The-System-on-a-Chip
Lock Cache

PhD Dissertation Defense
by

Bilge E.'S. Akgul

Advisor: Prof. Vincent Mooney

School of Electrical and Computer Engineering, Georgia Institute of Technology
April 2004

Aim: Effective Synchronization

®A system-on-a-chip
(SeC) may include

e Multiprocessors, on-chip
shared memory, peripherals
and other hardware
components

e Multi-tasking application with
a real-time operating system
(RTOS)
® Many shared-data
structures cause
contention

PE: processing element

Aim: Effective Synchronization

Solution: move lock
variables to a specialized
hardware logic

SoC Lock Cache
(SoCLCQC)

' critical !
' section :

PE: processing element

What is New in SoC?

® Previously, PEs and L2 memory on separate
chips

® Specialized hardware would also be on a
separate chip

e = Have to communicate to specialized hardware
via pins, i.e., at a speed similar to the PCB clock
Instead of processor clock

® With multiprocessor SoC, can add specialized
hardware assist logic at or close to the

processor speed without incurring cost of
additional pins on package

Outline

® Background and Previous Work
®/Basic SoOCLC Approach

® Priority Inheritance Support in. SoCLC
® PARLAK Tool

® Experimental Results

® Conclusion

Locking/Unlocking

Lock(lock);
access_critical_section();

Unlock(lock);

Lock(lock) {
while(test_and_set(lock))
, /] spin If failed

® | ocking operation
must'be atomic

® Hardware support
for atomicity

® Test-and-set atomic
primitive used

e Spin-lock

Problem

M) critical !

& section

® Busy-wait/problem:
PES spin on
memory bus

® Cache invalidations
— hold cycles

® Bandwidth
consumption

Previous Work

lardware based synchronization
mechanisms

e Using cache, additions to processor core
® Software based synchronization
algorithms

e Make use of synchronization primitives

e test_and_set, fetch_and_increment,
compare_and_swap, etc.

Hardware Based /'Solutions

® Cache based synchronization

e Cache based'lock (CBL) [RLL96]

e Queue on lock bit (QOLB) [KBG97]
® Speculative approaches

e Transactional memory [HM93]

oS
oS
oS

pecu
pecu

pecu

ative lock elision [RG01]
ative synchronization unit [MTO1]
ative lock reordering [RS02]

Hardware Based Solutions
(cont.)

® Require special cachel/cache protocol,
cache to cache transfer

® Extend processor core with special

hardware

® Not applicable to general purpose
Processors

Software Based Solutions

® 3pin-on-read\[RS84]

® Exponential/proportional back off
iInserted into the spin loop [And90]

® Ticket locks [Lam74, RK79]

® Array based locks [And90, GT90]

® Queue based locks
e MCS locks [MCS91]
e LH and M locks [MLH94]

MCS Locks

type MCSnode{
MCSnode *next;
WORD lock;

MCSnode* lock = NULL; //initialize lock to NULL

MCS _LockAcquire(MCSnode** lock, MCSnode™ mynode)
{
MCSnode *prevnode;
mynode—>next = NULL; //mynode becomes the last in queue
prevnode = fetch_and_store(lock, mynode); //atomically do the following;
//prevnode = lock
//lock = mynode
IF prevnode != NULL THEN //if lock is busy
mynode—>lock = TRUE;
prevnode—>next = mynode;
while(mynode—>lock); //spin until lock is released
ENDIF

}

MCS _LockRelease(MCSnode™* lock, MCSnode® mynode)

{

IF mynode—>next == NULL THEN
IF compare_and_swap(lock,mynode,NULL) THEN
return;
ENDIF
while(mynode— >next==NULL);
ENDIF
mynode—>next—>lock = FALSE;

MCS Locks (cont.)

