Path-Based Edge Activation for Dynamic Run-Time Scheduling

Vincent J. Mooney III
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250
mooney@ece.gatech.edu

Abstract

We present a tool that performs real-time analysis
and dynamic execution of software tasks in a mized
hardware-software system with a custom run-time sched-
uler. The tasks in hardware and software have control-
flow constraints (precedence and alternative execution),
resource constraints, relative timing constraints, and a
rate constraint. The custom run-time scheduler dynam-
ically executes tasks in different orders, based on the con-
ditional execution path, such that a hard real-time rate
constraint can be predictably met.

We describe the task modelling, run-time scheduler
implementation, and real-time analysis. We introduce
the concept of path-based edge activation wutilizing con-
ditional edges. We show how our approach fits into an
overall tool flow and target architecture. Finally, we con-
clude with a sample application of the system to a design
example.

1 Introduction and Motivation

For real-time embedded systems, designers must meet
timing constraints in order for the design to be success-
ful. System designers need tight bounds on execution
delays in order to meet soft and hard real-time con-
straints. In hardware-software codesign, scheduling of
coarse-grained resources (e.g., a hardware filter or a soft-
ware routine implementing a filter) under timing con-
straints is a difficult problem due to the presence of par-
allel threads of execution in the application, with the
same resource required by different threads. We con-
sider in this paper the following formulation of the real-
time analysis problem: we represent the system with a
control/data-flow graph where the nodes represent soft-
ware or hardware, the graph edges represent dependen-
cies (precedence constraints), conditional paths exist in
the graph (alternative execution), and the graph is in-
voked at a fixed rate (a rate constraint). We assume that
to coordinate the system we use the run-time scheduler
of [16, 18, 19].

Previous approaches to real time analysis have focused

on software [2] since the performance analysis of ASICs is
considered a well studied problem already. Rate Mono-
tonic Analysis (RMA) [3] and Generalized Rate Mono-
tonic Analysis (GRMA) [4] both assume that tasks are
independent and that each task has its own period and
deadline. RMA has been extended to account for re-
lease jitter and resource contention [5, 6]. RMA has also
been extended to allow precedence among tasks by for-
mulating the problem as a big task with the length of
the least common multiple (LCM) of all the periods [7].
Unfortunately, this approach is usually impractical for
hardware-software codesign[8].

Our formulation is similar to [1, 7, 8, 13]. However,
in our case we synthesize a custom run-time scheduler
in hardware and software for the application [16]. As a
result, we have more information about the scheduling of
hardware and software tasks. Given this more exact level
of control, we can perform tight real-time analysis with
very high CPU utilization. In performance- or safety-
critical systems (e.g., a mobile robot control system) our
approach can provide precise real-time bounds.

The scheduling problem addressed here is most simi-
lar to the scheduling problem addressed by Conditional
Process Graphs[1]. In particular, the goal in [1] is to
generate a static schedule which will minimize the exe-
cution time for any allowable value of the conditionals
controlling alternative execution in the task graph. Since
this may require activations of different tasks in differ-
ent orders, they keep track of the possible paths using
a schedule table. There may be a conflict, where, for
example, the optimal schedule of one path requires that
process P3 be scheduled at time ¢;, while the optimal
schedule of another path requires that P; be scheduled
at time t;, tx # t;. Conflicts are handled by adjusting
one of the path schedules, called schedule merging. In
the approach in this paper, however, no such adjustment
of the path schedule is necessary; thus, we may poten-
tially produce a better (faster) schedule.

In our approach, if a solution is found, we add condi-
tional edges to the system graph and guarantee that the
system meets its relative timing constraints, control-flow
(precedence and alternative execution) constraints, and

its rate constraint, assuming the system uses a custom
run-time scheduler.

1.1 Terminology and Approach

We take an approach to system-level design where the
designer or a partitioning tool has split the application
into coarse-grained tasks which coordinate with each
other. Each task consists of many lines of C or Verilog or
another language — say, 50 lines or more. A task imple-
mented in hardware is called a hardware-task, whereas a
task implemented in software is a software-task.

