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ABSTRACT 
Intertask/interprocess synchronization overheads may be significant 
in a multiprocessor-shared memory System-on-a-Chip 
implementation. These overheads are observed in terms of lock 
latency, lock delay and memory bandwidth consumption in the 
system.  It has been shown that a hardware solution brings a much 
better performance improvement than the synchronization 
algorithms developed in software [3]. Our previous work presented 
a SoC Lock Cache (SoCLC) hardware mechanism which resolves 
the Critical Section (CS) interactions among multiple processors 
and improves the performance criteria in terms of lock latency, lock 
delay and bandwidth consumption in a shared memory multi-
processor SoC for short CSes [1]. This paper extends our previous 
work to support long CSes as well.  This combined support involves 
modifications both in the RTOS kernel level facilities (such as 
support for preemptive versus non-preemptive synchronization, 
interrupt handling and RTOS initialization) and in the hardware 
mechanism. The worst-case simulation results of a database 
application model with client-server pair of tasks on a four-
processor system showed that our mechanism achieved a 57% 
improvement in lock latency, 14% speed up in lock delay and a 
35% overall speedup in total execution time. 
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1.  INTRODUCTION 
On shared memory multiprocessor systems, synchronization is one 
of the central design issues. Specifically, lock synchronization and 
the proper reading/writing of lock variables 
are essential in order to guarantee mutual exclusion (orderly 
accesses to shared data structures in memory) among Processing 
Elements (PEs) such as processors. In most general-purpose 
processors (e.g., PowerPC, MIPS [2]), lock synchronization support 
is provided in the form of special instructions enabling atomic 

read/write operations on a memory location. These atomic 
instructions are the seed operations used to generate synchronization 
primitives. These primitives, then, are used to design effective 
algorithms which increase performance by reducing 
synchronization overheads. 

This paper extends our previous work on synchronization support 
for System-on-a-Chip (SoC) [1]. Our previous work presented a 
hardware mechanism which resolves short Critical Section (CS) 
interactions among multiple processors and improves the 
performance criteria in terms of lock latency, lock delay and 
bandwidth consumption in a shared memory multi-processor SoC. 
The lock variables associated with each CS are accessed through 
our hardware unit, which we call SoC Lock Cache (SoCLC). 

A limitation to our previous work is that we could only handle short 
CSes. In this paper, we extend SoCLC to handle long CSes as well 
as short CSes. This combined support involves modifications both 
in the RTOS kernel level facilities (such as support for preemptive 
versus non-preemptive synchronization, interrupt handling and 
RTOS initialization) and in the hardware mechanism. Note that, we 
do not address deadlock-free operation using locks – we only 
improve performance and predictability of lock acquisition times in 
an SoC. 

The paper is organized as follows: Section 2 presents background 
and motivation, Section 3 describes the software implementation 
drawbacks and the newly designed RTOS functionality to avoid 
these drawbacks. Section 4 summarizes the hardware mechanism 
and additional features developed to support the new software 
model. Section 5 describes an example database application (with 
performance results) which has been simulated on the resulting 
hardware and software architectures. Finally, Section 6 concludes 
the paper. 
 
2.  BACKGROUND AND MOTIVATION 
In general purpose processors, atomic lock access has been 
traditionally achieved by special load-linked (ll) and store 
conditional (sc) assembly instructions (e.g., ‘LL’ and ‘SC’ for 
MIPS4000 or ‘lwarx’ and ‘stwcx.’ for MPC860).  The ll and sc 
instructions are paired in such a way that both of them must 
reference the same physical address space (i.e., effective address 
“EA”) in memory, otherwise execution of these instructions is 
undefined.  Moreover, their execution establishes a breakable link 
between the two.  The status of the link (whether a link exists or 
not) is kept in a special link register of each processor.  If an 
external device (e.g., a second processor) has modified the value in 
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the EA or an exception has occurred in the meanwhile (i.e, after ll 
but before sc), the link between ll and the subsequent sc 
instruction will be broken and the link register of the processor that 
first executed the ll is cleared.  In this case, the store instruction 
fails to execute for the first processor, which prevents more than one 
processor to modify the EA at a time simultaneously.  If the link is 
not broken, the store instruction will succeed.  In this way, the 
atomicity during accessing the EA in the memory is guaranteed [2].  