® Require fetch_and_stere'and
compare_and_ swap/primitives

® Scale well for high contention but have
constant software overhead (poor for
low contention)

Outline

® Background and Previous Work

® Basic SOCLC Approach

® Priority Inheritance Support in. SoCLC
® PARLAK Tool

® Experimental Results

® Conclusion

Our Approach

Custom hardware:
SoC Lock Cache
(SoCLC)

SoCLC provides
synchronization
among processors

Our Approach

® Simple hardware mechanism: SoCLC

® No modifications/extensions to
processor core or to caches

® No special instructions or atomic
primitives

® Easily integrated as an intellectual

oroperty (IP) block into the SoC

lardware interrupt triggered notification

16

C
@)
=
=
(<)
£
=,
o

AN

Software

2, (rl) , read lock value
3,12, 1 r13=1

3, r2,test ;testagainiflock =1
r3, (rl) , attempt to lock

3, 0, test ; test again if failed

Our method

2, (rl) , read lock value
2,1, sleep ;testagainiflock=1

sleep , sleep until interrupt occurs

Hardware

Lock Unit

Decoder s pNels[=

- Control
Logic

Interrupts to PEs

Long/Short CSes

Memory Address Space = Memory mapped

0x0000 ® Distinguish lock
0X3000 variables according to
the critical section

RTOS
L. |

0x9000 i
2 Shared Data Iengths.
I e Long
OxF000

IUESOON | Long CS locks e Short

LR | Short CS locks ® Support preemption of
tasks when necessary

Atalanta

® Multiprocessor RTOS [DBMO02]

¢ Multitasking

e Preemptive, priority based scheduler

e Uses simple spin-lock

e Interprocess communication/synchronization
e Semaphores, mutexes, mailboxes, queues

® Ported to ARM and PowerPC processors

Preemption

® Preemption can improve performance
e For long critical sections
e Yield the CPU resources, context switch

e Enabling other tasks to do useful work
Instead of waiting

® Support preemption of tasks with
Atalanta real-time operating system
(RTOS)

Preemption

® RTOS saves the
states of blocked
tasks

® When interrupt
occurs, the highest
priority task is
chosen to acquire
the lock

® Context switch to
new task

—
o
O
0l
=
D,
—
—+
jab)
=1
D
=
—
@)
)
0l
=
D,
—
—+
QO
=1
)
N

Long CS Locks - Preemption

Lock longCS
Read lock

Return from PE2 taSk4 ﬂ

Lock longCS

Execution
without holding lock

mm Holding lock

Fail to acquire lock

Execute ISR,
| nterrupt
Handler

o Release lock

[«))
L.
©
S
&
o
n
v
S
©
S
©
=
O
=

Architecture

pplication Softwar
Tasks

Atalanta-RTOS

PC75

PC75

® Multiple application
tasks

@ Atalanta-RTOS

® Multiprocessor setup
with MPC750s

® Seamless CVE

® SoCLC provides lock
synchronization
among processing
elements

Outline

® Background and Previous Work
© BaS|c SoCLC Approach

® PARLAK Tool
® Experimental Results
® Conclusion

Motivation

® Real-time operating system (RTOS)
with a priority-based/scheduler
e Assign a higher priority to a time-critical
task with hard real-time requirement

® Problem: If tasks with different priorities
share resources =» priority inversion
may occur

e May miss real-time deadlines

Priority Inversion

Blocking Acquire lock

Fail to

high Y acquire
. task1 lock CS
priority ‘ ® o

Higher
prio. task
arrives

middle
priority

low
priority

Acquire lock Release loc

Priority Inheritance

“ Blocking
high 1

4 task1 ® |cs

priority

middle
priority

‘ task2

low
priority

% task3

Task3 inherits
taskl's priority

Motivation

® Priority inheritance in RTOS
e May affect real-time performance of
application tasks
® Objective: To implement hardware
support for priority inheritance (via
SoCLC) to help RTOS be more
predictive and efficient

Priority Inheritance

Protocols

® Sha, Rajkumar and Lehoczky (' 88)

&€ Prevents unbounded blocking

e Running task inherits the highest dynamic priority of all
the tasks it blocks

® List of blocked tasks/must be saved in a priority
gueue for each CS
® Maximum blocking time (due to a lower priority
task):
e On each lock, at most once
e Length of one CS (executed in a lower priority task)

® Still problem: deadlock, chained blockings

Priority Inheritance
Protocols

® Sha, Rajkumar.and Lehoczky ('90)

® Baker (191)

® Klein and Ralya ('90)

® Prevent deadlocks and chained blockings

e Implies that once a process locks its first CS, it
can never be blocked by lower priority tasks