We assume that some static scheduling is required,
e.g., in the presence of relative timing constraints among
hardware-tasks. We further assume that some dynamic
scheduling is required to handle inexact execution de-
lays, which are certainly present in software-tasks, and
conditional execution of tasks. The run-time scheduler
synthesis of [17, 18, 19] assumed that no conditional ex-
ecution of tasks would occur.

Our tool, called CLARA2, automates the addition
of conditional edges to the original control-flow of
hardware- and software-tasks in order to satisfy resource
constraints while minimizing worst case erecution time
(WCET) for the application.

The target designs for our approach are embedded sys-
tems. We assume the availability of mature high-level
and logic synthesis tools for the generation of digital
hardware as well as state-of-the-art compilers for the
software. While our examples utilize tasks with 90 to
2000 lines of Verilog or C, the only limit on task size
is determined by the synthesis tool or compiler chosen.
Additionally, a task can be taken from an Intellectual
Property (IP) library of pre-designed cores, in which
case synthesis may not be necessary. We assume that
tasks are customized for a target architecture. This ap-
proach matches design practice, where designers often
describe their systems in a heterogeneous way, using de-
scription languages appropriate to the subsystem being
implemented.

The rest of the paper is organized as follows. Section 2
talks about how we extract a graph of the system corre-
sponding to control flow at the task level as opposed to
the operation level. Section 3 presents the main contri-
bution of this paper, path-based edge activation, which is
implemented via conditional edges. Section 4 describes
our implementation of the run-time scheduler. Section 5
presents the real-time analysis which generates condi-
tional edges to add to the system CDFG. Section 6 de-
scribes the tool flow, target architecture and run-time
scheduler synthesis. Section 7 gives some experimental
results and presents an example from robotics. Finally,
Section 8 concludes the paper.

Ohold2 Ohold Jhold
Law: Law: Law:

multiply

matrix
vector
multiply

jacobian

matrix
vector
multiply

matrix
vector
multiply

matrix
vector
multiply

Figure 1: Robotics Example: Concurrent Control Laws
2 Task Modelling

The research here builds on previously reported results;
thus, in this section, we briefly summarize the task mod-
elling approach of [16, 17, 18, 19].

Tasks are specificied in Verilog or C, with one of the
tasks designated as the main task. The main task begins
execution and calls the other tasks. The main task spec-
ifies the overall sequence of tasks in the application (an
example of a main task can be seen in Figure 2). From
the main task we extract a Control/Data-Flow Graph
(CDFG) representing the sequence of task invocations,
where each action in the CDFG corresponds to a call to
one of the tasks specified either in C or in Verilog. We
assume that the CDFG corresponding to the main task
does not contain any looping over tasks; only alternative
execution (e.g., if/case) is supported in the main task.

We assume that we have a rate constraint specified for
the CDFG representation of the system. In other words,
we assume that the main task is invoked at a fixed rate.

Tasks executed on the same resource (for exam-
ple, software-tasks executed on the same processor)
are placed in a single NEVER set. For example,
NEVER = {z,y,z} indicates that tasks z, y, and z
can never be active at the same time (e.g., z, y, and 2
could each specify a call to the same piece of physical
hardware, which implements a hardware-task). Thus,
the specification includes a unique NEV ER set for ev-
ery resource used by multiple tasks in the CDFG. For the
sake of brevity, however, in this paper we consider the
case in which we have a single NEV ER set specifying
tasks which are run on a single microprocessor.
Example 1 As a motivational example, consider a set of con-
trol algorithms (laws) used to calculate appropriate torques for

Get
Position2
(gp2)

Get
Velocity2
(gv2)

Get
Positionl
(gp1)

Get
Velocityl
(gv1)

Note: wnt, gp1, gv1, gp2, gv2,
jh,oh,stl,st2, and hm are the start
events associated with each task.

