UnitGen (MNA, “ban_i_j”, WL)

Call UnitGen (BN, “bus_subsystem_i", WL)

Verilog HDL code

© 2004 Georgia Institute of Technology 24

. ‘ . &Gﬁefgrrgiﬁﬂmga@ﬁﬁwﬁ@
. . ‘ vl « [=2 o= IECIGRGN
| X ®
. ‘ . .

coe Bus System Generation (Continued)
o0 O Example: the generation of Bus Subsystems for SplitBA

BusSynth
Bus Subsysteml Bus Subsystem?2

User Option Input
e v BAN2 BAN4 BANS

MPC755 |

MPC755 |

For each Subsystem 2

S Access Node 6 (BANG)
Generation

Bus Subsystem 2 Generation

of Subsystem > 1
Bus System Generation

CBI_
MPC755 |

fot AT A

Module
Library

Wire

BAN3 BANG

Library

Synthesizable

Verilog HDL code

© 2004 Georgia Institute of Technology 25

Bus System Generatl{ g% d)

BAN1

MPC755 SEN U

addr_ ple eI
pe[31:0] |
r b

reset_b

w_addr[31:0]

o Unit generation

UnitGen(module_name_array M, top_unit_name U, wire_library W)
Read wires from W for modules in M and save them to LW1

chi[31:0]

module_name_array = {"MPC755”, “CBI_MPC755"}
top_unit_name = “BAN1"

LW1

1. For each module i in module name array M

w_addr 32 MPC755 addr_pe 31 0 CBI_MPC755 addr_cbi 31 O;

LP1 for MPC755

Read ports from module i and save them to LP1

2. For portjin LP1

MPC755 addr_pe output 31 O;
MPC755 reset_b input 0 O;

LP1 for CBI_MPC755

| flag = FALSE
(2

CBI_MPC755 addr_cbi input 31 0;

3. For wire k in LW1

LWPM

info in LP1 matches info in LW1

Save wire k and its connection info to LWPM

| flag = TRUE |

w_addr MPC755 addr_pe 31 O;
w_addr CBI_MPC755 addr_cbi 31 O;

<

Add port j info to LP2

Write HDL code for a module to U
using LW1, LP2 and LWPM

LP2
MPC755 reset_b input 0 0;

HDL code
module BAN1(reset b,); /l“...." : skipped
input reset_b; /l from LP2
wire w_addr[31:0]; [/l from LWPM
MPC755 MPC755_0(

.reset_b(reset_b), /l from LWPM

.addr_pe(w_addr[31:0]), /[from LWPM
)z
CBI_MPC755 CBI_MPC755_0(
.addr_cbi(w_addr[31:0]), /l from LWPM

);

endmodule;

o909 | SosuaL
00 v e
- . .

seee Bus System Generation (Continued)
(X

O Bus System Generation

BusSynth
;: BusSys (subsystem _name_array SS,
bus_bridge _name_array MS,

wire_library WL, Module_library ML)

User Option Input

For each Subsystem i

Look up module i name in Module Library ML
and extract or generate the corresponding

[F"Bus Access Node (BAN)

Generation

RTL code for the module i

Bus Subsystem Generation | : ¥
Call UnitGen ({SS, MS}, “bus_system”, WL)
Module
Library
- # of Subsystem > 1
Wire)
Library tem Generation

Synthesizable
Verilog HDL code

© 2004 Georgia Institute of Technology 27

Module
Library

Wire
Library

Bus System Ge

O Example: the generation of

BusSynth
User Option Input §

For each Subsystem 2

us Access Node 6 (BANG)
Generation

|

Bus Subsystem 2 Generation

of Subsystem > 1

Bus System Generation

Synthesizable
Verilog HDL code

Arb

BAN3

Georgiallnsituie
wifTechiclogsy

)

AM

© 2004 Georgia Institute of Technology 28

Georgialinsitbuunites
wif Techixwlewny

Bus System Examples

1 1
1 1
1 1
1 1
' '
. |
1 1
: = H3_REGS HEL EE_& !
! MPCTSS : SEAM :
1 1
1 - o !
EE_7 | I

| e g !
' 4] [E) !
1

[IMote] BB: bus bridge and HZ REGS: handshalce registers

General Global Bus
Architecture Version | (GBAVI)

MPCIS5_4A |SR£LM_A i =

1

|

1

[.