These paired instructions are used to develop synchronization 
primitives (e.g., test-and-set, compare-and-swap, fetch-and-
increment, fetch-and-add) which emulate a lock needed before 
entering the CS and thereby providing a higher level 
synchronization facility for the tasks.  Therefore, using these 
primitives, the application program, with its multiple tasks that 
share memory, can be designed ensuring mutual exclusivity and 
consistency.  For example, in the case of test-and-set, each 
processor checks the lock – tests whether the lock is free – first.  If 
the lock is free, the processor acquires the lock by setting the lock 
variable.  However, if the lock is busy (i.e., if the lock was 
previously set by another processor), then the processor must wait 
and try again later.  In the latter case, the problem of busy wait 
arises; the processor will spin on executing test-and-set and will not 
be able to do other useful work until the lock holder releases the 
lock.  Furthermore, the repeated test-and-set executions may 
degrade the communication bandwidth used among other 
processors, preventing them from doing other useful bus 
transactions and affecting their performance.  Even worse, repeated 
test-and-set executions may cause an extra delay for the lock holder 
that wants to release the lock, because the lock holder also contends 
with the other spinning processors. 

As a solution to the problems mentioned above, several software 
approaches provide more efficient spin–lock techniques for better 
performance.  Spin-on-read (also called test-and-test-and-set) and 
the introduction of static or adaptive delay into the spin-wait loops 
(e.g., delay after noticing released lock or delay between references) 
are some of the most popular spin-lock alternatives [7]. However, 
these different methods are implemented in software and they 
indicate poor performance behaviors in terms of bandwidth 
consumption, lock delay and lock latency.  Moreover, these 
different methods cause useful bus cycles to be wasted because of 
hold cycles. Hold cycles can be described as the cache response 
time due to simultaneous cache invalidations in case of a lock 
release [8, 7, 3].  Therefore, the efficiency of these techniques is 
dependent on the application program characteristics and the 
architecture, such as how frequent the locking attempts occur in the 
application (i.e., how many CSes exist in the program) or whether 
there are lots of processors making use of locks.   

On the other hand, there are some queue based software solutions 
like array based queuing locks [7], MCS locks [9] and LH and M 
locks [10].  The basic idea behind queue based locking is to provide 
each processor to spin on a different location (e.g., each processor 
spins on their local caches) and to hold the processors in a unique 
chain.  A lock requester processor can insert itself to the chain and 
then can spin (locally) for its turn to become true to acquire the 
lock.  A lock releaser processor, on the other hand, can delete itself 
from the chain and notify the next processor in chain to gain the 
lock. In the array based queuing algorithm [7], processors use the 
“fetch_and_increment” primitive to obtain a sequence number 
(which is incremented by each newly arriving processor) to enqueue 
themselves into the chain atomically.  On the other hand, MCS 

algorithm uses the “compare_and_clear” primitive to guarantee 
atomic FIFO ordering of the lock requesters.  In MCS algorithm, 
processors are linked to each other by pointers (each processor 
points to the processor next to it), so that as the current lock holder 
releases the lock, the processor next to the lock holder can be 
invoked to acquire the lock.  LH and M locks are also implemented 
in a similar method, except that LH and M locks use 
“compare_and_swap” primitive and as it is claimed in [10], LH 
locks perform better than MCS locks when there is contention at a 
cost of increased lock latency (note that the increased lock latency 
problem is reduced in the case of M locks, but with a more complex 
algorithm).  In summary, these queue based algorithms allow each 
processor to spin on their local addresses (rather than a single EA) 
and provide a FIFO based notification between the lock releaser and 
the lock requester – that is at the head of the queue – when a lock is 
released.  These queue based alternatives bring better performance 
for high contention systems; however, they introduce larger 
overheads in the lack of contention and they increase the lock 
latency.  Furthermore, as it has been discussed in [7], queuing in 
shared memory has other bad impacts.  For example, if a task 
holding a lock is preempted, every other task spinning behind the 
preempted task in the chain will have to wait for the preempted task 
to be rescheduled to release the lock. Furthermore, software queues 
do not support priority-based granting of locks; the approach shown 
in this paper, on the other hand, does support priority-based granting 
of locks. 

As a hardware solution, two previous publications concentrate on 
special cache schemes using weak consistency memory model, 
where they implement hardware FIFO queues of the lock requesters 
using cache lines. Their work combines lock synchronization with 
the cache coherency protocol, which requires extra states in the 
cache controller [3].  For instance, the lock variables and the state 
information of these lock variables have to be kept in the cache 
lines, which requires a larger cache tag and brings a further 
complexity in the cache/memory system design.   

There has been other previous work implementing queues in 
hardware such as QOLB [11]. QOLB keeps the waiting processors 
as a queue in the cache line, which enables local spinning on cache.  
The basic feature of QOLB is to take advantage of collocation so 
that the critical section i.e., the shared data can be transferred to the 
waiting processor at the same time with the lock hand-off.  
However, it requires extra hardware mechanisms, such as direct 
cache to cache transfer during hand-off and queue states to be kept 
in the cache lines.  Moreover, the benefit of collocation is dependent 
on the cache line size; if the shared data does not fit in the cache 
line, that shared data will not benefit from collocation [12]. 