"+~ Which two laws to execute
concurrently in the next
iteration are selected by

Set
Torque2
(st2)

Handle
Message
(hm)

Figure 2: Robotics Example: Main Task

a robot arm. We assume that the controller manages two arms
at the same time. Thus, any two of the laws (algorithms) may
be selected in each execution. Note that some of the laws, e.g.,
Ohold2 Law, contain conditional execution of certain tasks. An
execution of the arm controller must complete once every mil-
lisecond. Figure 1 shows three of the ten different laws used
with a PUMA arm: Ohold2 Law, Ohold Law, and Jhold Law.

Figure 2 shows the overall flow of execution of the robot con-
troller in the form of a CDFG of the main task for the system.
The original specification of the main task was in Verilog. The
other tasks are specified in C and Verilog. O

Worst-Case Ezecution Time (WCET) for individual
tasks is calculated as follows. Software-tasks are com-
piled and input to CINDERELLA-M]2, 17], which outputs
a WCET for each software-task, where we assume the
software-task is run on a MIPS R4000 processor. Simi-
larly, the Synopsys Behavioral Compiler™ (BCTM)[9]
generates an exact execution time for each hardware-
task, which we take as a WCET for the hardware-tasks.
These values are used to annotate the vertices in the
CDFG of the system specification. Figure 3 shows
a sample CDFG and a corresponding table with the
WCET annotations.

3 Path-Based Edge Activation

We first give a motivation for the use of path-based edge
activation to serialize tasks in a NEV ER set. The basic
point in the following example is that no static order
can minimize W CET for all possible paths through the
CDFG.

Example 2 As an example, consider Figure 3. This repre-
sents a subset of the tasks in our robot control algorithm. The

NEVER = {oh0,0h1,cjd}

Ohold Law Jhold Law
task WCET (cycles)
mvm 4,400
oh0 2,554
ohl 20,581
fk 11,500
cjd 14,878
cg 11,000
src O
sink 0

Figure 3: Dynamic Control Example

WCET times for the individual tasks have already been calcu-
lated by cINDERELLA-M and BCT™ . Three tasks are specified
in Verilog: mvm, fk, and cg, corresponding to matrix vector
multiply, forward kinematics, and calc gravity, respec-
tively, in Figure 1. Similarly, three tasks are specified in C: oh0,
oh1, and cjd, where cjd corresponds to calc joint dynamics
in Figure 1 and both oh0 and oh1 are coarser-grained groupings
of tasks called by Ohold Law in Figure 1. Since our target ar-
chitecture for this example contains only one microprocessor, all
three software-tasks are put into a single NEV ER set which
states that their execution times cannot overlap at all. Thus,
the tasks must be serialized.

Consider the NEV ER set shaded in Figure 3. Control value ¢
is calculated at the beginning of each iteration. Figure 4 shows
the two possible paths: one path for the case ¢ = 1 and a
different path for the case ¢ = 0. Notice that no static order
for the three tasks yields a minimum W CET in both cases.
In particular, for case ¢ = 1, the order oh0, oh1 and then cjd
last yields a minimal WCET of 38,013 cycles. However, for
¢ =0, the order oh0, cjd and then oh1 last yields the minimal
WCET of 39,859 cycles.

The new edges needed to enforce each order is shown by the
dotted arrows in Figure 4.

Case: c=0

Case: c=1

Figure 4: Dynamic Control Example: New Edges

If we were forced to select only one order for both cases, the
best static order we could pick would be the order (ohO, ohi,
cjd) as shown for case ¢ = 1; however, for the case ¢ = 0, the
order (oh0, ohl, cjd) yields a WCET of 49,013 cycles. O

Example 2 shows that, if control information can alter
the flow of task execution, then a static order may not

be able to minimize WCET for all control paths. A
dynamic order, selected at run-time, will perform better
in general. For this reason we introduce path-based edge
activation.

3.1 Path-Based Edge Activation

In path-based edge activation we add conditional edges to
the original CDFG of the system. A conditional edge is
an edge which is active only if a particular path, corre-
sponding to a particular set of values for the conditional
choices in the CDFG, is chosen. The addition of con-
ditional edges changes the semantics of the task graph
since tasks will not have to wait on the edges which are
not activated. This is not a problem since we have cen-
tral knowledge of the system.

