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Abstract

We present the systems requirements generation and executable specification capture of a single chip
LAN Adapter for communicating using the IEEE 1394 Serial Bus Protocol. The requirements generation
starts with high level performance simulation and then passes to an executable specification suitable for
implementation using a hardware/software co-design tool. The reuse of pre-existing components is sup-
ported, as well as synthesis of the system interface, but only after much work is done to program the
hardware/software co-design tool. The actual design flow described allows feedback among all design levels,
e.g. from implementation up to requirements, throughout the process.

1 Introduction

Hardware/software co-design of embedded systems [1, 2, 3, 4] can help address some of the most important
aspects of System on a Chip (SoC) design. For example, the ProLeMY[5] tool and the CoWARE[6, 7] tool
have addressed critical issues. PTOLEMY is an environment and simulator for highly heterogeneous systems and
COWARE is a design system for embedded telecommunication applications. COWARE, for example, supports
inputs in C, VHDL, and DFL[9] (a data-flow language), with VHDL and DFL mapped to hardware while the
C code is compiled onto a DSP processor[6, 7]. This paper presents a case study of one attempt to realize a
design using hardware/software co-design tools and methodology beyond the level of simulation.

The rest of the paper is organized as follows. Section 2 describes briefly our motivation. In Section 3 we
describe the workflow based design flow used in industry. Section 4 describes the assumptions and limitations
in a real design case of a LAN adapter. Section 5 explains the design methodology and tool flow used for the
LAN Adapter. Finally, Section 6 gives some conclusions based on the real design and suggests future directions.

2 Motivation

The main message of this paper can be summarized in the following four succinct points.

(1) The world is messy. In real design, parts often don’t fit together, and idealized CAD flows often don’t
work.

(2) Models are not available. Often models are available at a low level with much detail (e.g. transistor
layout) or at a high level with little detail (e.g. C or behavioral Verilog). Rarely are they available at both.

(3) Global partitioning is not the main issue. Much of the global partitioning is already done for you
— most real designs start with a lot of pre-existing components that for various reasons (backward compatibility,
strategic partnerships, etc.) must be used. Partitioning can be carried out only on small portions of the design.
Hardware often comes in the form of Intellectual Property (IP) which is thus already designed and readily
available. Much more flexibility exists in software.

!The second author was a National Semiconductor Fellowship recipient at Stanford Univeristy when this paper was written.
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Figure 1: Comparison of Design Flows

(4) Leverage points are key. In real designs, system architects need to find leverage points where
local partitioning can be applied to maximal advantage. For example, scheduling of hardware and software
components is often a critical part of the design with a large impact on performance. Another clear example
is in bandwidth management. Do we need one bus or multiple busses? Automated synthesis tools applied to
interface design can speed up the design process significantly and allow tradeoffs to be made at higher levels of
abstraction.

2.1 System on a Chip Design

Design methodology for SOC cannot be a linear extension of board design or ASIC design. To begin with,
architectural issues in SOC are vastly different. We often want to reuse previous hardware and software but
use the hardware or software in a very different environment — namely, on the same chip, which has greater
interconnect available but is at the same time much less testable. In SOC we often want to explore different
architectural options by moving functionality around among hardware and software. All of this leads to a
greater amount of and much more complicated interactions. Finally, we find great heterogeneity in the abstract
models themselves, since we have to support multiple domains interacting together, such as the following;:

e synchronous dataflow
e control dominated reactive systems
e analog

Not only architecture but also validation of SOC is not the same as board design or ASIC design for several
reasons. First of all, one cannot use prototyping as the major validation method because (i) the cost is too high
if there is a design error and (ii) complex interactions between components (hardware or software) may not be
visible just from the pins of the chip. Secondly, validation as is done in the case of ASICs will not work because
of the following;:



e sheer size

e CPU control ASIC as a slave too limited

e large number of, and greatly complicated, interactions

¢ not verifying each component in isolation, but the system’s emergent behavior
e interaction of two large state spaces

Thirdly, we need to back away from detail and push up the level of abstraction. A big problem with higher
levels of abstraction is the design time needed to write high level models of components for which you already
have working detailed models.

The design methodology for SoC is not a linear extension of board design or ASIC design. We hope to drive
these points home as we describe our design example. What is needed is a new design methodology for SoC.