We have devised a novel synchronization architecture as a solution 
to the processor synchronization problems when encountered in a 
System-on-a-Chip (SoC).  Specifically, we propose moving some of 
the synchronization to hardware, which, in SoC design, can execute 
at the same clock speed as the processor itself.  Furthermore, we 
ensure deterministic and much faster atomic accesses to lock 
variables via an effective, simple and small hardware unit. 
 
3.  METHODOLOGY 
So far, we have discussed previous work in terms of reducing the 
overhead of the busy-wait problem, where the waiting process/task 
spins on executing the synchronization primitive/algorithm.  Busy-
waiting (i.e., spinning) may be the preferred synchronization 
construct to implement if the waiting period is short.  If the waiting 



 

period is long, however, it may be much more advantageous to 
implement the blocking synchronization construct instead, where 
the waiting process/task suspends itself and yields the processor for 
other tasks to run and do useful work.  Of course, blocking 
introduces an overhead associated with switching context, which 
involves a function call at the operating system level.  Therefore, the 
busy-wait construct is preferred over the blocking (i.e., preemptive) 
construct if the waiting time is less than the overhead introduced by 
suspending the waiting task and resuming the new ready task 
afterwards.  

In the discussion above, we can assign the busy-wait approach to 
short critical sections and blocking to long critical sections as the 
more advantageous construct to implement. One of the significant 
features of our approach is that our hardware architecture, SoC 
Lock Cache, is designed to support both types of lock 
synchronization constructs effectively.  Therefore, our solution 
addresses two different types of critical section interactions, namely, 
(1) short CSes and (2) long CSes.   

Before going into details about the synchronization mechanism, we 
first clarify the difference between a long critical section and a short 
critical section. 

Definition 1: Long CS. In a long CS, the duration of execution 
time on the shared data structure is coarse grained, that is, the time 
between the lock acquisition and release is long, e.g., more than 
1000 clock cycles. 

Definition 2: Short CS. In a short CS, the duration of execution 
time on the shared data structure is fine grained, that is, the time 
between the lock acquisition and release is small, e.g., less than 
1000 clock cycles.   

Of course, the user must ultimately decide whether a particular CS 
is ‘long’ or ‘short’. A non-preemptive synchronization facility –in 
which preemption of sleeping tasks (which are waiting for locks to 
become freed) is not allowed– does not perform well for application 
programs which contain long critical sections. This is because 
disallowing preemption may cause stalls during the execution time 
of a long critical section holding a lock for which a task on another 
processor is waiting. In such a case, the lock will not be released for 
a long time, and the waiting task on the other processor will occupy 
the CPU resources, causing performance degradation. Therefore, it 
is desirable to enable the scheduler to preempt those tasks that are 
waiting for the lock and resume other tasks ready to run on the 
CPU, which makes the CPU resources available for other tasks in 
the system while the suspended tasks are waiting for the lock 
release. Example 1 illustrates such a scenario.  

Example 1: How Non-Preemption Can Cause Inefficient CPU 
Utilization. In Figure 1, there are two processing elements (PEs) 
and three tasks. PE1 runs task1 and PE2 runs two tasks, task2 of 
priority 1 and task3 of priority 2. Let us also assume that task1 on 
PE1 and task2 on PE2 have a common, long critical section. 
Initially, task1 is running on PE1 and task3 is running on PE2. At 
time t1, task2 becomes ready and since task2 has a higher priority 
then task3, task3 is de-scheduled. After PE2 context switches out of 
task3, task2 begins its execution at time t2. On PE1, t3 is the time at 
which task1 acquires a lock and begins to execute a long CS, and t4 
is time at which task2 tries to acquire the same lock before 
executing the same CS. However, since the lock is not free, task2 
sleeps until PE2 receives an interrupt, signaling the release of the 
lock. Note that task1 releases the lock at time t5 and the interrupt is 
generated at time t6. So after t6, task2 can at that moment also 

access the CS. As it is shown in the figure, sleeping of task2 
occupies the CPU during the dead time t4-t6 and prevents other 
tasks, e.g., task3, from using CPU resources. However, if 
preemption is allowed, task3 can fill the dead time and even finish 
its execution, which could improve the real-time behavior of the 
system. 
 
        time          t1 t2   t3 t4               t5 t6                     t7 t8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Non-preemption causes inefficient CPU utilization 
among tasks. 

