
Energy Minimization of Pipeline
Processor Using a Low Voltage

Pipelined Cache

Vincent J. Mooney III, Krishna Palem,
Jun Cheol Park, and Kyu-won Choi

Georgia Institute of Technology
{mooney, palem, jcpark,

kwchoi}@ece.gatech.edu

Asilomar Nov. 05 2002 2

Outline

Introduction
Motivation and previous work
Approach
Methodology
Results
Conclusion and future work

Asilomar Nov. 05 2002 3

Introduction
Power/energy is a top
most bottle neck in
embedded systems
Mobile devices require
longer usage time
Trade-off between
performance and power
Reducing power/energy
without performance loss

Asilomar Nov. 05 2002 4

Motivation & previous work

A cache is a power
hungry component of
a system
Caches consume
42% of a Strong
ARM 110 processor*

Non-
cache

Caches

*J. Montanaro and et. al., “A 160-mhz, 32-b, 0.5-w cmos risc microprocessor,”
IEEE Journal of Solid-State Circuits, 31(11):1703–1714, 1996.

Asilomar Nov. 05 2002 5

Motivation & previous work
Intel XScale processor supports multiple frequencies and
voltages
• L. T. Clarl and et. al., “An embedded 32-b microprocessor core for

lowpower and high-performance applications,” IEEE Journal of Solid-
State Circuits, 36(11):1599–1608, November 2001.

High voltage supply for critical paths and low voltage supply for
non-critical paths
• V. Moshnyaga and H. Tsuji, “Cache energy resuction by dual voltage

supply,” In Proc. Int. Symp. Circuit and System, pages 922–925, 2001.
Pipelining a cache to achieve lower cycle time
• T. Chappell, B. Chappell, S. Schuster, J. Allan, S. Klepner, R. Joshi,

and R. Franch, “A 2-ns cycle, 3.8-ns access 512-kb cmos ecl sram
with a fully pipelined architecture,” IEEE Journal of Solid-State
Circuits, 26(11):1577–1585, 1991.

Asilomar Nov. 05 2002 6

Approach
Case1. Non-pipelined caches with the same voltages as the processor

IF ID EX ME WB
Vdd

IF1 IF2 ID EX ME1 ME2 WB

I.$1 I.$ 2 D.$1 D.$ 2

I.$ D.$

Case2. Caches pipelined with lower supply voltage and same cycle
time with case1

Vdd

Lower
Vdd

Asilomar Nov. 05 2002 7

Approach (Cont.)
Case 2 uses same cycle time as case 1:
ideally same execution time
Case 2 saves power using lower supply
voltage
Two bottle necks
• Branch penalty: branch misprediction adds overhead

for pipelined instruction cache
• Load use penalty: a load instruction immediately

followed by dependent instruction adds overheads for
pipelined data cache

Asilomar Nov. 05 2002 8

Methodology

Processor Model Cache Model

+

System Energy

Asilomar Nov. 05 2002 9

Processor Model
MARS
• A cycle-accurate Verilog model of a 5-stage RISC

processor from U. Mich.
• Capable of running ARM instruction
• Non-pipelined caches
• BTFN (backward taken forward non-taken) branch

prediction
MARS with 7-stage pipeline
• 128 entry BTB (branch target buffer) with 2-bit counter
• 2-stage IF (instruction fetch), 2-stage ME (memory access)

Asilomar Nov. 05 2002 10

Processor Model (Cont.)

Compile benchmarks
using ARM-gcc compiler
and generate hex ARM
instructions called VHX

Benchmark Program (C/C++)

Binary Translation

ARM9 Based System Architecture

Functional
Simulation (VCS)

Toggle Rate (Activity)
Generation

Processor Core Power

Synthesize
Verilog Model

Asilomar Nov. 05 2002 11

Processor Model (Cont.)