& Original priority ceiling protocol (OPCP)
& Immediate priority ceiling protocol (IPCP)
® Each task has a static (default) priority

Related Work

® Operating system coprocessors

® Implement various real-time functions in
hardware

e Real Time Unit (RTU), 96

e Many RTOS functions in hardware

e Ada TAsking Coprocessor (ATAC), 95

e It has its own instruction set

e Implements real-time part of Ada (also Ada
rendezvous with basic priority inheritance) in
hardware

SoCLC Priority Inheritance

critical
section

Memory

PE: processing element

SoCLC Priority Inheritance

& SoCLCwith IPCP

Celling values for
every CS used in
each task is specified

e SOCLC needs the
ceiling values of locks

® Task priorities are

updated by SoCLC in
hardware

® Blocked tasks are

monitored by SoCLC

Lock
variables

Priority Inheritance/Hardware
Architecture for a 64-task RTOS

Ceiling Dynamic
value of priority of

Task-wakeup
Register

Example
taskl

task?2

task3 ST .

. SR o?gcl:tli/ Dynamic priority
of tasks

variables blocked tasks owner \ Ceiling B
.. 1 1 2 I
.. 2 1 3

Priovity l | register

Encoder

PE tasks
priority

Highest

priority Interrupt
task Generator Logic

Experimental HWN/SW

Architecture
Without SeCLE

i ® Multiple application
A tasks\and Atalanta-

~, ~ priority inheritance~. |

I i /® Multiprocessor setup

MPC755 | | MPC755 | | MPC755 | .I\.-'[PCTSS | Wlth MPC?SOS on

Whh SoCLC Seamless CVE (from
TG B Global Shared Memory p Mentor Graphics)
' Application Tasks - E & Atalanta-RTOS
® SoCLC provides lock
synchronization among

processing elements
MPC755 | | MPC755 | MPC7355 | | MPC755

36

Outline

® Background and Previous Work
®/Basic SoOCLC Approach

® Priority Inheritance Support in. SoCLC
® PARLAK Tool

® Experimental Results

® Conclusion

IP/core Based SoC Design

User
parameters

Many

millions of #F-
gates on a & b

s

single chip LI ik

e

SoC'includes multiple
processors, memory and bus
system, peripherals and
specialized custom blocks

Complex chips - complex
designs

® Reusabllity, parametrizability,
reconfigurablitly, integration,
engineering effort, time-to-
market

» Solution: IP-generator tools

automate generation of
synthesizable IP blocks and

system components

PARLAK*: Parametrized
Lock Cache Generator

® PARLAK is an |P-generator tool for SoCLC

e Build custom logic (prior/to chip fabrication)
e May reconfigure SoCLC (after chip\fabrication) on

the reconfigurable logic of the SoC

® Generates customized, user specified
versions of SOCLC

® Designs generated using PARLAK were
synthesized by Design Compiler (Synopsys)

* Parlak means bright in Turkish

PARLAK

® Building blocks:

¢ Input parameters: number of short critical
section locks, number of long critical section
locks, number and types of processors
(MPC755 and ARM9tdmi)

e Skeleton files (in Verilog HDL): signal,
process and module descriptions
(independent from the input parameters)

e Library of modules/components

PARLAK

Skeleton -
: Module/
Scanner components

1 library
b

User ‘ IP
generator
Synthesizable Top
SoCLC configuration

Outline

® Background and Previous Work
®/Basic SoOCLC Approach

® Priority Inheritance Support in. SoCLC
® PARLAK Tool

® Experimental Results

® Conclusion

Experimental Results

® Basic SoCLC
e Microbenchmark simulations

e Database a
® SoCLC with

pplication
oriority inheritance

e Synthetic ro

pot application

® PARLAK synthesis results

Experimental Platform
Sw XRAY debugger interface

[@] #ray - Code - T9InHandler Vrixsa@ppceia—7:v

[#] xray - Coce = T9InHanller vrtxsa@ppcei3-7:v

| nstruction Set
Simulator (1SS)

Seamless CVE
Co-smulation Kernel

Hardware
Verilog Simulator

Clk
X009 [000a [000b | 000c] 0004 [000 [000f | 0010 [001l [0012 [0013 | 0014 T]
jam=l | 600700 [000000 000000 648700] 000000

