
A System-on-a-Chip Lock Cache with
Task Preemption Support

Bilge Saglam Akgul
Georgia Institute of Technology

328786 GA Tech Station
Atlanta, GA 30332
+1-404-894 0966

bilge@ece.gatech.edu

Jaehwan Lee
Georgia Institute of Technology

350606 GA Tech Station
Atlanta, GA 30332
+1-404-894 0966

jaehwan@ece.gatech.edu

Vincent John Mooney
Georgia Institute of Technology

CoC 306, 801 Atlantic Dr.
Atlanta, GA 30332-0250

+1-404-385 0437

mooney@ece.gatech.edu

ABSTRACT
Intertask/interprocess synchronization overheads may be significant
in a multiprocessor-shared memory System-on-a-Chip
implementation. These overheads are observed in terms of lock
latency, lock delay and memory bandwidth consumption in the
system. It has been shown that a hardware solution brings a much
better performance improvement than the synchronization
algorithms developed in software [3]. Our previous work presented
a SoC Lock Cache (SoCLC) hardware mechanism which resolves
the Critical Section (CS) interactions among multiple processors
and improves the performance criteria in terms of lock latency, lock
delay and bandwidth consumption in a shared memory multi-
processor SoC for short CSes [1]. This paper extends our previous
work to support long CSes as well. This combined support involves
modifications both in the RTOS kernel level facilities (such as
support for preemptive versus non-preemptive synchronization,
interrupt handling and RTOS initialization) and in the hardware
mechanism. The worst-case simulation results of a database
application model with client-server pair of tasks on a four-
processor system showed that our mechanism achieved a 57%
improvement in lock latency, 14% speed up in lock delay and a
35% overall speedup in total execution time.

Keywords
Multi-processor synchronization, lock synchronization, SoC, shared
memory, preemption, RTOS.

1. INTRODUCTION
On shared memory multiprocessor systems, synchronization is one
of the central design issues. Specifically, lock synchronization and
the proper reading/writing of lock variables
are essential in order to guarantee mutual exclusion (orderly
accesses to shared data structures in memory) among Processing
Elements (PEs) such as processors. In most general-purpose
processors (e.g., PowerPC, MIPS [2]), lock synchronization support
is provided in the form of special instructions enabling atomic

read/write operations on a memory location. These atomic
instructions are the seed operations used to generate synchronization
primitives. These primitives, then, are used to design effective
algorithms which increase performance by reducing
synchronization overheads.

This paper extends our previous work on synchronization support
for System-on-a-Chip (SoC) [1]. Our previous work presented a
hardware mechanism which resolves short Critical Section (CS)
interactions among multiple processors and improves the
performance criteria in terms of lock latency, lock delay and
bandwidth consumption in a shared memory multi-processor SoC.
The lock variables associated with each CS are accessed through
our hardware unit, which we call SoC Lock Cache (SoCLC).

A limitation to our previous work is that we could only handle short
CSes. In this paper, we extend SoCLC to handle long CSes as well
as short CSes. This combined support involves modifications both
in the RTOS kernel level facilities (such as support for preemptive
versus non-preemptive synchronization, interrupt handling and
RTOS initialization) and in the hardware mechanism. Note that, we
do not address deadlock-free operation using locks – we only
improve performance and predictability of lock acquisition times in
an SoC.

The paper is organized as follows: Section 2 presents background
and motivation, Section 3 describes the software implementation
drawbacks and the newly designed RTOS functionality to avoid
these drawbacks. Section 4 summarizes the hardware mechanism
and additional features developed to support the new software
model. Section 5 describes an example database application (with
performance results) which has been simulated on the resulting
hardware and software architectures. Finally, Section 6 concludes
the paper.

2. BACKGROUND AND MOTIVATION
In general purpose processors, atomic lock access has been
traditionally achieved by special load-linked (ll) and store
conditional (sc) assembly instructions (e.g., ‘LL’ and ‘SC’ for
MIPS4000 or ‘lwarx’ and ‘stwcx.’ for MPC860). The ll and sc
instructions are paired in such a way that both of them must
reference the same physical address space (i.e., effective address
“EA”) in memory, otherwise execution of these instructions is
undefined. Moreover, their execution establishes a breakable link
between the two. The status of the link (whether a link exists or
not) is kept in a special link register of each processor. If an
external device (e.g., a second processor) has modified the value in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES'01, November 16-17, 2001, Atlanta, Georgia, USA.
Copyright 2001 ACM 1-58113-399-5/01/0011...$5.00.

the EA or an exception has occurred in the meanwhile (i.e, after ll
but before sc), the link between ll and the subsequent sc
instruction will be broken and the link register of the processor that
first executed the ll is cleared. In this case, the store instruction
fails to execute for the first processor, which prevents more than one
processor to modify the EA at a time simultaneously. If the link is
not broken, the store instruction will succeed. In this way, the
atomicity during accessing the EA in the memory is guaranteed [2].