3 3 '

1

~HT T ‘ H5_EE BI-FIFO_ji ‘ !
MPCISS SEAM H
I

3 !
] 1
1

! :,

L r N
- v _BANE |
MPCIs5_B SFAM_E lFr F Ll :
[T ¢ hd ¥ '
1
TEl MR HZ_FEZS EI-FIFO_E i
MPCTI55 ZRAN ¢ : |
1
. % % L
Lol 1
o CPUBwB_____________________ . :
- B4H C
MPCT55 O SE&AM C
[T]

_____ CPUBnsC____________________* __________
1

i » ¥ CBAW D !
' MPC755 D SRAM D -+ !
! [T v v :
1

' ¥ !
| =H TAET H:_FEGS EI-FIFC D :
: MPC755 SRAM !
' - ¥ ! 3 _ ;
: CPT Bus I '
: oy '

[Hote] HE EEGS: handshake registers

Bi-FIFO Bus
Architecture (BFBA)

© 2004 Georgia Institute of Technology 29

Georgial sl
wifTechiclogsy

Bus System Examples (Contmued)

——=n

Global Flobhal B
; TAEL us
Arhiter SRA M e
- - !
oo oo oo T T/ | _ .
BAM 4
MECTS5 & SEAM &
|T
CBI | | MBI
MPCTSS SFAM
- CPTT Bus & w| GEI_GE= | !
_____________________________________ L __ 1
E4N B i
MPC755_E SEAM_E
|T
CBI MBI
I-.-[PC?SS SEAM
SETT s | GBI GES |t
____________________________________ | _ .
BAN C
MECTSS SEAM_C
o]
TET B
755 SEAM
- * cPuBwC o[GEL GBS e .
_____________________________________ L __ 1
1
MECTS5 D | SEAM D BAN D
IT
CBI MBI
I-.-!I:PC’.-‘SS SEAM
CPTT Bus »[GEL_GES |we)

[NDte] HE_ _EREGS: handshake registers

General Global Bus

Architecture Version Il (GBAVIII)

e BAW G
: SEAM :
' '
' '
| = 1
. =T SRAM T
; — o GEI_GES Jwm |
3 [A) EAN &4 :
! MPCTS5 4| | SRAM_ 4 '
! |T '
1 # :
i CBI AET | HE_REGS | |BI-FIFO_4 !
1
H | MPC?SD | | SEAM | H
| 3 3 3 |
: CPU — - [GEI_GES Jw] !
e ey ol Y [| !
: ¥ BAN E '
: MPC755_B SRAM_E !
:] 1
1 1
CBI MBI HS_REGS | EI-FIFD_E '
i | MPC?II | | SR&M : '
' '
i w[GEI_GES] |
! CPU Fuw B r '
et el et e e il -1
' BAN C '
b | weoTss o SRAM_C F !
] 3 '
1
BT e | HS_REGS | EI-FIFO_C i
| MPC7E0 | | SEAM | : H
1
- 3 [GEI_GEZ || |
_____ CPUBwC ___________________ % __—/—/——_ _1!
1
BAN D
MECTS5 D| | sRAM D ¥ E
|T i
CBI MBI HS_REGS | BI-FIFO_D :
| I-.-IPC’.-‘II | | SRaM
[GEI_GE: e |
CPU Fus D (Ajt ¥

[Mote] HE REGS: handshake registers

Hybrid Bus Architecture
(HybridBA)

© 2004 Georgia Institute of Technology 30

&M

Georgiallnsituie
wifTechiclogsy

Bus System Examples (Continued)