Functional simulation
using Synopsys VCS
Collect toggle rate of
internal logic signals using
Synopsys VCS simulation

Benchmark Program (C/C++)

Binary Translation

ARM9 Based System Architecture

Functional
Simulation (VCS)

Toggle Rate (Activity)
Generation

Processor Core Power

Synthesize
Verilog Model

Asilomar Nov. 05 2002 12

Processor Model (Cont.)

Synthesize Verilog model
using TSMC .25µ library

Benchmark Program (C/C++)

Binary Translation

ARM9 Based System Architecture

Functional
Simulation (VCS)

Toggle Rate (Activity)
Generation

Processor Core Power

Synthesize
Verilog Model

Asilomar Nov. 05 2002 13

Processor Model (Cont.)

Estimate power using
Synopsys Power Compiler

Benchmark Program (C/C++)

Binary Translation

ARM9 Based System Architecture

Functional
Simulation (VCS)

Toggle Rate (Activity)
Generation

Processor Core Power

Synthesize
Verilog Model

Asilomar Nov. 05 2002 14

Cache model

CACTI 2.0*
• An integrated cache access time, cycle time,

and power model
• Time and power estimation of each

component
• RC based more detailed delay model used for

technology scaling (i.e. supply voltage,
threshold voltage)*

*G. Reinman and N. Jouppi, Cacti version 2.0, http://www.research.digital.com/wrl/people/jouppi/CACTI.html.
**N.Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison Wesley, Santa Clara, California, 1992.

http://www.research.digital.com/wrl/people/jouppi/CACTI.html

Asilomar Nov. 05 2002 15

Cache model (Cont.)
The cache circuit is split into two
parts for pipelining
• Pipeline stage 1: decoder, tag array,

data array
• Pipeline stage 2: mux, sense-

amplifier, comparator
Timing order of the circuit-level
critical path considered
Direct mapped and 32B block size
16KB, 32KB, 64KB, 128KB,
256KB, 512KB cache size
simulated

CACTI 2.0 cache model

Asilomar Nov. 05 2002 16

Cache model (Cont.)
Delay for Pipeline 1

(Cache Size: 16K-512K, Block Size: 32, Direct Mapped)
Delay for Pipeline 2

(Cache Size: 16K-512K, Block Size: 32, Direct Mapped)

• Delay is increased according to the supply voltage
• Delay of the pipeline stage 1 is also dependent on the cache size

Asilomar Nov. 05 2002 17

Cache model (Cont.)
Energy for Pipeline 1

(Cache Size: 16K-512K, Block Size: 32, Direct Mapped)
Energy for Pipeline 2

(Cache Size: 16K-512K, Block Size: 32, Direct Mapped)

• Energy is dependent on the cache size and the supply voltage

Asilomar Nov. 05 2002 18

Asilomar Nov. 05 2002 19

Optimization of energy and
delay

Pipelined cache for high-
performance
• Reduced cycle time with same

supply voltage

Pipelined cache for low-power
• Reduced supply voltage without

changing cycle time

delay

cycle time = 10 ns

Base case

Vdd = 2.75 V

Pipelined cache
for high-performance

delay delay

cycle time = 5 ns

Vdd = 2.75 V

E = C(2.75)2 = 7.56C

Energy savings = (7.56 – 2.56)C/7.56*100 = 66%

idle

Pipelined cache
for low-power

delay

cycle time = 10 ns

Vdd = 1.6 V

E = C(1.6)2 = 2.56C

Asilomar Nov. 05 2002 20

Optimization of energy and
delay (Cont.)

Optimized supply voltage for cache
Voltage optimization procedure for pipelined cache
Input: Vdd Range, delay_base
Output: Power optimal Vdd
Vdd Range ← [2.75V – 0.6V]
Vdd(0) = Max(Vdd Range);
For i steps do

Calculate delay_stage1(Vdd(i));
Calculate delay_stage2(Vdd(i));
If Max[delay_stage1{Vdd(i)}, delay_stage2{Vdd(i)}] < dealy_base

Vdd_optimal = Vdd(i);
endIf
Decrease Vdd(i);

endFor

Asilomar Nov. 05 2002 21

Optimization of energy and
delay (Cont.)