These paired instructions are used to develop synchronization
primitives (e.g., test-and-set, compare-and-swap, fetch-and-
increment, fetch-and-add) which emulate a lock needed before
entering the CS and thereby providing a higher level
synchronization facility for the tasks. Therefore, using these
primitives, the application program, with its multiple tasks that
share memory, can be designed ensuring mutual exclusivity and
consistency. For example, in the case of test-and-set, each
processor checks the lock – tests whether the lock is free – first. If
the lock is free, the processor acquires the lock by setting the lock
variable. However, if the lock is busy (i.e., if the lock was
previously set by another processor), then the processor must wait
and try again later. In the latter case, the problem of busy wait
arises; the processor will spin on executing test-and-set and will not
be able to do other useful work until the lock holder releases the
lock. Furthermore, the repeated test-and-set executions may
degrade the communication bandwidth used among other
processors, preventing them from doing other useful bus
transactions and affecting their performance. Even worse, repeated
test-and-set executions may cause an extra delay for the lock holder
that wants to release the lock, because the lock holder also contends
with the other spinning processors.

As a solution to the problems mentioned above, several software
approaches provide more efficient spin–lock techniques for better
performance. Spin-on-read (also called test-and-test-and-set) and
the introduction of static or adaptive delay into the spin-wait loops
(e.g., delay after noticing released lock or delay between references)
are some of the most popular spin-lock alternatives [7]. However,
these different methods are implemented in software and they
indicate poor performance behaviors in terms of bandwidth
consumption, lock delay and lock latency. Moreover, these
different methods cause useful bus cycles to be wasted because of
hold cycles. Hold cycles can be described as the cache response
time due to simultaneous cache invalidations in case of a lock
release [8, 7, 3]. Therefore, the efficiency of these techniques is
dependent on the application program characteristics and the
architecture, such as how frequent the locking attempts occur in the
application (i.e., how many CSes exist in the program) or whether
there are lots of processors making use of locks.

On the other hand, there are some queue based software solutions
like array based queuing locks [7], MCS locks [9] and LH and M
locks [10]. The basic idea behind queue based locking is to provide
each processor to spin on a different location (e.g., each processor
spins on their local caches) and to hold the processors in a unique
chain. A lock requester processor can insert itself to the chain and
then can spin (locally) for its turn to become true to acquire the
lock. A lock releaser processor, on the other hand, can delete itself
from the chain and notify the next processor in chain to gain the
lock. In the array based queuing algorithm [7], processors use the
“fetch_and_increment” primitive to obtain a sequence number
(which is incremented by each newly arriving processor) to enqueue
themselves into the chain atomically. On the other hand, MCS

algorithm uses the “compare_and_clear” primitive to guarantee
atomic FIFO ordering of the lock requesters. In MCS algorithm,
processors are linked to each other by pointers (each processor
points to the processor next to it), so that as the current lock holder
releases the lock, the processor next to the lock holder can be
invoked to acquire the lock. LH and M locks are also implemented
in a similar method, except that LH and M locks use
“compare_and_swap” primitive and as it is claimed in [10], LH
locks perform better than MCS locks when there is contention at a
cost of increased lock latency (note that the increased lock latency
problem is reduced in the case of M locks, but with a more complex
algorithm). In summary, these queue based algorithms allow each
processor to spin on their local addresses (rather than a single EA)
and provide a FIFO based notification between the lock releaser and
the lock requester – that is at the head of the queue – when a lock is
released. These queue based alternatives bring better performance
for high contention systems; however, they introduce larger
overheads in the lack of contention and they increase the lock
latency. Furthermore, as it has been discussed in [7], queuing in
shared memory has other bad impacts. For example, if a task
holding a lock is preempted, every other task spinning behind the
preempted task in the chain will have to wait for the preempted task
to be rescheduled to release the lock. Furthermore, software queues
do not support priority-based granting of locks; the approach shown
in this paper, on the other hand, does support priority-based granting
of locks.

As a hardware solution, two previous publications concentrate on
special cache schemes using weak consistency memory model,
where they implement hardware FIFO queues of the lock requesters
using cache lines. Their work combines lock synchronization with
the cache coherency protocol, which requires extra states in the
cache controller [3]. For instance, the lock variables and the state
information of these lock variables have to be kept in the cache
lines, which requires a larger cache tag and brings a further
complexity in the cache/memory system design.

There has been other previous work implementing queues in
hardware such as QOLB [11]. QOLB keeps the waiting processors
as a queue in the cache line, which enables local spinning on cache.
The basic feature of QOLB is to take advantage of collocation so
that the critical section i.e., the shared data can be transferred to the
waiting processor at the same time with the lock hand-off.
However, it requires extra hardware mechanisms, such as direct
cache to cache transfer during hand-off and queue states to be kept
in the cache lines. Moreover, the benefit of collocation is dependent
on the cache line size; if the shared data does not fit in the cache
line, that shared data will not benefit from collocation [12].

We have devised a novel synchronization architecture as a solution
to the processor synchronization problems when encountered in a
System-on-a-Chip (SoC). Specifically, we propose moving some of
the synchronization to hardware, which, in SoC design, can execute
at the same clock speed as the processor itself. Furthermore, we
ensure deterministic and much faster atomic accesses to lock
variables via an effective, simple and small hardware unit.