000000

PowerPC Platform

® System bus clk;’ 100 MHz

Shared & ® MPCY/55 Specifications:
Moo & S o I-§ size: 32 KB
e D-$ size: 32 KB

e Cache protocol/policy:
MEI, write-back, insert-in-
cache

Cache line size: 32 B

Global shared memory:
16MB

Memory
Controller

ARM Platform

- - ® System bus clk: 10 MHz
&/ARM Specifications:

L1 Cache (32 KB) L1 Cache (32 KB) L1 Cache (32 KB) L1 Cache (32 KB)

and Cache Cntr] and Cache Cntrl and Cache Cnttl and Cache Cntr] . U n ifi e d I _$ + D _$ S i Z e "

e Cache protocol/policy:
Shated Memory e MESI, write-back, insert-
e in-cache
e Cache line size: 16 B

e Global shared memory:
512MB

Experimental Results

® Basic SoCLC
e Microbenchmark simulations

e Database a
® SoCLC with

pplication
oriority inheritance

e Synthetic ro

pot application

® PARLAK synthesis results

Microbenchmark (1)

® PowerPC platform

£ Microbenchmark
for(i=0;i<N;i++) program

{
Lock(lock_variable); ® 24B data

// Begin critical section ® Compared SoCLC

Access_shared_data_here(); : lock and
// End critical section against spin-lock an

UnLock(lock_variable); MCS
; ® SoCLC speedup:
e Over spin-lock: 37%
e Over MCS: 19%

#define N 500 // iterations

Microbenchmark (1 cont.)

Microbenchmark Performance Result

Total Elapsed Time (u sec)

Without SoCLC

SoCLC
Speedup

With SoCLC over
Spin-lock MCS Spin-lock

5521.5 | 4820.8 37%

Microbenchmark (2)

#define N 500 // iterations
for(i=0;i<N;i++)
{
Lock(lock_variablel);
// Begin critical section
Access_shared_data_here();
// End critical section
UnLock(lock_variablel);

)

lock lock lock lock
variablel | variable2 | variable3 | variable4

Performance Result

SoCLC

SoCLC
Speedup

Spin-lock MCS

27% over
spin-lock
48% over
MCS

1868.6

Elapsed | 2375.7 | 2768.7
time usec usec usec

PowerPC platform
Observe false sharing effect
24B\data

Used separate lock
variables (residing in the
same cache line) for each
task

No lock contention at all, but
false sharing!

SoCLC speedup:
e Over spin-lock: 27%
e Over MCS: 48%

Microbenchmark (3)

@ PowerPC platform
@ Observe CS length effect
® Increased CS length in the same bench

Total Elapsed Time (u sec)

CSl1 CS2 CS3
24B data, N=500 48B data, N=500 64B data, N=500

Locking
Scheme Used

Spin-lock

5521.5

7685.4

9728.1

MCS

4820.8

7026.3

9257.0

SoCLC

4044.5

6227.4

8545.5

Spin-lock

37%

23%

14%

MCS

19%

13%

8%

Microbenchmark (4)

& PowerPC platform

® Observe memory
latency effect

—m—MCS locks ﬁ 48B data., NZZOO

® Increased memory
latency
| -> higher cache miss
ey penalty
- worse
performance

onds)

o]
Q
7]
e
o
2
S
=
=
b]
=
=
=
=
o
=)
-
=
=
2
Q
el
b]

otal

T

Database Application

e Spacei & Database example
'/ ‘application

i 40,tasks (client/server
. pairof tasks)

i - 31% speedup

Performance Result

Without With

SoCLC socLc | Speedup

Elapsed
time
(usec)

CL U
by tlm action3

Experimental Results

® Basic SoCLC
e Microbenchmark simulations
e Database application

® SoCLC with priority inheritance
e Synthetic robot application

® PARLAK synthesis results

Simulation Scenario:
a robot application

T TIT LA N

Task Priorities

® Taskl - highest priority task with critical
hard real-time requirement
(response time: 250 us)

® Task2 - second highest priority task
(response time: 300 us)

® Task3 - third highest priority task
(response time: 300 us)

® Task4 - lowest priority task
(response time: 600 us)