 
The scenario of Example 1 introduced a very small example. Most 
multiprocessor real-time systems include hundreds of threads, 
which imply that preemptive synchronization support is necessary. 
We provide preemptive synchronization via our SoCLC hardware 
unit in an SoC. SoCLC holds the states of the lock variables and the 
states of the PEs, updates the states in lock acquisition and lock 
release events and generates an interrupt to a waiting PE in case of a 
lock release. This interrupt mechanism allows a task (which is not 
able to acquire a lock) to be preempted and yield the PE for other 
useful work. In this way, after the lock (that the previously 
preempted task was waiting to acquire) is released, the interrupt 
from SoCLC will notify the PE about the availability of the lock. 
The interrupted PE forwards the notification coming from SoCLC 
to the appropriate waiting task through an RTOS (or custom 
software able to process the lock release as regards how the release 
affects software execution).  

Preemptive synchronization, however, requires the states of tasks 
(containing the information of which tasks are waiting for which 
locks) to be saved in the RTOS kernel. Therefore, we propose an 
RTOS extension in order to support preemptive synchronization via 
SoCLC: a lock state saving mechanism. This mechanism uses lock-
wait tables which are associated with every lock variable (Figure 2). 
A lock-wait table consists of “maximum number of tasks” many bit 
entries. For Atalanta-RTOS, we set the maximum number of tasks 
to 64; therefore, the lock-wait table is an 8x8 matrix of which 
entries are 1-bit locations, containing either a ‘0’ (indicating the task 
is not waiting for the lock) or a ‘1’ (indicating the task is waiting for 
the lock). Note that the highest priority task is task#0 and the lowest 
priority task is task#63. Also note that the lock tables and the 
SoCLC lock variables are initialized at system startup. The reason 
for the necessity of implementing lock state saving mechanism in 
which we use lock-wait tables (LockTbl, Figure 2) can be explained 
as in Example 2. 
 

                

            

PE1, task1 

PE2, task2 
        Prio:1 

PE2, task3 
       Prio:2 

Long CS 

Sleep            Long CS 



 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Each lock keeps a lock-wait table of 64 bit entries for 
each of the 64 tasks. (Here we show the tables for three of the 

locks: lock#0, lock#1 and lock#N). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.  Preemptive Critical Section Access 
  

Example 2. Figure 3 illustrates an execution flow example 
consisting of three processors with five tasks. Initially, task1 in PE1 
is in a critical section. At that time, task2 in PE2 tries to access the 
same critical section but fails, which causes task2 to be preempted 
and task3 to be given the CPU resources. Later, the lock (which 
task2 is still waiting for) is released and the interrupt is received by 
PE2 during the execution of task3. Then, the system needs to 
forward the interrupt notification to the correct task (which is task2 
in this case).  

Clearly, after the interrupt notification is received by the processor, 
the RTOS must perform a search in order to determine the highest 
priority task that is waiting for the lock which has just been 
released. This search can be performed on the lock-wait table 
accessed by the RTOS level external interrupt handler: 
ExIntr_Hdlr(). Figure 4 shows both the hardware architecture with 
four MPC750s and SoCLC and the software architecture with an 
RTOS extension developed to support SoCLC mechanism at the 
kernel level.  

Therefore, using the ExIntr_Hdlr() RTOS API to search, the 
highest-priority waiting task is selected from the lock-wait table and 
then the task is inserted into the ready list of the kernel. This ready 
list is a linked list of ready tasks sorted according to their priorities. 
The scheduler accesses the ready list in order to find the highest 
priority task to be run on the PE in case of a context switch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Hardware/Software Architecture with RTOS 
modification. 

 
Figure 5 illustrates the basic steps in locking, unlocking, interrupt 
handling and context switching events. First, the Lock_longCS() 
function is called in order to read the lock variable from SoCLC 
(Figure 5, steps 1-2). After reading the lock variable for a long CS, 
depending on whether the lock is free or not, there exist two paths 
that the program may flow through. In the first case, that is, if the 
lock is free, SoCLC sets the lock variable and the task executes the 
long CS (Figure 5, steps 4-5). After the long CS, the task releases 
the lock in SoCLC by calling the UnLock() function (Figure 5, step 
6). In the second case, that is, if the lock is busy (i.e., another 
processor is in the CS already), the current task –which has failed to 
acquire the lock– is removed from the kernel ready list and it is 
marked as ‘waiting’ in the lock table (this is done by setting the 
task’s bit entry in the lock table to a ‘1’). Next, context switching is 
performed in step 8 of Figure 5, so that a new task can get the CPU 
resources (Figure 5, step 9). During the execution of the new task, if 
the processor holding the lock releases the lock, an interrupt will be 
generated. Then, in the ISR and the external interrupt handler 
(Figure 5, step 10), the previously failed task is recovered from the 
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lock table (if there is not any higher priority task waiting for the 
same lock) and inserted into the kernel ready list. Afterwards, the 
scheduler will re-schedule the tasks according to their priorities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5. Flowchart illustrating the basic execution blocks in 
software. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6. An example with 4 tasks running on two PEs. 
 