3. METHODOLOGY
So far, we have discussed previous work in terms of reducing the
overhead of the busy-wait problem, where the waiting process/task
spins on executing the synchronization primitive/algorithm. Busy-
waiting (i.e., spinning) may be the preferred synchronization
construct to implement if the waiting period is short. If the waiting

period is long, however, it may be much more advantageous to
implement the blocking synchronization construct instead, where
the waiting process/task suspends itself and yields the processor for
other tasks to run and do useful work. Of course, blocking
introduces an overhead associated with switching context, which
involves a function call at the operating system level. Therefore, the
busy-wait construct is preferred over the blocking (i.e., preemptive)
construct if the waiting time is less than the overhead introduced by
suspending the waiting task and resuming the new ready task
afterwards.

In the discussion above, we can assign the busy-wait approach to
short critical sections and blocking to long critical sections as the
more advantageous construct to implement. One of the significant
features of our approach is that our hardware architecture, SoC
Lock Cache, is designed to support both types of lock
synchronization constructs effectively. Therefore, our solution
addresses two different types of critical section interactions, namely,
(1) short CSes and (2) long CSes.

Before going into details about the synchronization mechanism, we
first clarify the difference between a long critical section and a short
critical section.

Definition 1: Long CS. In a long CS, the duration of execution
time on the shared data structure is coarse grained, that is, the time
between the lock acquisition and release is long, e.g., more than
1000 clock cycles.

Definition 2: Short CS. In a short CS, the duration of execution
time on the shared data structure is fine grained, that is, the time
between the lock acquisition and release is small, e.g., less than
1000 clock cycles.

Of course, the user must ultimately decide whether a particular CS
is ‘long’ or ‘short’. A non-preemptive synchronization facility –in
which preemption of sleeping tasks (which are waiting for locks to
become freed) is not allowed– does not perform well for application
programs which contain long critical sections. This is because
disallowing preemption may cause stalls during the execution time
of a long critical section holding a lock for which a task on another
processor is waiting. In such a case, the lock will not be released for
a long time, and the waiting task on the other processor will occupy
the CPU resources, causing performance degradation. Therefore, it
is desirable to enable the scheduler to preempt those tasks that are
waiting for the lock and resume other tasks ready to run on the
CPU, which makes the CPU resources available for other tasks in
the system while the suspended tasks are waiting for the lock
release. Example 1 illustrates such a scenario.

Example 1: How Non-Preemption Can Cause Inefficient CPU
Utilization. In Figure 1, there are two processing elements (PEs)
and three tasks. PE1 runs task1 and PE2 runs two tasks, task2 of
priority 1 and task3 of priority 2. Let us also assume that task1 on
PE1 and task2 on PE2 have a common, long critical section.
Initially, task1 is running on PE1 and task3 is running on PE2. At
time t1, task2 becomes ready and since task2 has a higher priority
then task3, task3 is de-scheduled. After PE2 context switches out of
task3, task2 begins its execution at time t2. On PE1, t3 is the time at
which task1 acquires a lock and begins to execute a long CS, and t4
is time at which task2 tries to acquire the same lock before
executing the same CS. However, since the lock is not free, task2
sleeps until PE2 receives an interrupt, signaling the release of the
lock. Note that task1 releases the lock at time t5 and the interrupt is
generated at time t6. So after t6, task2 can at that moment also

access the CS. As it is shown in the figure, sleeping of task2
occupies the CPU during the dead time t4-t6 and prevents other
tasks, e.g., task3, from using CPU resources. However, if
preemption is allowed, task3 can fill the dead time and even finish
its execution, which could improve the real-time behavior of the
system.

 time t1 t2 t3 t4 t5 t6 t7 t8

Figure 1. Non-preemption causes inefficient CPU utilization
among tasks.

The scenario of Example 1 introduced a very small example. Most
multiprocessor real-time systems include hundreds of threads,
which imply that preemptive synchronization support is necessary.
We provide preemptive synchronization via our SoCLC hardware
unit in an SoC. SoCLC holds the states of the lock variables and the
states of the PEs, updates the states in lock acquisition and lock
release events and generates an interrupt to a waiting PE in case of a
lock release. This interrupt mechanism allows a task (which is not
able to acquire a lock) to be preempted and yield the PE for other
useful work. In this way, after the lock (that the previously
preempted task was waiting to acquire) is released, the interrupt
from SoCLC will notify the PE about the availability of the lock.
The interrupted PE forwards the notification coming from SoCLC
to the appropriate waiting task through an RTOS (or custom
software able to process the lock release as regards how the release
affects software execution).

Preemptive synchronization, however, requires the states of tasks
(containing the information of which tasks are waiting for which
locks) to be saved in the RTOS kernel. Therefore, we propose an
RTOS extension in order to support preemptive synchronization via
SoCLC: a lock state saving mechanism. This mechanism uses lock-
wait tables which are associated with every lock variable (Figure 2).
A lock-wait table consists of “maximum number of tasks” many bit
entries. For Atalanta-RTOS, we set the maximum number of tasks
to 64; therefore, the lock-wait table is an 8x8 matrix of which
entries are 1-bit locations, containing either a ‘0’ (indicating the task
is not waiting for the lock) or a ‘1’ (indicating the task is waiting for
the lock). Note that the highest priority task is task#0 and the lowest
priority task is task#63. Also note that the lock tables and the
SoCLC lock variables are initialized at system startup. The reason
for the necessity of implementing lock state saving mechanism in
which we use lock-wait tables (LockTbl, Figure 2) can be explained
as in Example 2.