__

EAaH &4 ELMNE I
1
MPCIAS_ 4 MPCT55_B |
[T] [t
_El Bl
MPZ755 MPZ755

EaN C EAND
1
MPC755_C| |MPC755_D|!
rod o4
MPC755 MECT755

' | Brndee

lobal MEI
Ashiter SEAOM
1
i B SEAM
| Subsystem 1

xlobal MEI
Arhiter SEAM
1
i Bus SEAM
| Subsystem 2

Split Bus Architecture (SplitBA)

© 2004 Georgia Institute of Technology 31

Georgialinsitbuunites
wif Techixwlewny

Bus System Examples (Continued)

BAN A BANB BANC BAND
MPC755 A ||MPC755 B||MPC755 _C||MPC755 D
L1 L1 L1 L1
—t ¥ 1 |
Arbiter Processor Local Bus (PLB)

'

'

'

'

SRAM A

SRAM B

SRAM C

SRAM D

CoreConnect Bus
Architecture (CCBA)

e e e e e e e e e == —————

BAN A BANB BAN C BAND
MPC755 A| |MPC755 B MPC755 C| |MPC755 D
L1 L1 i L1 L1
CBI CBI CBI CBI
MPC755 MPC755 MPC755 MP%?SS
e ¢ t >
Global MBI
Arbiter SRAM SRAM

General Global Bus
Architecture (GGBA)

© 2004 Georgia Institute of Technology 32

Georgialinsitbuunites
wif Techixwlewny

A New Bus System Generation

Different Combination of Bus Components
» Different combination of BAN components

o © o

User Inputs for BAN1: User Inputs for BAN2:
CPU type: MPC755 CPU type: MPC755 User Inputs for Bus Subsystem1:
Non-CPU type: None Non-CPU type: None # of BANs: 4
of global memories: 0 # of global memories: 0 BANs 1, 2,3 and 4
of local memories: 1 # of local memories: 0)
Memory type: SRAM User Inputs for Bus Subsystem?2:
))) # of BANs: 4
» Different combination of BANs BANS 1, 2, 2 and 2

Note: BAN: Bus Access Node, MBI: Memory Bus Interface, CBI: CPU Bus Interface, GBI: Generic Bus Interface,

SB: Segment of Bus, NCBI: Non-CPU Bus Interface © 2004 Georgia Institute of Technology 33

&M

Georgialnstituii

wifTechiclogsy

A New Bus System Generation

(Continued)
oDifferent Combination of Bus Components
Different combination of Bus Subsystems

Bus Systeml

Bus Subsystem1] Bus System2

BB1 BB2

Bus Subsystem1 = BB1 == Bus Subsystem?2

Bus Subsystem?2 = BB3 == Bus Subsystem3

User Inputs for Bus System1.: User Inputs for Bus System2:
of Bus Subsystems: 3 # of Bus Subsystems: 2
Bus Subsystems 1, 2, 3 Bus Subsystems 1 and 2

Note: BB: Bus Bridge

© 2004 Georgia Institute of Technology 34

o909 Cogrgian e
ee: e INnterconnect Delay Aware Bus System
® .
Generation
o Interconnect delay estimation (e.g., GGBA)

= Bus Interconnect

M Memory Bus

Interface (MBI)

[l Bus Arbitrer

\f_\) CPU Bus Interface

(CBI)

e HSPICE wire model includes:
- RLC parameters from MOSIS

run for TSMC 0.25 um

- Interconnect length
e Interconnect delay calculation

SRAM Memory
Length [em] | Delay [ns]
Processing Element 1 | 0.2521 0.2848
Processing Element 2 | 0.6143 0.5727
Processing Element 3 | 1.2733 2.2882
Processing Element 4 | 1.9363 3.0472