3 Workflow Based Design Flow

Figure 1 shows the difference between the refinement based design flow and the workflow based design flow.
The former is a CAD-centric, idealized view of the design activity, whereas the latter is the design flow actually
used in industry.

A detailed process description of work is to be done and how that work is to be accomplished is referred
to as a workflow [10]. Each individual step in a workflow is an activity. An activity may be accomplished by
either a human or a program, or a human using an interactive program. The workflow paradigm is particularly
useful for SOC design work, since early phases of a SOC design involve primarily human work (e.g. English lan-
guage software and hardware specifications) while latter stages involve primarily programs (e.g. logic synthesis,
program compilation, and layout). The move towards providing executable workflows for well defined tasks is
underway [11].

In this paper, we describe a manual workflow in which a system level simulation written in BONES can
provide iterative refinement between the system level requirements behavioral specifications in CoWare.

With the workflow based design flow a system design team can handle the situation where various parts of
the design process are done out of order. For example, consider design reuse. We may want to reuse blocks
for which we have only a gate-level description. To simulate the system with such reuse we have to generate a
high level description in order to achieve reasonable simulation speeds. This introduces an additional validation
problem, that of validating the new high level description against the reused gate-level description.

The workflow based design flow also supports the same steps as the refinement based design flow, such as
the generation of a high level model from the requirements or specification.

4 Design Case — LAN Adapter

For our design case we consider a Local Area Network (LAN) Adapter, based on the IEEE-1394 Serial Bus
Protocol, to support high speed node applications. Figures 2 shows a sample context for the LAN Adapter. In
the figure, the adapter has three connections on the 1394: a PC, which acts as the root for assigning address
space on the 1394 connection, and two peripherals. The goal of the design is to develop a common system level
approach to building nodes using National Semiconductor’s well proven micro-controller technologies.

The objectives of the design are fourfold:

e reusable system level model
e reusable device driver approach
e reusable core definition for target modules

e hardware/software co-design of nodes
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Figure 2: LAN Adapter example

To support the rapid design of nodes, common reusable elements are needed. A systems-based methodology
which stresses reuse of PC side driver software, 1394 and Universal Synchronous Bus (USB) node cores, and
efficient design of the hardware and embedded software in the node can provide a significant performance
improvement and provide a broad range of applications that use the LAN Adapter in node designs. This pilot
design was developed to help provide the basis of a reusable system-level nodes methodology. It integrates
the use of abstract system level models, device driver approaches, hardware requirements for a node core, and
hardware software co-design of the node core.

Before describing the node architecture, we describe briefly the network terminology.
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Figure 3: Network Layers

4.1 Network

Figure 3 shows the four network layers used. The bottom layer is the physical interface that specifies the voltage
used, the clock frequency of the link, etc. The next layer is the Media ACcess (MAC) layer. It specifies, for
example, two- or four-phase communication, split transaction bus, collision detection, and retransmission of
packets. The next highest layer specifies the link layer protocol used, e.g. Ethernet. Finally, the top layer
specifies the transport layer, e.g. TCP/IP.

4.2 Node Architecture

Figure 4 shows a more detailed description of the original design. In the bottom right we see the LAN physical
interface layer implemented in the form of a hard macro (transistor netlist and layout). Just above the LAN
physical interface is the LAN MAC layer specified in a Register Transfer Level (RTL) description using VHDL.
The CPU connected to the LAN MAC layer implements the link layer protocol and the transport layer protocol
(Ethernet and TCP/IP, respectively, in this case). The CPU communicates with the rest of the system via
a circular buffer connected to the 1394 MAC, which at the beginning of the project had no specific design



implementation whatsoever associated with it (thus, it needed to be designed from scratch based in the 1394
specification). The 1394 MAC creates packets, generates the appropriate ACK packets, generates and checks
the Cyclic Redundancy Check (CRC) information, and arbitrates use of the bus. Finally, in the top left we have
a hard macro of the IEEE-1394 firewire physical interface layer. The main source of flexibility in the design lay
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Figure 4: LAN Intelligent Network Adapter Card

in the 1394 MAC layer and the LAN MAC layer.

The following features are provided on the 1394 Serial Bus:

supports operation up to 800 Mb/s

optimized for high-speed node operation

supports dedicated or shared access to an SRAM

supports two transmit contexts (for requests and responses)

supports two receive contexts (for requests and responses)



e connects to a variety of devices for plug-n-play

All packets are transmitted and received to a RAM that is accessible with guaranteed latency and bandwidth.
Up to 64 KB of memory can be addressed.