 
Example 3. Let’s assume there are four tasks and two PEs in a 
system. Task1, task2 and task3 run on PE1 (such that task1 is the 

highest priority task, task2 the second and task3 the third), and task4 
runs on PE2 (Figure 6). Initially, task1 and task4 are running, and 
task4 is holding a long CS lock which is lock#4. At that time, task1 
tries to acquire the same lock as task4 holds, but obviously fails, 
therefore task1 is removed from the ready list, a context switch 
occurs and task2 is scheduled on PE1. Then, task2 also tries to 
acquire lock#4 but fails as task1 did, which causes task2 to be 
preempted and task3 to be scheduled on PE1. Now, task4 releases 
the lock and an interrupt is sent to PE1 which then executes the ISR 
to find out which lock was released –here lock#4– (refer to Section 
4.1, Figure 9) and the ExIntr_Hdlr() function to find out which tasks 
were waiting –here task1 and task2– for lock#4. For this example, 
task1 and task2 are removed from the lock-wait table of lock#4 and 
are inserted into ready-list. Since task1 has a higher priority than 
task2, task1 is scheduled to execute next on PE1. 
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Figure 7. SoCLC hardware architecture. (a) Simulation 
interface architecture with 4 MPC750s, (b) Basic SoCLC Lock 

architecture. 

yes no 

 

3. 
free? 

 

 

 

 

1. 
Lock_longCS() 

  

Interrupt 
received 

 

holding lock #4 

fail to acquire lock #4 

release lock #4 

execution without holding lock #4 

PE2 

PE1 

task1 

task2 

task3 

task4 
 

 
RE 

WE 

Address Pr1   ….  PrN   lock 

 
. 
. 
. 

. . .  Data[0] 
 
interrupts 

decoder 

Control 
Logic 

 

SoC  
  Lock Cache 

 
INT1 
INT2 
INT3 
INT4 

WE 
RE 
DB 
AB 

BR
BG

ACCK
TA

ABB
TS

DBB
 
 

BR 
BG 

ACCK 
TA 

ABB 
TS 

DBB 
 

BR
BG

ACCK
TA

ABB
TS

DBB

BR
BG

ACCK
TA

ABB
TS

DBB

 

Arbiter  
and  

Memory  
Controller 

Memory 
     AB 

DB 
RE 
WE 

 L1 

L1 

L1 

M 
P 
C  
7 
5 
0 

M 
P 
C  
7 
5 
0 

M 
P 
C  
7 
5 
0 

M 
P 
C  
7 
5 
0 

L1 

2. 
read lock 

 

4. 
return from 

Lock_longCS() 

5.  
Execute CS 

6.  
UnLock() 

 

7.  
remove task  

from ReadyList 

8. 
Context Switch 

9.  
new task 

10. 
Execute ISR, 
ExIntr_Hdlr() 



 

4.  HARDWARE IMPLEMENTATION 
4.1 SoCLC Mechanism  
Figure 7 shows the SoCLC hardware described previously [1]. We 
will not go into details of the hardware description here, however 
the interested reader may refer to [1]. Briefly, as seen in Figure 7-b, 
SoCLC contains lock variables and Pr (which stands for processor) 
bit locations associated with each lock variable. The Pr bit locations 
are kept for every processor and indicate whether the processor is 
waiting for the lock or not. The waiting processors are sent an 
interrupt to signal the processor when the lock is released. 
Previously, SoCLC supported an interrupt generation mechanism 
that signals the waiting processors when a lock is released. This 
signaling consisted of an asynchronous external signal generation 
only. Therefore, it was impossible to know which lock had been 
released. However, as it is explained in the previous section, once 
we enable the scheduler to operate in the preemptive mode, it is also 
necessary to know which lock has been released so that the RTOS 
can search for the correct lock-wait table corresponding to this lock. 
As we can see from Figure 8, a new hardware mechanism is 
developed which is connected to the address lines (A) and Data bus 
(D) of each processor. This new hardware mechanism is described 
in the next paragraph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 8. Basic Hardware Blocks 

 
 
The hardware unit added to SoCLC keeps the index information of 
each lock for each processor. By the index value, we mean the 
information pertaining to identification of the lock that was released 
(e.g., whether lock#1, lock#5 or lock#100 was released). The lock 
variable address values are decoded inside the New Unit of Figure 8 
and the corresponding lock variable index value is written to the 
buffer of the PE that receives the interrupt. The buffers can be 
accessed (read) from each processor from a dedicated memory 
mapped address. In our simulations, we have used address 0x040c. 
Therefore, whenever a PE reads from address 0x040c, the buffer of 
that PE drives the data bus of the PE with the index value of the 
lock released.  