Example 3 In Figure 4, we found different edges to imple-
ment different optimal orders for the two possible values of ¢
(in this case the value of c is set by oh0).

Ohold Law Jhold Law

Figure 5: Dynamic Control Example: Conditional Edges

Figure 5 shows an example of a CDFG with conditional edges
added. The dotted conditional edges are valid only if the re-
spective conditions are true. For example, if ¢ = 0, then cjd
begins right after ohO finishes (the conditional edge from oh1
to cjd is not in effect). On the other hand, if ¢ = 1, then the
conditional edge from oh1 to cjd is active, and so cjd begins
after oh1 finishes.

In this way the path-based conditional edges allow the single
CDFG of Figure 5 to implement both CDFGs shown in Figure 4.
In particular, note the the order of execution of ohl and cjd is
dynamically changed based on the value of ¢ at run-time, thus
enabling a minimal WCET of 39,859 cycles to be achieved. O

Note that so far we have made no claims about the
optimality achievable with conditional edges. Clearly, a
conditional edge can only be added to the CDFG in a lo-
cation where we can guarantee that the conditional used
to control activation of the edge is already calculated. In
this paper we do not address the issue of guaranteeing
that all conditionals used to control edge activation are
ready in time; instead, we assume that all conditionals

controlling alternative executions in the CDFG are cal-
culated by the beginning of each iteration of the CDFG.

4 Run-Time Scheduler Implementation

We implement our run-time scheduler as follows. From
the main task, we extract a CDFG specifying the
control-flow of tasks. Since we assume that the main
task in invoked at a fixed rate, the CDFG we obtain is
also invoked at a fixed rate. The CDFG has an equiv-
alent Control-Flow Expression[22] which is used to syn-
thesize a hardware FSM[16, 18]. This FSM implements
the overall system control and can predictably meet the
relative timing constraints, if satisfiable, specified in ex-
act numbers of cycles between the start times of tasks,
which we hypothesize cannot be satisfied by software.

4.1 Task Execution

Task execution is described in [16, 18, 19]. Briefly, we
associate a start and a done event with each task. In
hardware the two events are simply signals on an input
port and an output port, respectively. For software, we
have a start vector and a done vector which encapsu-
late the start and done events for each software-task. If
there are less than 32 distinct software-tasks, each vector
can be contained in a single word with a simple one-hot
encoding (otherwise more words can be used).

The run-time scheduler hardware FSM, synthesized to
implement the control-flow of the CDFG, updates the
start vector in software as follows. First, it updates a
local register containing the start vector. Then it trig-
gers an interrupt on the CPU. The CPU Interrupt Ser-
vice Routine (ISR) reads the register using a memory-
mapped I/0 read and places it into the software copy of
the start vector. When a software-task is finished exe-
cuting, it updates the done vector by writing the value
out with memory mapped I/O. Thus, the the done vec-
tor in the run-time scheduler in hardware is updated.

Note that we do not want to have a single order for
all software-tasks, but instead want to be able to dy-
namically order the software-tasks based on the values
of conditionals. Therefore, we do not want to use a
static priority scheduler to manage the software-tasks,
as we did in [17, 18, 19]. Instead, we want to have the
hardware FSM indicate which software-task to execute
next. In [16] we called this hardware-driven software ex-
ecution. Specifically, the following occurs in sequence:
(1) a hardware interrupt updates the start vector, (2)
the software Interrupt Service Routine (ISR) executes a
jump to the software-task indicated by the start vector,
and (3) when the software-task finishes, the done vector
is written and the ISR finishes.

Therefore we split the run-time scheduler into two
parts:

e An executive manager in hardware with cycle-
based semantics that can satisfy hard real-time
constraints.

e A software scheduler that executes different
threads (software-tasks) based on the start vector.