4.2.1 Asynchronous Transmission

There are two categories of asynchronous packets transmitted on the 1394 — asynchronous requests and responses.
To keep each use of a transmit packet separate, several transmit contexts are supported. Retransmission of
requests must never block transmission of response packets.

Each transmit context supports transmission from the local memory upon command. The LAN adapter
only keeps track of one packet per context at any given time.

4.3 Software Architecture

The software architecture is based on the Serial Bus Protocol 2 (SBP-2)[8]. SBP-2 is a transport protocol
defined for the 1394-1995 Serial Bus. It defines facilities for requests originated by Initiator (which are the
request originators) to be communicated to other Serial Bus devices (called Targets). It also defines a facility
to transfer data and status information between these devices. The Target actions are specified by means of
Requests that are created by the Initiator. A Request is contained within a data structure called an Operation
Request Block (ORB). Upon completion of a request, the Target writes back the completion status to the
Initiator at an address that was provided earlier by the Initiator. The types of request blocks required for the
1394 LAN profile are as follows:

e Login Request: used by the Initiator to obtain access to the Target resources
¢ Command Request: used by Initiator to transport commands to the Target
¢ Management Request: used to set or release target resources

An ORB can describe a data buffer directly (for a contiguous data buffer) or via a page table (for disjoined
data buffers). A typical ORB has the structure shown in Figure 5.

Next ORB or
NULL if last in chain

Data Descripter or
Pointer to page table

control information

command block
(application
dependent)

Figure 5: Structure of Operation Request Block (ORB)

In case of Transmit operations, the PC host will issue commands (via SBP-2 ORB command requests) to
the LAN Adapter to transmit Ethernet packets. Each ORB describes one Ethernet packet. The ORBs can be

chained together to describe multiple packets. The various configurations possible for Transmit are as follows:



e Fetch a single ORB with its corresponding packet. Transmit the packet and write the status back to the
PC host.

e Pre-fetch all the ORBs in the chain. Fetch the data buffer when the ORB is being processed.

¢ Pre-fetch all the ORBs in the chain and also corresponding data packets. Process each ORB one at a time
and write the status back to the PC host each time.

Hence, SBP-2 can be used flexibly to implement a data transfer scheme that best suits the price-performance
requirements of the end product.

Based on the hardware resources available on the LAN Adapter, it can pre-fetch the ORB chain in order to
speed up the data transfer. Also, the PC host can dynamically append a new ORB to the end of the current
ORB chain, as defined by the SBP-2 specification.

4.3.1 Ethernet networking model in Windows
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Figure 6: Software architecture of Windows Ethernet drivers

For the packets received by the LAN Adapter from the Ethernet end, the LAN Adapter software can upload the
received packets in the PC host memory. The upload address is described by an ORB chain that was fetched
by the LAN Adapter at login time. Based on the resources available on the PC, the PC host can decide to
dedicate as many receive buffers (described by an ORB chain) as it can afford.

The Network Device Interface Specification (NDIS) also supports what is called an Intermediate Driver
architecture. This allows the driver to manage an adapter with a new media type (e.g. 1394) without the need
to change the upper layer architecture. The software on the PC host will then have an Intermediate Driver
which interfaces with the NDIS layers and the 1394 software stacks.

5 Design Methodology and Tool Flow

The design methodology used for the LAN Adapter consisted of the following steps:

(1) High level performance estimation



(2) Detailed functional level performance estimation
(3) Paper specification of hardware and software design

(4) Normal RTL design methodology
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Figure 7: BONES System Level Model

5.1 System Simulation and Architectural Exploration

Steps (1) and (2) were performed with BONES DESIGNERT™ from the Alta Business Unit of Cadence. BONES
models and simulates event-driven data transfer systems at the protocol/messaging layers, allowing system
performance modeling and analysis of throughput, latency and resource sizing,.

BONES models were written for each of the items in Figure 4 including the LAN traffic, PC, and periph-
erals. The LAN traffic is estimated for a four port Ethernet switch. The resulting data traffic on the 1394 bus
is used to estimate the traffic load for a typical application.

The approach to generating a system can be characterized as a library based approach. However, in order to
perform high level performance estimation, it was often necessary to generate and validate lightweight models for
pre-existing low level models. Furthermore, we were unable to enforce a total top-down methodology (refinement
based design flow), but instead had to use a workflow based design flow.