Execution Trace

CPU1 taskl

task?2 With

PU2 '
CPU {taskS Atalanta PI

CPU3 task4

CPUl1l taskl

task?2
CPU2 task3

CPU3 task4

- task arrival

Measurement Results

Task 1

Task 2

Task 3

Task 4

WCRT 250 us

300 us

300 us

600 us

Completion time
for Atalanta Pl
Protocol

283 uUs

556 us

80 us

517 us

Completion time

for LCPI 93 us

247 us

77.US

337 us

Without
SoCLC

With
SoCLC

Speedup

Lock Latency
(clk cycles)

570

318

1.79 X

Lock Delay
(clk cycles)

6701

3834

1.75 X

Overall Execution
(clk cycles)

112170

78226

1.43 X

Experimental Results

® Basic SoCLC
e Microbenchmark simulations

e Database a
® SoCLC with

pplication
oriority inheritance

e Synthetic ro

pot application

® PARLAK synthesis results

PARLAK Synthesis
Results

& Full range of customized SoCLCs that are generated by

PARLAK have been directly synthesized using Design
Compiler from Synopsys

& 0,25u TSMC standard cell liprary from LEDA

® An SoCLC for two processors with 32 lock variables
occupies 2,520 gates and an SoCLC for 14 processors with
256 lock variables occupies 78,240 gates

€ PARLAK output SoCLC and top configurations are also
simulated to test correctness in the Seamless CVE platform

from Mentor Graphics

Synthesis Results

S TSMC 0:25u,
LEDA

® 1 gate area =
2-input standard
NAND gate area

® Use registers for
lock bits
® 4 processors, 32
IEEETEEEREEEN 0 256 |ocks:
I 5§25 4,600 to 24,370
gates

=
o
1]
]
)

<

Synthesis Results

Total Area Occupied by the SoCLC

® Different SoCLC
configurations for
Increasing
number of
Processors

® Number of locks:
32, 64, 128, 256

X
03
Bh
03
L
]
-

Number of PEs

Synthesis Results

total SoCLC SoCLC IPCP
Number of | short CS | long CS | number | with IPCP | without IPCP | hardware
locks locks of locks | total area total area total area
13063
20859 13986

13995 |

12085 24792

13110

4mmm 13110 NAND gate equiv.

e Area in NAND gate equivalents in .25u TSMC
e Can easily fit into on-chip eFPGA

Area Estimation of an SoC

System-Component

of transistors

4 MPC'755 processors

Including
32 KB D-$ and 32 KB |-$

4 X6.75'M =27 M transistors

16/MB global memory

134.217 M transistors

SOCLC logic for 128 locks
+ IPCP logic
+ memory logic

40 K gates = 160 K transistors

Total SoC area

161.377 M

SoCLC / SoC (%)

160K /161.377M = 0.1 %

Conclusion

® SoCLC: Custom hardware logic that improves
lock-based synchronization performance in a
multiprocessor SoC

® Effective and low cost

® Priority inheritance support
® Paradigm shift: decision making between hw/sw

® Hardware/Software architecture
e MPC755 and ARM processors; RTOS

® PARLAK: IP generator tool

Publications as First Author

» B.E.S. Akgul, V. Mooney, H. Thane and P. Kuacharoen;“Hardware
Support for Priority Inheritance,” Proceedings of the IEEE Real-Time
Systems Symposium (RTSS’03), pp: 246-254, December 2003.

B. E. S. Akgul and V. Mooney, “PARLAK: Parametrized Lock Cache
Generator,” Design Automation and Test in Europe (DATE'03), pp.
1138-1139, March 2003.

B. E. S. Akgul and V. Mooney,“The System-on-a-Chip Lock Cache,”
International Journal of Design Automation for Embedded Systems,
7(1-2), pp. 139-174, September 2002.

B. E. S. Akgul, J. Lee and V. Mooney, “A System-on-a-Chip Lock
Cache with Task Preemption Support,” Proceedings of the
International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES'01), pp. 149-157, November 2001.

» B. E. Saglam (Akgul) and V. Mooney, “System-on-a-Chip Processor
Synchronization Support in Hardware,” Design Automation and Test
in Europe (DATE'01), pp. 633-639, March 2001.

Thank'you!