We have described the synthesis of the hardware execu-
tive manager in [16, 22, 18, 19]. In this paper we focus
on the generation of conditional edges which allow our
run-time scheduler to implement path-based edge activa-
tion and thereby make WCET as small as possible.

5 Real-Time Analysis

We aim to predictably satisfy real-time constraints in
the form of control-flow (precedence and alternative exe-
cution) constraints, resource constraints, relative timing
constraints, and a rate constraint. We assume that we
have as input a CDFG, a rate constraint on the graph,
and a NEV ER set specifying a resource constraint on
software-tasks. The formulation shown here does not
include NEV ER sets of hardware-tasks (hardware re-
source constraints) for the sake of simplicity.

To predictably satisfy the rate constraint, we need a
worst case execution time (WCET) for each task and
a WCET for the control-flow of the set of tasks under
the rate constraint. We obtain the WCET times for
the individual tasks from CINDERELLA-M and BCTM[9).
We need some assumptions to compute the WCET for
the set of tasks.

Assumption 5.1 We have a control/data-flow graph
(CDFQG) representing the set of tasks under the rate con-
straint, a WCET for each task, and a NEV ER set spec-
ifying tasks that must be executed in a mutually exclu-
sive manner. The CDFG includes alternative execution
(if/case statements) but does not include loops.

The use of NEVER sets to provide mutual exclusion
for hardware-tasks is covered in [22]. We consider here
only a single NEV ER set of software-tasks executed on
the same CPU.

Assumption 5.2 FEach task, once started, runs to com-
pletion.

Assumption 5.3 Hardware-software communication
time is included in the WCET of each task and/or is
included as a distinct task.

We have several communication primitives, such as
shared memory and FIFOs, with interface generation
along the lines of [14, 15].

Assumption 5.4 Interrupts that initiate task execution
come only from the hardware run-time scheduler as de-
scribed in Section 4.1.

An example of a CDFG and resulting scheduling op-
tions were shown in Examples 2 and 3. Example 2 shows
a difficult problem in that a NEV ER set of software-
tasks may cross parallel paths. We cannot use one exe-
cution of a longest path algorithm to solve this problem

because the execution time of each node in a NEVER
set depends upon the scheduling of the other nodes in the
NEVER set. We could enumerate all the possible or-
derings of nodes in the NEV ER set and then execute a
longest path algorithm for each permutation. However,
we would then perform many redundant calculations.
This problem can be shown to be NP-Complete using the
Resource Constrained Scheduling NP-Complete problem
of [20].

In this paper, we formalize the approach to finding the
schedule shown in Example 3.

5.1 CLARA2 Real-Time Analysis

We want to find an exact scheduling of the tasks, with
a NEV ER set containing all the software-tasks, where
the other tasks are all hardware-tasks. So we design an
algorithm to suit this specific problem.

We take as input both the CDFG annotated with
WCETs for each task and a NEV ER set specifying the
mutually exclusive tasks. Similar to [24], we then con-
sider all possible paths.

For a given set of values of the conditionals, a particular
path through the CDFG is defined (note that we assume
that all conditionals controlling alternative executions
are calculated by the beginning of each iteration of the
CDFG). For this set of values of conditionals, we then
add conditional edges to minimize the WCET for that
path. We solve this subproblem using the constructive
heuristic scheduling of [18, 19], which solves the problem
for a Directed Acyclic Graph (DAG). Note that for a
given path defined by a set of values of the conditionals,
the CDFG reduces to a DAG.

Solve_order(CDFG, NEV ER);
foreach path determined by a unique set of conditional values
begin
DAG = subset of CDFG determined by path
Schedule DAG using constructive_hueristic of [18, 19]
Add conditional edges to enforce DAG schedule
end
endmodule

Figure 6: CLARA2 Dynamic Scheduling Algorithm

The psuedo-code for the CLARA2 Scheduling Algo-
rithm is shown in Figure 6.

Note that this is exponential in the worst case, since the
number of distinct paths may be exponential. Neverthe-
less, we conjecture that this approach will prove to be
reasonable for a large set of real-time hardware/software
scheduling problems.