The steps used provide a flow from performance analysis to implementation.

5.1.1 The system level model

The BONES system level model, shown in Figure 7, assumes a 1394 host node, two other nodes on the bus,
and the LAN Adapter communicating to a four port Ethernet switch. The data traffic on the 1394 bus is



used to estimate the traffic load for a typical application. The critical system parameters are passed to the
top level of the system simulation. By selecting the parameters, such as the bus speed to be supported (400
Mbit/sec, 800 Mbit/sec, and so forth) and running the simulation, internal measurements of the system can be
used to determine the buffer size of the buffer SRAM and the operation speed of the buffer state machine. By
running simulations of the configuration process (address assignment), the time required for various processors
to perform configuration can be determined. The processor overhead to perform SBP-2 encapsulation can be
estimated by counting the encapsulated packet rate.
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Figure 8: LAN node

5.1.2 LAN node

A generic LAN node is used to estimate the effects of the LAN components of the complete system. Each LAN
node has parameters to describe packet length and number of overhead bits.
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Figure 9: 1394 Node

5.1.3 1394 Node

Figure 9 shows the 1394 traffic generator node used to accept packets from the 1394 bus and to generate,
according to a desired traffic profile, a typical level of bus congestion. For each 1394 Node, there are Link (LK),
Transaction (TR), and Application (AP) Modules, with interfaces corresponding to the four “data primitives”
— Request, Indication, Response and Confirm.

10
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Figure 10: LAN 1394 bridge

5.1.4 The LAN 1394 bridge

Figure 10 shows the LAN 1394 bridge, which describes the functional operation of the LAN Adapter hardware
and software, The structure of the LAN-Bridge model is determined only by the desired behavior of the LAN
Adapter and is not limited or constrained by the adapter architecture. Different forms, such as CPU based or
hardware-based architectures, will need to perform the same functions. Parameters can be set that will allow
assessment of the effect of using different hardware architectures.

The BONES simulation must be finished before beginning the description of the LAN Adapter in C using
COWARE.

11



5.2 Hardware-Software Co-Design with COWARE

The node product planners will need to analyze which part of the overall system is best executed on the
software programmable CPU core and which functions are best implemented in dedicated on-chip hardware.
These architectural decisions will have a dramatic impact on the amount of on-chip memory required, the overall
die size, system performance, and power consumption. Delaying the system partitioning to late in the design
process allows the architectural decisions to be made with the greatest level of information possible.

The CoWARE hardware/software co-design environment allows the cospecification of hardware and software
components using existing languages such as VHDL, DFL[9], Silage and C [6, 7]. COWARE provides unam-
biguous specification of interfaces between hardware and software, and correct synthesis of these interfaces in
hardware and software by generating both hardware interfaces and device drivers.

COWARE is based on a data model of communicating processes and supports the gradual refinement of a
high level description into an interconnection of programmable processors and dedicated, synthesizable hardware.
The model supports the re-use and encapsulation of hardware and software by a clear separation between the
functional behavior and the communication behavior of a system component.

The basis for this specification method is a data model that is based on communicating processes. The
model supports a strict separation between functional and communication behavior. Designs are made reusable
by describing their functional behavior while maintaining an abstract model of their communication behavior.
When a design is actually (re-) used in a system, the specification method allows one to refine the abstract
communication model into a detailed behavior that is more appropriate in the system context. The same
specification method is used to model off-the-shelf programmable processors and these models are used in a
processor independent hardware/software co-design methodology.

Synthesis tools and compilers are able to implement all processor, accelerator, and memory components once
the global system architecture has been defined. The COWARE design environment provides for integration of
existing design technology by automatically generating the interfaces that link these design environments and by

C for CPU |
Block B

abstract
CoWare C

Block A RPC

abstract
CoWare C i

in, out, in/out
sw driver
- hw I/F
I/F bus
CPU ]
HW
Block

Figure 11: COWARE simulation paradigm and sample implementation

12



interfacing the generated and off-the-shelf processors in a way that is consistent with the system specification.

Designing a system with the COWARE environment involves four steps: functional specification, architecture
definition, communication selection, and component implementation|6].

Functional specification: A system is specified by means of communicating processes that exchange data
via channels. The behavior of a process can be entered using a host language such as C, DFL or VHDL.