Note that, after receiving the interrupt signal, address location 
0x040c is accessed by the interrupt service routine (ISR) to get the 
index. Afterwards, this index is forwarded to the RTOS level ISR 
which checks the corresponding lock-wait table entry and makes the 
highest priority-waiting task ready. Therefore, the ISR establishes 
the interface between the hardware notification mechanism and the 

RTOS. Figure 9 illustrates an example where PE4 receives an 
interrupt as lock#2 is released (by say, PE2). In such a case, after the 
interrupt is generated, the processor will execute its ISR. The ISR 
will access location 0x040c and read the lock index value (e.g., the 
lock index value read is  ‘2’ as shown in Figure 9). 

In the combined solution, SoCLC can be accessed for either a short 
CS lock or a long CS lock. In other words, the lock registers 
residing in SoCLC are divided into two types of locks. In our 
example implementation, we allocated the evenly indexed locks 
(lock#0, lock#2, lock#4, …) to long CSes and the odd indexed locks 
(lock#1, lock#3, ...) to short CSes. One could just as easily assign 
different ranges to each (e.g, {lock#0, lock#1, …, lock#63} to 
longCSes and {lock#64, lock#65, …, lock#127} to shortCSes). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 9. Example implementation of interrupt generation and 
lock index recovery from SoCLC. 

 
 

One other modification to SoCLC is implemented in the interrupt 
generation mechanism. The mechanism is explained in Example 4. 

 
Example 4. When an interrupt is received, the ISR first checks 
whether the interrupt is for a short or a long CS lock release. 
Suppose PE1 receives an interrupt which signals the release of a 
long CS lock –lock#6–, and task2 is the highest priority task in the 
lock-wait table of lock#6. In this case, the ISR will jump to the 
ExIntr_Hdlr() function which recovers task2 from the lock-wait 
table of lock#6 and marks task2 as ready in the ready table before 
the scheduler re-schedules it. However, if the received interrupt is 
for a short CS lock release, then the ISR will store back the initial 
value of Link Register of the processor so that the processor jumps 
to the last instruction just before sleeping, i.e., the short CS lock 
primitive execution. Note that the latter takes a few instruction 
cycles [1], whereas the former includes context saving, 
ExIntr_Hdlr() function execution and context restoring. 
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4.2  Hardware Architecture with four CPUs 
and SoCLC 
The hardware architecture is expandable and can handle an arbitrary 
number of CPUs. We have designed in detail an example (see 
Section 5) which is based on four MPC750s and a shared memory. 
Our simulation tool is the Seamless Co-Verification Environment 
(Seamless CVE) [4]. For the Motorola PowerPC 750 processor 
(MPC750), Seamless CVE provides a processor model support 
package together with an Instruction Set Simulator (ISS) which is 
tightly coupled to a hardware simulator (we use the Synopsys 
VCSTM Verilog simulator). In order to test our design, SoCLC 
hardware unit and a multi-processor setup consisting of four 
MPC750s are connected in Seamless CVE. The interfacing with the 
processors, SoCLC and the memory is established through the 
address-decoder, arbiter and memory controller units (Figure 7-a).   
 

Table 1.  Synthesis Results  
 

# of short 
CS locks 

# of long 
CS locks 

total # of 
locks 

Total Area 
(gates) 

L=16 T=32 2,734 
L=32 T=48 3,586 
L=64 T=80 5,288 S=16 

L=128 T=144 9,027 
L=16 T=48 3,454 
L=32 T=64 4,306 
L=64 T=96 6,008 S=32 

L=128 T=160 9,747 
L=16 T=80 4,881 
L=32 T=96 5,733 
L=64 T=128 7,435 S=64 

L=128 T=192 11,174 
L=16 T=144 8,163 
L=32 T=160 9,015 
L=64 T=192 10,717 S=128 

L=128 T=256 14,456 
 
 
4.3  Synthesis Results of SoCLC 
We have synthesized SoCLC with the Behavioral Compiler from 
Synopsys using TSMC 0.25 µ  technology standard cell library. 
Table 1 shows the area results of various combinations of short CS 
locks and long CS locks in terms of the area of the smallest standard 
cell (which is an inverter gate). In Table 1, L indicates the number 
of long CS locks, S indicates the number of short CS locks, and T 
indicates the total number of locks implemented in SoCLC. For 
example, as it is seen from the table, the total area required for 128 
short CS locks and 128 long CS locks is 14,456 gates. 
 