Thus we have a dynamic order which, given our as-
sumptions, chooses a small WC ET while satisfying, dy-
namically, mutual exclusion of tasks in the NEV ER set.

This final output is an upper bound on the WCET
of the graph given the dynamic order of execution of
software-tasks in the same NEV ER set.

So we now can analyze satisfiability of a rate con-
straint in a dynamically changing, concurrent execution
of hardware-tasks and software-tasks, given our run-time
scheduler implementation.

6 Tool Flow and Target Architecture

b{?:reill\rl)ig ral Cc constraints
User options Interf R Ser[lgz weet
rotocols, nterface un-Time . _
(ﬁfos, RAM Generation Scheduler cinderella-M
model, core) Synthes:ls
BC wcet User options
(microprocessor

core, RAM size)

behavioral
Verilog

BC

Figure 7: Tool Flow and Target Architecture

Figure 7 shows our tool flow, where BC labels the Syn-
opsys Behavioral Compiler? ™[9] and DC labels the Syn-
opsys Design Compiler”™ . Hardware-tasks are specified
in Verilog and software-tasks are written in C. Micropro-
cessor cores, memories (DRAM, SRAM), FIFO models,
and other custom blocks are assumed as available inputs
to the system. The implementation of a synthesized sys-
tem can vary from a system on a chip to a board or set
of interconnected components.

Constraints include rate constraints, relative timing
constraints (minimum and maximum separation), and
software resource constraints. Precedence constraints
and control-flow constraints (alternative execution) are
implicit in the task specification.

The system-level tasks in Verilog and C, as well as con-
straints, are input to SERRA2 and to a tool that gener-
ates the interface. One of the tasks is specified as the
main task. CINDERELLA-M, which we have ported to the
MIPS RA4K, takes input in C and outputs a worst-case
execution time (WCET) for each software-task (note
that bounds on loops must be provided by the user)[2].
Similarly, BCTM generates an exact execution time for
each hardware-task, which we take as a WCET (loop
bounds must be provided here in some cases as well).
When comparing BCTM_generated WCETs with soft-
ware WCET, we convert all delays to the number of
microprocessor clock cycles (since the hardware clock

speed is typically slower.)

’ System Specification

behavioral c

Verilog constraints

" dataflow
Diego analysis cinderella-M Gce

BC &,
Cor
relocatable
assembly code
cfe ISR template

Clara2

linker

sw tasks
assembly code, Run—Time

Scheduler
assembly co

Thalia2

Run-Time Scheduler
control FSM in RTL
Verilog

Figure 8: Block diagram of SERRA2: the boxes indicate
tools and the ovals indicate data.

6.1 SERRA2 Run-Time Scheduler Synthesis

The flow of the SERRA2 Run-Time Scheduler Synthe-
sis tool is shown in Figure 8. SERRA2 synthesizes the
control-unit of the scheduler into a hardware FSM and
generates the ISR-based scheduler of the software-tasks.

For the software that runs on the microprocessor core
(CPU), the individual software-tasks are compiled to-
gether with the ISR standard C compilers and linkers.
Memory-mapped I/0 is called with C pointers set ex-
plicitly to the appropriate addresses.

Data and program memory are statically allocated.
The ISR, which is the interrupt handling portion of the
run-time scheduler, reads in a start vector that specifies
which task is now ready to be executed in software.

We end up with a set of software-tasks and their
start addresses in the program code. Therefore, given
a particular value of the start vector, the appropriate
software-task can be executed.

7 Example and Experimental Results

For our example, we consider the code of Figures 1 and 2.
Jhold Law and Ohold Law of are implemented with the
hardware- and software-tasks shown in Figure 3.

We performed real-time analysis using the CLARAZ2 tool
which is a modified version of the CLARA tool [18, 19].
The order of execution for the software-tasks is decided
at run-time based on the values of conditionals. This
provides for the upper bound on execution speed for the
application under worst-case conditions.