(a) Estimated Floorplan of GGBA

(b) Interconnect length estimation

© 2004 Georgia Institute of Technology 35

Georgiallnsituie
wifTechiclogsy

Interconnect Delay Aware Bus System
Generation (Continued)

o Memory Bus Interface (MBI) module generation

One of effects in interconnect delay insertion: memory
access cycles

Memory controller to adapt access cycles due to
Interconnect delay

PowerPCs

aack_bars

<«

ta_bars

<«

address

data

control signals

sram address >
sram data
ﬁ
cs_bar ., SRAM
we_bar .
re_bar |

© 2004 Georgia Institute of Technology 36

Georgiallnsituie
wifTechiclogsy

Interconnect Delay Aware Bus System
Generation (Continued)

o Memory Bus Interface (MBI) module generation

Estimated bus Delay in a read SEAM (2Mbyte) Total interconnect delay
delay between a PE operation [ns] access time [ns] in aread operation [ns]
and SRAM [ns] P P
FE1 0.2848 0.5696 8.00 8.5696
FEZ 05727 1.1454 200 91454
FEZ 2.2882 4.5764 200 125764
FE4 30472 & 0944 200 14 0944

MNote: the access time of a shared SRAM (2Mbytes) 15 estimated by CACTI 3.0
(a) Estimated total delay of paths between each PE and a shared memory

Mumber of clock delays in each PE for aread operation [clock]
100 MHz (10.00ns) 200 MHz (5.00ns) 300 MHz (3.33n3)
systemn cloclk systemn cloclk systemn cloclk
PE 1 1 (0.8570) 2 (1.7139) 3 (2.57345)
PE2 1(0.9145) 2 (1.8291) 3 (2.74636)
PE 3 2 (1.2576) 3(2.5153) 4 (3.77669)
FE4 2014094 3028189 50423255

(b) Number of clock delays in data paths
© 2004 Georgia Institute of Technology 37

Georgiallnsituie
wifTechiclogsy

Interconnect Delay Aware Bus System
Generation (Continued)

o Memory Bus Interface (MBI) module generation

BusSynt

\

Input of For each Bus Subsystem
interconnect delays
‘ For each BAN

Calculation of the number

of clocks to be inserted L
Bus Access Node (BAN) Generation

Module Generation

¥ ¢
Extraction of MBI module S Bus Subsystem Generation
from Module Library Module 1
Library v
‘ ~ N
S
Update of memory access Wre/ vY
delay parameters Library | Bus System Generation |
in an MBI module 1<
v
Synthesizable
Verilog HDL code
(a) Sequence of MBI Generation (b) Bus System Generation

© 2004 Georgia Institute of Technology 38

Georgialinsitbuunites
wif Techixwlewny

Outline

o Introduction
o Related Work
o Methodology for Bus System Generation

o Experiments and Results
Application Examples
Experimental Setup
Performance Evaluation
Generation Time and Logic Area

o Conclusion

© 2004 Georgia Institute of Technology 39

Georgialinsitbuunites
wif Techixwlewny

Application Examples

o OFDM transmitter

Wireless application
One packet: (2048+512)-complex samples

o MPEG2 decoder
A video stream decoder
o Database example

Multitask clients and server over PEs: total
41 tasks over four PEs

RTOS: Atalanta version 0.4

© 2004 Georgia Institute of Technology 40

Georgialnstituii
wifTechiclogsy

SIMULATION ENVIRONMENE

SEAMLESS - XRAY

CVE

-

SYNTHESIS ENVIRONMENT

erconnect
Delay Estim

oorplan

Design

Note: VCS and Design Compiler from Synopsys, Seamless CVE and Xray from Mentor Graphics and GCC from
GNU

© 2004 Georgia Institute of Technology 41

Georgialinsitbuunites
wif Techixwlewny

Software Programming Style

BAN 1 BAN |
A |E|E|E|E A EFGH EFGH
B FIF | F|F | B EFGH EFGH
C c|lec | o | o C EFGH EFGH
D H | H | H H D EFGH EFGH
Time " Time]

(a) Pipelined Parallel Algorithm (PPA) (b) Functional Parallel Algorithm (FPA)

Note: Each of E, F, G and H specifies a function group partitioned from a software