PE1, task1

PE2, task2
 Prio:1

PE2, task3
 Prio:2

Long CS

Sleep Long CS

Figure 2. Each lock keeps a lock-wait table of 64 bit entries for
each of the 64 tasks. (Here we show the tables for three of the

locks: lock#0, lock#1 and lock#N).

Figure 3. Preemptive Critical Section Access

Example 2. Figure 3 illustrates an execution flow example
consisting of three processors with five tasks. Initially, task1 in PE1
is in a critical section. At that time, task2 in PE2 tries to access the
same critical section but fails, which causes task2 to be preempted
and task3 to be given the CPU resources. Later, the lock (which
task2 is still waiting for) is released and the interrupt is received by
PE2 during the execution of task3. Then, the system needs to
forward the interrupt notification to the correct task (which is task2
in this case).

Clearly, after the interrupt notification is received by the processor,
the RTOS must perform a search in order to determine the highest
priority task that is waiting for the lock which has just been
released. This search can be performed on the lock-wait table
accessed by the RTOS level external interrupt handler:
ExIntr_Hdlr(). Figure 4 shows both the hardware architecture with
four MPC750s and SoCLC and the software architecture with an
RTOS extension developed to support SoCLC mechanism at the
kernel level.

Therefore, using the ExIntr_Hdlr() RTOS API to search, the
highest-priority waiting task is selected from the lock-wait table and
then the task is inserted into the ready list of the kernel. This ready
list is a linked list of ready tasks sorted according to their priorities.
The scheduler accesses the ready list in order to find the highest
priority task to be run on the PE in case of a context switch.

Figure 4. Hardware/Software Architecture with RTOS
modification.

Figure 5 illustrates the basic steps in locking, unlocking, interrupt
handling and context switching events. First, the Lock_longCS()
function is called in order to read the lock variable from SoCLC
(Figure 5, steps 1-2). After reading the lock variable for a long CS,
depending on whether the lock is free or not, there exist two paths
that the program may flow through. In the first case, that is, if the
lock is free, SoCLC sets the lock variable and the task executes the
long CS (Figure 5, steps 4-5). After the long CS, the task releases
the lock in SoCLC by calling the UnLock() function (Figure 5, step
6). In the second case, that is, if the lock is busy (i.e., another
processor is in the CS already), the current task –which has failed to
acquire the lock– is removed from the kernel ready list and it is
marked as ‘waiting’ in the lock table (this is done by setting the
task’s bit entry in the lock table to a ‘1’). Next, context switching is
performed in step 8 of Figure 5, so that a new task can get the CPU
resources (Figure 5, step 9). During the execution of the new task, if
the processor holding the lock releases the lock, an interrupt will be
generated. Then, in the ISR and the external interrupt handler
(Figure 5, step 10), the previously failed task is recovered from the

7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8
23 22 21 20 19 18 17 16
31 30 29 28 27 26 25 24
39 38 37 36 35 34 33 32
47 46 45 44 43 42 41 40
55 54 53 52 51 50 49 48
63 62 61 60 59 58 57 56

Context
switching time

ISR

PE1

PE2

PE3

Task3

Task5

ISR

sleep

 sleep CS
Task4:Try to

access CS

Task1:CS

Interrupt

Interrupt
 CS

Task2:Try to
access CS

MPC750 MPC750

SoCLC

Atalanta-RTOS

Application Software (Tasks)

Extension

MPC750 MPC750

Software
Hardware

7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8
23 22 21 20 19 18 17 16
31 30 29 28 27 26 25 24
39 38 37 36 35 34 33 32
47 46 45 44 43 42 41 40
55 54 53 52 51 50 49 48
63 62 61 60 59 58 57 56

7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8
23 22 21 20 19 18 17 16
31 30 29 28 27 26 25 24
39 38 37 36 35 34 33 32
47 46 45 44 43 42 41 40
55 54 53 52 51 50 49 48
63 62 61 60 59 58 57 56

Lock0
Lock1

.

LockN

.

.

lock-wait table 0
 (LockTbl [0])

lock-wait table N
 (LockTbl [N])

lock-wait table 1
 (LockTbl [1])

…

lock table (if there is not any higher priority task waiting for the
same lock) and inserted into the kernel ready list. Afterwards, the
scheduler will re-schedule the tasks according to their priorities.

Figure 5. Flowchart illustrating the basic execution blocks in
software.

Figure 6. An example with 4 tasks running on two PEs.