The system begins each iteration once a millisecond.
After obtaining the positions and velocities of the two
robot arms, the run-time scheduler starts the execution
of mvm in hardware for Jhold Law and oh0 in software

for Ohold Law. It continues with interleaved hardware-
software execution as shown in Figures 4 and 5 based on
the value of conditional c. In this way CLARA2 achieves
a WCET of 39,859 cycles. Note that if limited to a
single static order for the software-tasks (as is the case in
the original CLARA), the minimum W CET possible for
this example would be 49,013 cycles; thus, conditional
edges allow for a 18.7% decrease in WCET in this case.

Software-Task || Lines Lines | BCET | WCET
C | Assem.

cjd 286 1177 | 9,989 | 14,878

oh0 90 237 | 1,598 2,554

ohl 693 3263 | 12,424 | 20,581

int-ser-routine || N/A 26 11 20

Table 1: Code space, BCET and WCET for sw-tasks.

Hardware-Task Lines Area | BCET | WCET
Verilog

mvm 629 | 33,645 | 4,400 4,400

fk 2362 | 42,168 | 11,500 | 11,500

cg 2897 | 59,587 | 11,000 | 11,000

run-time-sch-hw 484 413 N/A | 99,701

Table 2: Results for the synthesis of hw-tasks.

Table 1 presents the results for the compilation of the
software and best- and worst-case execution time estima-
tion with CINDERELLA-M. In Table 2, we see the results
for the synthesis of the hardware tasks of Figure 3 us-
ing the Behavioral Compiler”™ , except for the run-time
scheduler hardware part which was synthesized with the
Design Compiler™ . The third column in Table 2 shows
the number of gate equivalents the hardware required
using the LSI 10K Logic library. We clock the hard-
ware at 10 MHz. Using a MIPS R4K model in Verilog,
we simulated the Robot Arm Controller in Verilog using
Chronologic’s VCSTM,

8 Conclusion

We have shown how to handle additional control-
flow constraints during real-time analysis in hardware-
software codesign with a custom run-time system. The
CLARA2 Real-Time Analysis tool, which is embedded in
the SERRA2 Run-Time Scheduler tool, helps designers
perform system-level design with hardware and software
at a coarse level of granularity. We can predictably meet
hard real-time constraints with our approach, based on
dynamic hardware-driven execution of software tasks,
with results significantly superior to previously reported
results.. The final result is tighter execution bounds thus
squeezing more performance out of the same components
than with a traditional RTOS and associated real-time
analysis.

References

[1] P. Eles, K. Kucheinski, Z. Peng and A. Doboli, “Scheduling of
Conditional Process Graphs for the Synthesis of Embedded Sys-
tems,” Proceedings of the Design, Automation and Test in Europe
Conference, pp- 132-138, February 1998.

[2] S. Malik, W. Wolf, A. Wolf, Y. Li, and T. Yen, “Performance
Analysis of Embedded Systems,” in G. De Micheli and M. Sami,
editors, Hardware/Software Co-Design, pp. 45-74, Kluwer Aca-
demic Publishers, Norwell, MA, 1996.

C. Liu and J. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real time environment,” Journal of the ACM,
20(1):46-61, January 1973.

L. Sha, R. Rajkumar and S. Sathaye, “Generalized rate monotonic
scheduling theory: a framework for developing real-time systems,”
Proceedings of the IEEE, 82(1):68-82, January 1994.

[5] N. Audsley, A. Burns, M. Richardson, K. Tindell and A. J.
Wellings, “Apply lng new scheduling theory to static priority pre-
emptive scheduling,” Software Engineering Journal, pp. 284-292,
September 1993.

N. Audsley, A. Burns, R. Davis, K. Tindell and A. J. Wellings,
“Fixed Priority Pre-emptive scheduling: A Historical Perspec-
tive,” Real-Time Systems, (8):173-198, 1995.

[7] K. Ramamritham, “Allocation and Scheduling of Precedence-
Related Periodic Tasks,” IEEE Proceedings on Parallel and Dis-
tributed Systems, 6(4):412-420, April 1995.