© 2004 Georgia Institute of Technology 42

‘ . . &Gﬁefgrrgiﬁﬂmga@ﬁﬁwﬁ@
. ‘ ‘ V] © ecnicelogiy

(X

®

Performance Evaluation
o OFDM Transmitter

Case Bus Application Software
System | Throughput [Mbps] Programming Style
1 BFBA 2.6504 PPA
2 GBAVI 2.1087 PPA
3 4.5599 FPA
4 | GBAVI 22567 PPA
5 : 4.5599 FPA
g | HybridBA 2 6504 PPA
7 SplitBA 5.1132 FPA
8 4.3913 FPA
9 GGBA 2.1880 PPA

Maote 1. PPA Fipelined Parallel Algorithm, FRPA: Functional Parallel Algorithm
2. Data 2048 complex samples and 512 guard complex samples per packet
3. Each Bus System having four PowerPCs supports instruction and data cache

SplitBA and GBAVIII outperform GGBA by
16.44% and 13%, respectively.

Pipelined parallel algorithm (PPA) and functional
parallel algorithm (FPA)

© 2004 Georgia Institute of Technology 43

Georgialinsitbuunites
wif Techixwlewny

Performance Evaluation (Continued)
o MPEG2 Decoder
HybridBA shows the best in performance (15.54%

against CCBA)
Case Bus Application Software
System Throughput [Mbps] Programming Style
10 BFBA 0.8594 FPA
11 GBAVI 0.8271 FPA
12 GBAVIII 1.1444 FPA
13 Hybrid BA 1.1650 FPA
14 CCBA 1.0083 FPA

Mote: Picture size: 16 % 16

o Database Example
SplitBA outperforms GGBA by 41% reduction in time

Bus . - Software
Case System Execution Time [ns] Programming Style
15 GGBA 2,241,100 FPA
16 SplitBA 1,317,804 FPA

Mote: 1. Each Bus System is composed of 1 server task and 40 client tasks
2. BEach task accesses one-hundred data to or from a shared memaory

© 2004 Georgia Institute of Technology 44

Georgialinsitbuunites
wif Techixwlewny

Performance Evaluation
- Interconnect Delay Aware Generation

o Three configurations of GGBA for
performance comparison

GGBA | is a GGBA system with no regard to
Interconnect delay on the bus

o Used as a baseline of performance comparison
GGBA Il is a GGBA system that works with

different estimated interconnect delays on the
shared bus

GGBA lll is a GGBA system that operates with
a maximum estimated delay on all connections
between PEs and a shared memory

© 2004 Georgia Institute of Technology 45

Georgiallnsituie
wifTechiclogsy

Performance Evaluation (Continued)
- Interconnect Delay Aware Generation

Execution Time

Compatison [

Cotparison 11

SCOBA System [ns/packet] [icrease i [decrease in
P execution time] | execution time]
CGGBA T (no mterconnect delay) 1218455 0.0%
CGCBATI(E, 3,4 and 5 clock delays i o o
each data path from PE | to PE4) 2057487 58.9% 33.3%
CGGBA TIL (S clock delays in all data paths) 3,180,220 161.0% 0.0%

(a) 300MHz Bus Clock

Execution Time

Companison [

Comparison 11

GOBA System [ns/packet] [increase i [decrease m
P execution time] | execution time]
. GGBA T (no mterconnect delay) 1,825,751 0.0%
CGGBA TT (2, 2, 3 and 3 clock delays in o o
each data path from PE 1 to PE4) 2,323,670 27.3% 274%
CGGBA TIT (3 clock delays in all data paths) 3,198 620 T5. 2% 0.0%

(b) 200MHz Bus Clock

Execution Time

Compatison [

Cotparison 11

SCOBA System [ns/packet] [icrease i [decrease in
P execution time] | execution time]
CGGBA T (no mterconnect delay) 3644003 0.0%
CGCGBATI(LL 1, 2 and 2 clock delays i a o
each data path from PE | to PE4) 3,862,680 6.0% 10.1%
CGGBA I (2 clock delays in all data paths) 4 297 056 17.9% 0.0%