Architecture definition: Optimally allocate processors, accelerators and memories, binding them to the
functional specification. This interactive allocation and binding step includes the hardware/software partition-
ing.

Communication selection: Automatically generate the necessary software and hardware to make proces-
sors, accelerators and the different environments communicate. This step is performed via the SYMPHONY
interface synthesis toolbox. Communication blocks (CB) provide pipelining and synchronization between accel-
erators. The communication between the hardware and the software for the ARM processor is more complex.
The ARM interface includes address decoders, DMA channels, interrupts and I/O ports. Within the ARM,
software drivers must be synthesized and linked to the processes running on the ARM.

Component implementation: All components in the system such as accelerator processors, interface
hardware and software, memories, software running on a processor core, and debugging blocks are implemented
using existing design environments. COWARE embeds different component compilers into the design environ-
ment, such as the ARM C-compiler and commercial VHDL/DSP synthesis environments.

BONeS model

captures system level requ irements
operational requirements

Specification is captured in
abstract Coware C from the specificati()n
BONEeS requirements model

Existing RTL and C code
blocks are used to validate
newly created blocks against
the executable specification

architecture

Back end tools linked to

CoWare are used to imple- implementation
ment the final solution

Figure 12: System Level Design Flow
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5.2.1 CoWARE simulation

The basic model of communication in COWARE is the remote procedure call (RPC). An example can be seen in
Figure 11. The RPC connections can be seen between blocks. The cascaded blocks show different abstraction
levels of the same functionality. The “abstract COWARE C” is C code written for COWARE and not targeted
to any particular processor. “C for CPU” is C code targeted to a particular processor, e.g. an ARM. Finally,
RTL is a Register-Transfer Level description in some HDL, typically Verilog or VHDL. Notice that any RPC
connection can communicate with an RPC connection at any other level of abstraction — abstract COWARE C,
C for CPU, or RTL.

The bottom half of Figure 11 shows a hardware implementation of the RPC communication paradigm.
CoWARE synthesizes the software device driver as well as the logic in hardware to read data from the interface
(I/F) bus.

Thus, a mixed system level specification in which part of the system is already implemented while another
part is still specified at the behavioral level can be co-simulated. For this purpose, existing simulators can be
integrated into the environment. At the time of use, a commercial VHDL simulator and the ARM instruction
set simulators (both instruction accurate and cycle accurate) had been embedded.

COWARE operates very much like a linker, providing an executable that can be linked to instruction set
simulators as well as other modules.

5.2.2 CoWARE limitations

The COWARE methodology imposes increased demands on the generation of library elements. Abstract and
detailed models of IP blocks usually do not both exist. Existing IP blocks, for which Verilog code currently
exists, will require additional work to generate validated abstract COWARE C models.

token
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— " |decision

rate
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Figure 13: BONES Queuing Model and Three Implementation Blocks: A simple BONES queuing simulation
is used to model the performance of RPC’s in the more detailed COWARE system models.
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5.3 System Level Design Flow

The leading edge system level design flow used in this case study at National Semiconductor can be seen in
Figure 12. This is the specific workflow based design flow adopted for the LAN Adapter design project.

As an example pass through some of the workflow stages of Figure 12, consider the BONES queueing model
shown at the top of Figure 13 and the logical implementation giving rise to the queue at the bottom of the figure.
In the BONES model, tokens move around the model and proceed through the queue based on a “decision.”
The decision is based on one of the following:

e a predetermined rate

¢ a logical decision based on arrivals of tokens, e.g. an and of two queues (both queues must have at least
one token before passing the tokens through)

e random

Thus, in the BONES model, there is no concept of the implementation. But the logical blocks B1, B2 and B3
shown at the bottom of Figure 13 do affect other blocks in the system — it’s just that the details are abstracted
away in the BONES model.

A=funcX() m—~PC

funcX() {

Figure 14: COWARE model of two implementation blocks

Consider Figure 14 which shows how two of the implementation blocks from the bottom of Figure 13 are
modeled in COWARE. The designer accomplishes refinement by replacing abstract COWARE C models for the
blocks with C code targeted to the ARM or by RTL. Everything in COWARE looks like a procedure call, which
is coded up in detail in the C/RTL models. For example, in the LAN design, one could examine some of the
COWARE blocks corresponding to blocks in the BONES model of Figure 8 to see the resolution of ethernet
packets.