[8] T. Yen and W. Wolf, “Performance Estimation for Real-Time Dis-
tributed Embedded Systems,” Proceedings of International Con-
ference on Computer Design, pp. 64-69, 1995.

[9] D. Knapp, Behavioral Synthesis: Digital System Design Using
the Synopsys Behavioral Compiler, Prentice Hall, Upper Saddle
River, NJ, 1996.

[10] G. De Micheli and M. Sami, editors, Hardware/Software Co-
Design, Kluwer Academic Publishers, Norwell, MA, 1996.

[11] R. Ernst, J. Henkel, Th. Benner, W. Ye, U. Holtmann, D. Her-
rmann and M. Trawny, “The COSYMA environment for hard-
ware/software cosynthesis of small embedded systems,” Micro-
processors and Microsystems, 20 (1996) pp. 159-166.

[12] R. K. Gupta, Co-Synthesis of Hardware and Software for Digital
Embedded Systems, Kluwer Academic Publishers, Boston, MA,
1995.

3

[4

[6

[13] Pai H. Chou and Gaetano Borriello, “Software Scheduling in the
Co-Synthesis of Reactive Real-Time Systems,” Proceedings of the
31°" Design Automation Conference, pp. 1-4, June 1994.

[14] Pai H. Chou, Ross B. Ortega, and Gaetano Borriello, “The
Chinook Hardware/Software Co-Synthesis System,” International
Symposium on System Synthesis, pp. 22-27, September 1995.

[15] D. Verkest, K. Van Rompaey, 1. Bolsens & H. De Man, “CoWare—
A Design Environment for Heterogeneous Hardware/Software Sys-
tems,” Design Automation for Embedded Systems, Vol. 1, No. 4,
pp. 357-386, October 1996.

[16] V. Mooney, T. Sakamoto, G. De Micheli, “Run-Time Sched-
uler Synthesis For Hardware-Software Systems and Applica-
tion to Robot Control Design,” 5th. Int’l Workshop on Hard-
ware/Software Codesign,, pp. 95-99, Braunschweig, Germany,
March 1997.

[17] V. Mooney and G. De Micheli, “Real Time Analysis and Pri-

ority Scheduler Generation for Hardware—Sof’cware Systems with
a Synthesized Run-Time System,” Proceedings of the IEEE In-

ternational Conference on Computer-Aided Design (ICCAD’97),
605-612, 1997.

[18] V. Mooney, Hardware/Software Co-Design of Run-Time
Systems, Ph.D. Thesis, Technical Report CSL-TR-98-762,

http://elib.stanford.edu/Dienst/UI/2.0/Describe/stanford.cs%2fCSL-

TR-98-762, Stanford, CA, June, 1998.

[19] V. Mooney and G. De Micheli, Hardware/Software Co-Design of
Run-Time Schedulers for Real-Time Systems, Design Automa-
tion of Embedded Systems, to appear.

[20] M. Garey and D. Johnson, Computers and Intractability A
Guide to the Theory of NP- C’ompletenes, W. H. Freeman and
Company, N.Y., 1979, pg. 239

[21] T. Cormen, C. Leiserson and R. Rivest, Introduction to Algo-
rithms, The MIT Press, Cambridge, 1990, pg. 35.

[22] C. N. Coelho Jr. and G. De Micheli, “Analysis and Synthesis
of Concurrent Digital Circuits Using Control-Flow Expressions,”
IEEE Transactions on CAD/ICAS, Vol. 15, No. 8, August 1996.

[23] C. N. Coelho Jr., Analysis and Synthesis of Con-
current Digital Systems Using Control-Flow Expres-
sions, .D. Thesis, Technical Report CSL-TR-96-690,

http://elib.stanford.edu/Dienst/UI/2.0/Describe/stanford.cs%2fCSL-

TR-96-690, Stanford, CA, March, 1996.

[24] R. Camposano, “Path-Based Scheduling for Synthesis,” IEEE
Transactions on CAD/ICAS, Vol. 10, No. 1, January, 1991.