(c) 100MHz Bus Clock

logy 46

Georgialinsitbuunites
wif Techixwlewny

Generation Time and Logic Area (no wires)

o Bus system generation with BusSynth

o Design Compiler with LEDA TSMC
0.25um standard cell library

1 8 16 24

Bus processor processolrs processors processors

System Time Gate Time Gate Time Gate Time Gate
[ms] | count | [ms] count [ms] count [ms] | counts

BFBA 509 | 800 | 534 | 6,401 | 546 | 12,/93 | 5/8 | 19,188
GBAVI 417 | 872 | 432 | 6,899 | 457 | 13,751 | 506 | 21,256
GBAVIIl | 513 | 2,070 | 542 | 14,746 | 563 | 30,798 | 590 | 48,3395
HybridBA | 763 | 2,973 | 859 | 21,869 | 928 | 44847 | 983 | 69,697
SplitBA NA | N/A | 413 | 4,297 | 440 | 8,605 | 491 | 16,110

Note: Time: Bus generation time, N/A: Not Applicable
Gate count: NANDZ gate countin TEMC 0.25um standard cell library

© 2004 Georgia Institute of Technology 47

Georgialinsitbuunites
wif Techixwlewny

Conclusions
o SoC bus system design aid
Expert guide to design an SoC bus system
o Automated bus generation tool: BusSynth
Solution: how to easily and quickly design a multi-processor
SoC bus system
User option based tool that generates diverse custom bus
systems
Synthesizable Verilog HDL output
o Interconnect delay aware bus system generation
o A case study of an SoC design in a component-based
design approach
o Fast design space exploration across performance
iInfluencing factors
Generation of bus systems in a matter of seconds
o Practical implementation

RTL-level HDL output from BusSynth
Realistic user application: OFDM and MPEG2

Real-time Operatmg SyStem © 2004 Georgia Institute of Technology 48

&Georglaﬂmgmmiﬂ;)

wifTechiclogsy

Publications

K. Ryu and V. Mooney, “Automated Bus Generation for Multiprocessor SoC
Design,” to appear in IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems (TCAD’04), 2004.

K. Ryu, A. Talpasanu, V. Mooney and J. Davis, “Interconnect Delay Aware
RTL Verilog Bus Architecture Generation for an SoC,” to appear in Proceeding
of IEEE Asia-Pacific Conference on Advanced System Integrated Circuits (AP-
ASIC’04), August 2004.

K. Ryu and V. Mooney, “Automated Bus Generation for Multiprocessor SoC
Design,” in Proceedings of the Design, Automation and Test in Europe
(DATE'03), pp. 282-287, March 2003.

K. Ryu and V. Mooney, “Automated Bus Generation for Multiprocessor SoC
Design,” [Online]. Available: http://www.cc.gatech.edu/tech_reports, Georgia
Institute of Technology, Atlanta, GA, Technical Report GIT-CC-02-64,
December 2002.

K. Ryu, E. Shin and V. Mooney, "A Comparison of Five Different
Multiprocessor SoC Bus Architectures," in Proceedings of the EUROMICRO
Symposium on Digital Systems Design (EUROMICRO'01), pp. 202-209,
September 2001.

J. Lee, K. Ryu and V. Mooney, "A Framework for Automatic Generation of
Configuration Files for a Custom Hardware/Software RTOS," in Proceedings
of the International Conference on Engineering of Reconfigurable Systems

and Algorithms (ERSA'02), pp. 31-37, June 2002.
© 2004 Georgia Institute of Technology 49

Georgialinsitbuunites
wif Techixwlewny

Poster Presentation and Demonstration

o K. Ryu and V. Mooney, “Automated Bus
Generation for Multiprocessor SoC design,” Ph.D.
Forum at the 40th Design Automation Conference
(DAC’03), June 2003.

o K. Ryu, E. Shin, J. Lee and V. Mooney, “A
Framework for Automatic Generation of Bus
Systems and a HwW/Sw RTOS for Multiprocessor
SoC,” University Booth at the 39th Design
Automation Conference (DAC’02), June 2002.

© 2004 Georgia Institute of Technology 50

Georgialinsitbuunites
wif Techixwlewny

Thank you

© 2004 Georgia Institute of Technology 51