Example 3. Let’s assume there are four tasks and two PEs in a
system. Task1, task2 and task3 run on PE1 (such that task1 is the

highest priority task, task2 the second and task3 the third), and task4
runs on PE2 (Figure 6). Initially, task1 and task4 are running, and
task4 is holding a long CS lock which is lock#4. At that time, task1
tries to acquire the same lock as task4 holds, but obviously fails,
therefore task1 is removed from the ready list, a context switch
occurs and task2 is scheduled on PE1. Then, task2 also tries to
acquire lock#4 but fails as task1 did, which causes task2 to be
preempted and task3 to be scheduled on PE1. Now, task4 releases
the lock and an interrupt is sent to PE1 which then executes the ISR
to find out which lock was released –here lock#4– (refer to Section
4.1, Figure 9) and the ExIntr_Hdlr() function to find out which tasks
were waiting –here task1 and task2– for lock#4. For this example,
task1 and task2 are removed from the lock-wait table of lock#4 and
are inserted into ready-list. Since task1 has a higher priority than
task2, task1 is scheduled to execute next on PE1.

(a)

(b)

Figure 7. SoCLC hardware architecture. (a) Simulation
interface architecture with 4 MPC750s, (b) Basic SoCLC Lock

architecture.

yes no

3.
free?

1.
Lock_longCS()

Interrupt
received

holding lock #4

fail to acquire lock #4

release lock #4

execution without holding lock #4

PE2

PE1

task1

task2

task3

task4

RE

WE

Address Pr1 …. PrN lock

.
.
.

. . . Data[0]

interrupts

decoder

Control
Logic

SoC
 Lock Cache

INT1
INT2
INT3
INT4

WE
RE
DB
AB

BR
BG

ACCK
TA

ABB
TS

DBB

BR
BG

ACCK
TA

ABB
TS

DBB

BR
BG

ACCK
TA

ABB
TS

DBB

BR
BG

ACCK
TA

ABB
TS

DBB

Arbiter
and

Memory
Controller

Memory
 AB

DB
RE
WE

 L1

L1

L1

M
P
C
7
5
0

M
P
C
7
5
0

M
P
C
7
5
0

M
P
C
7
5
0

L1

2.
read lock

4.
return from

Lock_longCS()

5.
Execute CS

6.
UnLock()

7.
remove task

from ReadyList

8.
Context Switch

9.
new task

10.
Execute ISR,
ExIntr_Hdlr()

4. HARDWARE IMPLEMENTATION
4.1 SoCLC Mechanism
Figure 7 shows the SoCLC hardware described previously [1]. We
will not go into details of the hardware description here, however
the interested reader may refer to [1]. Briefly, as seen in Figure 7-b,
SoCLC contains lock variables and Pr (which stands for processor)
bit locations associated with each lock variable. The Pr bit locations
are kept for every processor and indicate whether the processor is
waiting for the lock or not. The waiting processors are sent an
interrupt to signal the processor when the lock is released.
Previously, SoCLC supported an interrupt generation mechanism
that signals the waiting processors when a lock is released. This
signaling consisted of an asynchronous external signal generation
only. Therefore, it was impossible to know which lock had been
released. However, as it is explained in the previous section, once
we enable the scheduler to operate in the preemptive mode, it is also
necessary to know which lock has been released so that the RTOS
can search for the correct lock-wait table corresponding to this lock.
As we can see from Figure 8, a new hardware mechanism is
developed which is connected to the address lines (A) and Data bus
(D) of each processor. This new hardware mechanism is described
in the next paragraph.

Figure 8. Basic Hardware Blocks

The hardware unit added to SoCLC keeps the index information of
each lock for each processor. By the index value, we mean the
information pertaining to identification of the lock that was released
(e.g., whether lock#1, lock#5 or lock#100 was released). The lock
variable address values are decoded inside the New Unit of Figure 8
and the corresponding lock variable index value is written to the
buffer of the PE that receives the interrupt. The buffers can be
accessed (read) from each processor from a dedicated memory
mapped address. In our simulations, we have used address 0x040c.
Therefore, whenever a PE reads from address 0x040c, the buffer of
that PE drives the data bus of the PE with the index value of the
lock released.

Note that, after receiving the interrupt signal, address location
0x040c is accessed by the interrupt service routine (ISR) to get the
index. Afterwards, this index is forwarded to the RTOS level ISR
which checks the corresponding lock-wait table entry and makes the
highest priority-waiting task ready. Therefore, the ISR establishes
the interface between the hardware notification mechanism and the

RTOS. Figure 9 illustrates an example where PE4 receives an
interrupt as lock#2 is released (by say, PE2). In such a case, after the
interrupt is generated, the processor will execute its ISR. The ISR
will access location 0x040c and read the lock index value (e.g., the
lock index value read is ‘2’ as shown in Figure 9).

In the combined solution, SoCLC can be accessed for either a short
CS lock or a long CS lock. In other words, the lock registers
residing in SoCLC are divided into two types of locks. In our
example implementation, we allocated the evenly indexed locks
(lock#0, lock#2, lock#4, …) to long CSes and the odd indexed locks
(lock#1, lock#3, ...) to short CSes. One could just as easily assign
different ranges to each (e.g, {lock#0, lock#1, …, lock#63} to
longCSes and {lock#64, lock#65, …, lock#127} to shortCSes).