Pipelined cache saves maximum 69.60%
energy saving

Energy/delay for a pipelined cache

3.84 101.422 2.70.194 12.030 105.477 12.224 2.75512

7.62 50.442 2.650.195 6.060 54.605 6.254 2.75256

18.52 22.767 2.50.199 2.991 27.942 3.190 2.75128

31.95 10.450 2.30.201 1.540 15.357 1.741 2.7564

49.73 4.534 20.206 0.814 9.019 1.021 2.7532

69.60 1.729 1.60.210 0.438 5.689 0.648 2.7516

% savingEnergy(nJ)Vdd(V)Delay2(nS)Delay1(nS)Energy(nJ)Delay(nS)Vdd(V)Cache(KB)

Pipelined cacheBase case

Asilomar Nov. 05 2002 22

Results
Execution time increased 15.35% due to the branch
misprediction penalty and load use penalty
• More accurate branch prediction scheme required
• Dynamic instruction scheduling such as out-of-order execution or

static instruction scheduling such as compiler optimization required

Execution Time (ICache=16KB, DCache=16KB)

15.35Average

17.43106347719105740635178125fib

15.0098722119698119234510024factorial

9.65108647987107943765151105arith

16.361121105293111490485512604matmul

18.31100831465100226595201177sort_int

E.T.%
Increment

Core
Power(mW)E.T(ns)

Core
Power(mW)E.T(ns)Load useMispredictionBenchmark

Pipelined cache
processorBase case

Asilomar Nov. 05 2002 23

Results (Cont.)
Average 24.85% power saving
Processor core power does not change much for 5-stage
and 7-stage
Variation of total processor power is mainly dependent on
cache power

Power distribution (ICache=16KB, DCache=16KB)

24.85Average

27.09125339151106317191495131057fib

26.241161311439871574118475981factorial

22.9612581815410861634664881079arith

24.27129237134112117061424501114matmul

23.6711542512010081511984111002sort_int

% ReductionTotalD. CacheI. CacheCore PowerTotalD. CacheI. CacheCore PowerBenchmark

Pipelined cache (mW)Base case (mW)

Asilomar Nov. 05 2002 24

Results (Cont.)
Average 13.33% energy saving
The increment of execution time degrades the energy
reduction
To maximize the advantage of pipelined cache, a precise
branch prediction scheme and instruction scheduler (load
use) required

Energy distribution (ICache=16KB, DCache=16KB)

13.33Average

14.385981018407227507436985160532084542953fib

15.172568106928316622182203027472279191328188628factorial

15.53603928807406521057149628962136347238arith

11.871360503898141181180341543771282340723100830matmul

9.70362987943789317154019526061092926660sort_int

% ReductionTotalD. CacheI. CacheCore EnergyTotalD. CacheI. CacheCore EnergyBenchmark

Pipelined cache (nJ)Base case (nJ)

Asilomar Nov. 05 2002 25

Conclusion and future work

Pipelined cache with lower supply voltage
explored
Maximum 69.6% cache energy saving
24.85% power and 13.33% energy saved
The savings of the power are masked by the
execution time increment
Branch prediction and load use penalty must
be considered to maximize energy saving

Asilomar Nov. 05 2002 26

Thank you.

	Energy Minimization of Pipeline Processor Using a Low Voltage Pipelined Cache
	Outline
	Introduction
	Motivation & previous work
	Motivation & previous work
	Approach
	Approach (Cont.)
	Methodology
	Processor Model
	Processor Model (Cont.)
	Processor Model (Cont.)
	Processor Model (Cont.)
	Processor Model (Cont.)
	Cache model
	Cache model (Cont.)
	Cache model (Cont.)
	Cache model (Cont.)
	Optimization of energy and delay
	Optimization of energy and delay (Cont.)
	Optimization of energy and delay (Cont.)
	Results
	Results (Cont.)
	Results (Cont.)
	Conclusion and future work