Now, execution of the model in Figure 14 results in extremely long simulation time. Fortunately, however,
we have a corresponding model in the top of Figure 13 which simulates much faster, e.g. by replacing a bit-level
simulation producing packets with a process emitting tokens (packets) according to a probability distribution.
Thus, when trying to accomplish a complete system simulation modeling the network node, CPU, operating
system, and network peripherals, the BONES simulation is preferred. However, to keep the BONES simulation
as accurate as possible, it will be necessary to model the actual blocks in COWARE and run the COWARE
simulation for a short time to obtain more accurate “decision” parameters for BONES. This allows the system
designer to learn many things, e.g. how often a particular behavior is executed. For example, we could find out
that B2 is executed at a high rate, making a hardware implementation for B2’s functionality more attractive.
Choosing such an implementation alters the BONES parameters. Thus, we move back and forth in a workflow
based design flow. For the LAN design, about 20 iterations back and forth between BONES and COWARE were
needed. Note that BONES is not a testbench as we were not attaching BONES models to an external event
driver. Clearly, the value of using BONES depends on the accuracy of the assumptions and parameters used.

The design flow of Figure 12 for node applications attempts to take maximum advantage of reuse of hardware
and software elements by leveraging system level modeling. The flow applies to many different possible end
applications. Significant effort in library creation is required before the benefits are seen.
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5.4 Time line information for BONES/COWARE work

The following summarizes the time spent by three engineers full time on the LAN adapter design:

(A) LAN (e.g. 100BaseT Ethernet) recommendations and framework
Completed June 13, 1997

(B) LAN (e.g. 100BaseT Ethernet) evaluation
Completed June 20, 1997

(C) IEEE 1394 recommendations and framework
Completed July 11, 1997

(D) IEEE 1394 evaluation
Completed July 25, 1997

(E) 1394/LAN bridge recommendations and framework
Completed August 8, 1997

(F) 1394/LAN bridge evaluation
Completed August 15, 1997

The “recommendations and framework” represents a complete pass from requirements to implementation, as
shown in Figure 1. An “evaluation” included working the process from implementation back through to updated
requirements and reconciling each element. Most of the time was spent not on simulation (either BONES or
COWARE) but instead was spent manually coding up and verifying the different models — abstract COWARE
C, C for CPU, and RTL. For example, a common occurence was to run COWARE for a minute, get a parameter
to apply to BONES and then run BONES for two minutes. Then, the next half hour was spent coding a new
model.

Notice that the workflow here is sort of like a spiral, with parts of the design being modeled and tested
before other parts are defined. i.e., the “versions” of the spiral represent growth of complete functionality in an
evolutionary manner.

The interface between the “partial architecture” (in BONES) and the “partial implementation” (COWARE
abstract C) was tested only to the extent that we knew that we could move forward to an implementation path.

5.5 Project status

The following items were completed for the LAN adapter project:
e developed complete abstract model(s)
e defined chip and embedded software
¢ defined windows driver architecture
e tested BONES — COWARE refinement

On the other hand, the following two items were not accomplished:
e enter complete, full design in COWARE
e complete SBP-2 based LAN drivers

The project was conceived in order to explore a new hardware/software co-design methodology that could
be used at National Semiconductor. Thus, we completed the developing of a system level simulation in BONES,
working out the driver architecture, and providing an implementation design flow.
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6 Conclusion

The next major step in the industrial adoption of system level design tools is improved model generation and
validation of IP block models across mixed abstraction levels. System level design makes extensive use of
valuable existing IP blocks. Since the existing blocks are described in the most expressive language format
available for the particular block, many formats and coding styles are used. This heterogeneous implementation
style makes the process of generation of libraries of abstract components difficult.

Hand coding a system level description of an existing IP block is an expensive and error prone task. What
is needed are improved methods of validating, automatically generating, and encapsulating existing blocks
into system level frameworks. Better tools and methodologies for validating newly hand generated abstract
descriptions against existing implementation level models are needed to speed the library creation processes in
cases where the system level simulation is of crucial importance. In the future, the hand generation process
needs to be supplemented by automatic tools which can generate a system level model from observations
of the behavior of implementation simulations. In the meantime, more effective methods of encapsulating
implementation models in a wrapper which can perform abstraction level matching at run time could fill the
gap between hand generated systems models and automatically generated systems models, as well as speed the
adoption rate of systems based design.
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