Figure 9. Example implementation of interrupt generation and
lock index recovery from SoCLC.

One other modification to SoCLC is implemented in the interrupt
generation mechanism. The mechanism is explained in Example 4.

Example 4. When an interrupt is received, the ISR first checks
whether the interrupt is for a short or a long CS lock release.
Suppose PE1 receives an interrupt which signals the release of a
long CS lock –lock#6–, and task2 is the highest priority task in the
lock-wait table of lock#6. In this case, the ISR will jump to the
ExIntr_Hdlr() function which recovers task2 from the lock-wait
table of lock#6 and marks task2 as ready in the ready table before
the scheduler re-schedules it. However, if the received interrupt is
for a short CS lock release, then the ISR will store back the initial
value of Link Register of the processor so that the processor jumps
to the last instruction just before sleeping, i.e., the short CS lock
primitive execution. Note that the latter takes a few instruction
cycles [1], whereas the former includes context saving,
ExIntr_Hdlr() function execution and context restoring.

New
Unit

bus_select

CPU1

MPC750

CPU2

MPC750

Arbiter
Mem.Ctrl

Basic Lock SoCLC

D D A A

lock 2 is
released

by PE2

Decode lock
number

2

Memory mapped
address location:

0x040c

Released
lock index

information
read from

ISR

Generate
interrupt
to PE4

Pr1 Pr2 Pr3 . . PrN lock2 value

Pr1 Pr2 Pr3 Pr4 . . PrN lock1 value

 1 0

4.2 Hardware Architecture with four CPUs
and SoCLC
The hardware architecture is expandable and can handle an arbitrary
number of CPUs. We have designed in detail an example (see
Section 5) which is based on four MPC750s and a shared memory.
Our simulation tool is the Seamless Co-Verification Environment
(Seamless CVE) [4]. For the Motorola PowerPC 750 processor
(MPC750), Seamless CVE provides a processor model support
package together with an Instruction Set Simulator (ISS) which is
tightly coupled to a hardware simulator (we use the Synopsys
VCSTM Verilog simulator). In order to test our design, SoCLC
hardware unit and a multi-processor setup consisting of four
MPC750s are connected in Seamless CVE. The interfacing with the
processors, SoCLC and the memory is established through the
address-decoder, arbiter and memory controller units (Figure 7-a).

Table 1. Synthesis Results

of short
CS locks

of long
CS locks

total # of
locks

Total Area
(gates)

L=16 T=32 2,734
L=32 T=48 3,586
L=64 T=80 5,288 S=16

L=128 T=144 9,027
L=16 T=48 3,454
L=32 T=64 4,306
L=64 T=96 6,008 S=32

L=128 T=160 9,747
L=16 T=80 4,881
L=32 T=96 5,733
L=64 T=128 7,435 S=64

L=128 T=192 11,174
L=16 T=144 8,163
L=32 T=160 9,015
L=64 T=192 10,717 S=128

L=128 T=256 14,456

4.3 Synthesis Results of SoCLC
We have synthesized SoCLC with the Behavioral Compiler from
Synopsys using TSMC 0.25 µ technology standard cell library.
Table 1 shows the area results of various combinations of short CS
locks and long CS locks in terms of the area of the smallest standard
cell (which is an inverter gate). In Table 1, L indicates the number
of long CS locks, S indicates the number of short CS locks, and T
indicates the total number of locks implemented in SoCLC. For
example, as it is seen from the table, the total area required for 128
short CS locks and 128 long CS locks is 14,456 gates.

5. EXAMPLE
As an RTOS, we are using Atalanta-RTOS Version 0.1, an open
real-time operating system developed in the Hardware/Software Co-
Design group at Georgia Tech. The Atalanta-RTOS is installed on
each PE. On the other hand, as an application example, we
implemented a database system model which constitutes a good
example for thread level synchronization scenarios [5].

As illustrated in Figure 10, a distributed system may have several
transactions which are thread level applications. Each thread must
acquire a lock before initiating a transaction. A transaction is a
process of accessing a database (labeled as Oi –objects), which is
equivalent to a CS in our simulations. For example, in Figure 10,
long_Req1 is the request initiated from transaction1 to acquire the
long CS lock for accessing Object2 (O2). Other signals in the figure
also refer to lock acquisition requests of the transactions.

Figure 10. Database example application transactions.

The above database system specification example can be combined
with a client-server pair execution model for a shared memory
multiprocessor system. In general, shared memory is the fastest
form of Inter Process Communication (IPC) available [6]. Once the
memory is mapped into the address space of the processes that are
sharing the memory region, no kernel involvement occurs in
passing the data between the processes. However, some form of
synchronization is needed between the processors that are storing
and fetching information to and from the shared memory region,
which we provide by using the SoC Lock Cache.

The client-server file-copying program that we used as an example
for the database system files transactions (Figure 11) includes
accesses to short CSes as well as long CSes. Long CSes are the
actual database object copying actions (as illustrated in Figure 10),
whereas the short CSes are the synchronization actions among the
server tasks and the client tasks before the long database transaction
is initiated. The basic steps for the client-server example that we
simulated are described as follows:

• The server task gets access to a shared memory object
acquiring a long CS lock from SoCLC.