5.  EXAMPLE  
As an RTOS, we are using Atalanta-RTOS Version 0.1, an open 
real-time operating system developed in the Hardware/Software Co-
Design group at Georgia Tech. The Atalanta-RTOS is installed on 
each PE. On the other hand, as an application example, we 
implemented a database system model which constitutes a good 
example for thread level synchronization scenarios [5].  

As illustrated in Figure 10, a distributed system may have several 
transactions which are thread level applications. Each thread must 
acquire a lock before initiating a transaction. A transaction is a 
process of accessing a database (labeled as Oi –objects), which is 
equivalent to a CS in our simulations. For example, in Figure 10, 
long_Req1 is the request initiated from transaction1 to acquire the 
long CS lock for accessing Object2 (O2). Other signals in the figure 
also refer to lock acquisition requests of the transactions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Database example application transactions. 
 

 
The above database system specification example can be combined 
with a client-server pair execution model for a shared memory 
multiprocessor system. In general, shared memory is the fastest 
form of Inter Process Communication (IPC) available [6]. Once the 
memory is mapped into the address space of the processes that are 
sharing the memory region, no kernel involvement occurs in 
passing the data between the processes. However, some form of 
synchronization is needed between the processors that are storing 
and fetching information to and from the shared memory region, 
which we provide by using the SoC Lock Cache.  

The client-server file-copying program that we used as an example 
for the database system files transactions (Figure 11) includes 
accesses to short CSes as well as long CSes. Long CSes are the 
actual database object copying actions (as illustrated in Figure 10), 
whereas the short CSes are the synchronization actions among the 
server tasks and the client tasks before the long database transaction 
is initiated. The basic steps for the client-server example that we 
simulated are described as follows: 

• The server task gets access to a shared memory object 
acquiring a long CS lock from SoCLC. 

• Server task reads from its own local memory and writes into 
the shared memory object.  

• When the read is complete, the server releases the long CS 
lock. 

• Server gets access to a short CS lock in order to set the 
synchronization flag (so as to enable the client tasks to get 
access to the long CS lock). 

• Releases of the locks are notified to the client tasks via 
SoCLC interrupt generation. 

• Client task accesses the short CS lock, gets synchronized 
with the server task and releases the short CS lock. 
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• Client task gets access to the long CS lock and copies the 
database object from the shared memory region into its own 
local memory region. 

• Client task completes the transaction and releases the long 
CS lock. 

• The next client is notified by SoCLC interrupt about the 
release of the long CS lock and the client actions are 
repeated for the new client task. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 11. Copying shared data object from server to  
client using shared memory. 

 
 
In the above Figure 11, the shared data is first copied from the 
server’s local memory into the shared memory and then, from the 
shared memory into the client’s local memory.  The shared memory 
object, which is equivalent to a long CS, appears in the address 
space of both the client and the server. Note that, although this 
example is similar to our previously reported example, our database 
objects here are much larger  (approximately 1.6 KBytes – so that 
the retrieval of data represents a long CS) than the previously 
reported example’s database objects (they had the size of 8 Bytes – 
the retrieval of data represented a short CS) [1]. 

Our experimental results in Table 2 presents the lock latency and 
total execution times for two cases, (1) simulation with SoCLC and 
(2) simulation without SoCLC, both were run with 40 application 
tasks on the experimental set-up illustrated in Figure 7-a. This 
simulation set is performed with Atalanta RTOS, Version 0.1, 
which does not support processor-to-processor 
communication/synchronization (e.g., semaphores, message-
passing) for the tasks running on different processors.  Therefore, 
Atalanta Version 0.1 cannot support preemption of longCS locks, 
and so our simulation treats all locks as short CS locks. As it is seen 
from the table, SoCLC mechanism achieves 57% improvement in 
lock latency and 35% overall speedup in the total execution time of 
the database example.  
 

Table 2. Worst-case simulation of lock latency and total 
execution time results for long CSes with 40 application tasks. 

 without SoCLC 
(40 tasks running) 

with SoCLC 
(40 tasks 
running) 

Lock Latency 
( # clk cycles) 35 15 

Total  
Execution Time 

(#clk cycles) 
1,825,750 1,351,444 

5.1  Measuring Lock Delay 
In order to have a fair comparison of lock delay, we have simulated 
the application program described before, running on the same set-
up shown in Figure 7-a, without the SoCLC but with Version 0.3 of 
Atalanta RTOS. Version 0.3 supports synchronization of tasks 
running on different processors, therefore we can use RTOS calls 
(e.g., semaphore system calls) to setup the communication between 
tasks running on different processors. Note that, for measuring lock 
delay, we have used eight tasks in the without SoCLC case and 
forty tasks in the with SoCLC case. 

We use the ‘semaphores’ as the traditional synchronization facility 
provided by Version 0.3. A semaphore is very much like a lock 
variable; a semaphore in the system without SoCLC is analogous to 
the lock variables in the system with SoCLC. There are basically 
three operations done on a semaphore: (1) initialization of the 
semaphore, (2) seek for (or request) a semaphore, and (3) signal a 
task after a semaphore release. The first operation initializes the 
semaphore at system startup. The second operation seeks a 
semaphore, so that, if the seek operation is successful, the caller will 
be the owner of the semaphore and can enter into the critical 
section. However, if the semaphore is not available, the calling task 
will yield the processor and will be put into the waiting list of the 
semaphore that the calling task failed to acquire. Finally, the third 
operation releases the semaphore and signals the waiting task that is 
at the head of the waiting list of the semaphore (the Atalanta-RTOS 
keeps a FIFO queue for the waiting tasks). Note that the semaphore 
wait list update and task signaling actions among multi-processors 
are done via system calls in the Atalanta-RTOS. On the other hand, 
in the with SoCLC case, a lock variable request operation is almost 
the same as a semaphore seek operation: if the lock is available, the 
lock bit entry in the SoCLC is marked as ‘1’ and the task is given 
the exclusive ownership of the lock, if the lock is not available, 
however, the task is inserted into the lock-wait-table of the lock (as 
described in Section 3, Figure 2) and the task yields the processor. 
The signaling of waiting tasks, on the other hand, is performed by 
SoCLC with an interrupt notification to the processor. As seen in 
Table 3, simulations of 40 tasks with SoCLC outperform 
simulations of 8 tasks without SoCLC (that is with Atalanta RTOS 
semaphore calls). Specifically, simulations with SoCLC case 
achieves a 14% speedup over without SoCLC case in terms of 
worst-case lock delay. We expect this improvement to increase even 
more for without SoCLC running forty tasks versus with SoCLC 
running forty tasks. 
 

Table 3. Worst-case simulation of lock delay  
results for long CSes. 

 without SoCLC  
(8 tasks running) 

with SoCLC 
(40 tasks 
running) 

Lock Delay 
( # clk cycles) 48,996 42,980 

 
 
6. CONCLUSION 
This paper presented the SoCLC hardware mechanism and related 
RTOS improvements in a multi-task, multi-processor experimental 
setup using the Seamless CVE hardware/software co-simulation 
tool. The simulations are performed with critical sections of both 
long execution time and short execution time.  
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Besides the combined support of the busy-wait construct (for short 
CSes) plus the preemptive construct (for long CSes) outlined in this 
paper, we have realized the following key implementations as well. 
First, our approach spreads the software only intelligence into both 
the software and the hardware [13], which introduces a hybrid 
solution to the lock synchronization problem. For example, we have 
shown that some of the software-oriented overheads (e.g., memory 
bandwidth consumption in case of busy-waiting) can be reduced by 
a specific hardware support (e.g., interrupt generation upon a lock 
release can enable a task not to spin/busy-wait but just sleep until 
being awakened by the interrupt). Second, in our methodology, the 
lock requests are being tracked on a processor-by-processor basis in 
hardware.  In other words, the SoC Lock Cache hardware contains 
an algorithm to determine the next processor to acquire the lock, 
thus helping to guarantee fairness, providing a deterministic choice, 
and improving predictability. 

In our approach, in case of a short CS, no preemption is allowed and 
the tasks requesting a lock do not poll or spin, but sleep until the 
processor receives an interrupt from the SoC lock cache when the 
requested lock is released.  In the case of a long CS, our approach 
allows preemption, and again the lock cache sends an interrupt to 
the processor whose turn it is.  However, in the long CS case, 
because there may be more than one task requesting a lock on the 
processor interrupted, there is also a software mechanism that keeps 
track of which task is requesting which lock with which priority.  
This software mechanism is part of the RTOS and is aware of the 
hardware mechanism SoC Lock Cache.  

Finally, of course, our approach involves interfacing of the 
hardware and software functionalities, which is necessary to build 
the system.  These interfacing functionalities are the Interrupt 
Service Routine (ISR) and other software constructs which interpret 
the interrupt (e.g., whether the interrupt is due to a short CS lock 
release or a long CS lock release) and link the hardware command 
read from the SoC Lock Cache with the operating system level 
functions (e.g., searching the highest priority task to acquire the lock 
next). 

The example of client-server pair interactions that transfer database 
files through the shared memory was simulated with four CPUs and 
a shared memory with SoCLC. SoCLC provided the 
synchronization among tasks/processors in the system. The 
preemptive synchronization facility of the Atalanta-RTOS has also 
been accomplished in the example design. We have also modified 
the SoCLC hardware unit in order to support the modified RTOS 
level primitives in the hardware architecture level.  
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