• Server task reads from its own local memory and writes into
the shared memory object.

• When the read is complete, the server releases the long CS
lock.

• Server gets access to a short CS lock in order to set the
synchronization flag (so as to enable the client tasks to get
access to the long CS lock).

• Releases of the locks are notified to the client tasks via
SoCLC interrupt generation.

• Client task accesses the short CS lock, gets synchronized
with the server task and releases the short CS lock.

long_Req1

Access of
Object O2

by transaction1

transaction1

transaction2

transaction3

O4

transaction4

short_Req4 short_Req3

O2

O3

long_Req3
O4

O2

Access of
Object O4

by transaction3

• Client task gets access to the long CS lock and copies the
database object from the shared memory region into its own
local memory region.

• Client task completes the transaction and releases the long
CS lock.

• The next client is notified by SoCLC interrupt about the
release of the long CS lock and the client actions are
repeated for the new client task.

Figure 11. Copying shared data object from server to
client using shared memory.

In the above Figure 11, the shared data is first copied from the
server’s local memory into the shared memory and then, from the
shared memory into the client’s local memory. The shared memory
object, which is equivalent to a long CS, appears in the address
space of both the client and the server. Note that, although this
example is similar to our previously reported example, our database
objects here are much larger (approximately 1.6 KBytes – so that
the retrieval of data represents a long CS) than the previously
reported example’s database objects (they had the size of 8 Bytes –
the retrieval of data represented a short CS) [1].

Our experimental results in Table 2 presents the lock latency and
total execution times for two cases, (1) simulation with SoCLC and
(2) simulation without SoCLC, both were run with 40 application
tasks on the experimental set-up illustrated in Figure 7-a. This
simulation set is performed with Atalanta RTOS, Version 0.1,
which does not support processor-to-processor
communication/synchronization (e.g., semaphores, message-
passing) for the tasks running on different processors. Therefore,
Atalanta Version 0.1 cannot support preemption of longCS locks,
and so our simulation treats all locks as short CS locks. As it is seen
from the table, SoCLC mechanism achieves 57% improvement in
lock latency and 35% overall speedup in the total execution time of
the database example.

Table 2. Worst-case simulation of lock latency and total
execution time results for long CSes with 40 application tasks.

 without SoCLC
(40 tasks running)

with SoCLC
(40 tasks
running)

Lock Latency
(# clk cycles) 35 15

Total
Execution Time

(#clk cycles)
1,825,750 1,351,444

5.1 Measuring Lock Delay
In order to have a fair comparison of lock delay, we have simulated
the application program described before, running on the same set-
up shown in Figure 7-a, without the SoCLC but with Version 0.3 of
Atalanta RTOS. Version 0.3 supports synchronization of tasks
running on different processors, therefore we can use RTOS calls
(e.g., semaphore system calls) to setup the communication between
tasks running on different processors. Note that, for measuring lock
delay, we have used eight tasks in the without SoCLC case and
forty tasks in the with SoCLC case.

We use the ‘semaphores’ as the traditional synchronization facility
provided by Version 0.3. A semaphore is very much like a lock
variable; a semaphore in the system without SoCLC is analogous to
the lock variables in the system with SoCLC. There are basically
three operations done on a semaphore: (1) initialization of the
semaphore, (2) seek for (or request) a semaphore, and (3) signal a
task after a semaphore release. The first operation initializes the
semaphore at system startup. The second operation seeks a
semaphore, so that, if the seek operation is successful, the caller will
be the owner of the semaphore and can enter into the critical
section. However, if the semaphore is not available, the calling task
will yield the processor and will be put into the waiting list of the
semaphore that the calling task failed to acquire. Finally, the third
operation releases the semaphore and signals the waiting task that is
at the head of the waiting list of the semaphore (the Atalanta-RTOS
keeps a FIFO queue for the waiting tasks). Note that the semaphore
wait list update and task signaling actions among multi-processors
are done via system calls in the Atalanta-RTOS. On the other hand,
in the with SoCLC case, a lock variable request operation is almost
the same as a semaphore seek operation: if the lock is available, the
lock bit entry in the SoCLC is marked as ‘1’ and the task is given
the exclusive ownership of the lock, if the lock is not available,
however, the task is inserted into the lock-wait-table of the lock (as
described in Section 3, Figure 2) and the task yields the processor.
The signaling of waiting tasks, on the other hand, is performed by
SoCLC with an interrupt notification to the processor. As seen in
Table 3, simulations of 40 tasks with SoCLC outperform
simulations of 8 tasks without SoCLC (that is with Atalanta RTOS
semaphore calls). Specifically, simulations with SoCLC case
achieves a 14% speedup over without SoCLC case in terms of
worst-case lock delay. We expect this improvement to increase even
more for without SoCLC running forty tasks versus with SoCLC
running forty tasks.

Table 3. Worst-case simulation of lock delay
results for long CSes.

 without SoCLC
(8 tasks running)

with SoCLC
(40 tasks
running)

Lock Delay
(# clk cycles) 48,996 42,980

6. CONCLUSION
This paper presented the SoCLC hardware mechanism and related
RTOS improvements in a multi-task, multi-processor experimental
setup using the Seamless CVE hardware/software co-simulation
tool. The simulations are performed with critical sections of both
long execution time and short execution time.

Client Server

Shared
Memory

Client address space
Server address space

client
local
memory

server
local

memory

shared
data

Besides the combined support of the busy-wait construct (for short
CSes) plus the preemptive construct (for long CSes) outlined in this
paper, we have realized the following key implementations as well.
First, our approach spreads the software only intelligence into both
the software and the hardware [13], which introduces a hybrid
solution to the lock synchronization problem. For example, we have
shown that some of the software-oriented overheads (e.g., memory
bandwidth consumption in case of busy-waiting) can be reduced by
a specific hardware support (e.g., interrupt generation upon a lock
release can enable a task not to spin/busy-wait but just sleep until
being awakened by the interrupt). Second, in our methodology, the
lock requests are being tracked on a processor-by-processor basis in
hardware. In other words, the SoC Lock Cache hardware contains
an algorithm to determine the next processor to acquire the lock,
thus helping to guarantee fairness, providing a deterministic choice,
and improving predictability.

In our approach, in case of a short CS, no preemption is allowed and
the tasks requesting a lock do not poll or spin, but sleep until the
processor receives an interrupt from the SoC lock cache when the
requested lock is released. In the case of a long CS, our approach
allows preemption, and again the lock cache sends an interrupt to
the processor whose turn it is. However, in the long CS case,
because there may be more than one task requesting a lock on the
processor interrupted, there is also a software mechanism that keeps
track of which task is requesting which lock with which priority.
This software mechanism is part of the RTOS and is aware of the
hardware mechanism SoC Lock Cache.

Finally, of course, our approach involves interfacing of the
hardware and software functionalities, which is necessary to build
the system. These interfacing functionalities are the Interrupt
Service Routine (ISR) and other software constructs which interpret
the interrupt (e.g., whether the interrupt is due to a short CS lock
release or a long CS lock release) and link the hardware command
read from the SoC Lock Cache with the operating system level
functions (e.g., searching the highest priority task to acquire the lock
next).

The example of client-server pair interactions that transfer database
files through the shared memory was simulated with four CPUs and
a shared memory with SoCLC. SoCLC provided the
synchronization among tasks/processors in the system. The
preemptive synchronization facility of the Atalanta-RTOS has also
been accomplished in the example design. We have also modified
the SoCLC hardware unit in order to support the modified RTOS
level primitives in the hardware architecture level.

7. ACKNOWLEDGEMENTS
This research is funded by the State of Georgia under the Yamacraw
Initiative and by NSF under INT-9973120, CCR-9984808 and
CCR-0082164.

We also acknowledge software donations from Mentor Graphics
and Synopsys as well as hardware donations from Sun and Intel.

8. REFERENCES
[1] B. Saglam and V. Mooney, “System-on-a-Chip Processor

Synchronization Support in Hardware”, Design, Automation
and Test in Europe (DATE 2001), pp. 633-639, March 2001.

[2] J. Heinrich, “MIPS R4000 Microprocessor User’s Manual”,
2nd edition, pp. 286-291.

[3] U. Ramachandran and J. Lee, “Cache-based synchronization in
shared memory multiprocessors”, Journal of Parallel and
Distributed Computing, (32)1: 11-27, January 1996.

[4] Mentor Graphics, Hardware/Software Co-Verification:
Seamless, http://www.mentor.com/seamless/.

[5] M.A. Olson, “Selecting and Implementing an Embedded
Database System”, IEEE Computer, pp. 27-34, September
2000.

[6] W.R. Stevens, UNIX Network Programming, Vol. 2, Second
Edition, Interprocess Communications, Prentice Hall, 1999.

[7] T. Anderson. “The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors”, IEEE Transactions on
Parallel and Distributed Systems 1, 1, pp. 6-16, January 1990.

[8] U. Ramachandran and J. Lee, Processor initiated sharing in
multiprocessor caches, Technical Report, GIT-ICS-88/43,
Georgia Institute of Technology, Nov. 1988.

[9] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared memory multiprocessors”,
ACM Transactions on Computer Systems, 9(1): 21-65,
February 1991.

[10] P. Magnusson, A. Landin, E. Hagersten, Efficient software
synchronization on large cache coherent multiprocessors,
SICS Research Report T94:07, Swedish Institute of Computer
Science, Kista, Sweden, February 1994.

[11] A. Kagi, D. Burger, J.R. Goodman, “Efficient
Synchronization: Let Them Eat QOLB”, In proceedings of the
24th Annual International Symposium on Computer
Architecture, pp. 170-180, June 1997.

[12] A. Kagi, Mechanisms for Efficient Shared-Memory Lock-
Based Synchronization, Ph.D. Thesis, Computer Sciences,
University of Wisconsin, Madison, 1999.

[13] V. Mooney, Hardware/Software Co-Design of Run-Time
Systems, Ph.D. Thesis, Technical Report CSL-TR-98-762,
Computer Science Department Electronic Library, Stanford,
CA, June 1998.

