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SUMMARY

This thesis concerns communication across channels with multiple inputs and mul-

tiple outputs. Specifically, we consider the closed-loop scenario in which knowledge

of the state of the multiple-input multiple-output (MIMO) channel is available at the

transmitter. We show how this knowledge can be exploited to optimize performance,

as measured by the zero-outage capacity, which is the capacity corresponding to zero

outage probability. On flat-fading channels, a closed-loop transmitter allocates dif-

ferent powers and rates to the multiple channel inputs so as to maximize zero-outage

capacity. Frequency-selective fading channels call for a combination of orthogonal-

frequency-division multiplexing (OFDM) and MIMO known as MIMO-OFDM. This

exacerbates the allocation problem because it multiplies the number of allocation di-

mensions by the number of OFDM tones. Fortunately, this thesis demonstrates that

simple allocations are sufficient to approach the zero-outage capacity. These simple

strategies exploit the tendency for random MIMO channels to behave deterministi-

cally as the number of inputs becomes large.

We propose two simplified allocation strategies: the frequency-uniform-spectral-

efficiency (FUSE) allocation and the fixed-rate (FIX) allocation. The FUSE allocation

simplifies the power allocation by forcing each OFDM tone to have the same spectral

frequency, so that the scope of the power allocation reduces to spatial channels of

each tone. In the FIX allocation, the achievable rate of each scalar channel is fixed

irrespective of channel, and the fixed rates are predetermined to match the fading

statistics. As the number of antennas tends to infinity, we analytically show that the

proposed allocations approach the channel’s zero-outage capacity. We also show that

xiii



the convergence is fast so that the FIX and FUSE allocations closely approach the

channel capacity for a finite number of antennas. Experimental results are provided

to support the theoretical analysis.

We also consider the bit-allocation problem for the case where granularity con-

siderations require that the rate be drawn from a discrete and finite set. The best

allocation is based on the exhaustive search over all possible candidates for the bit

allocation satisfying the granularity constraint. However, an exhaustive search is un-

necessary. In fact, we demonstrate that the search can be restricted to a small set

containing only a few well-chosen candidates, without significantly affecting the op-

timality of the search. In particular, on a flat-fading channel, a binary search (only

two candidates) and a fixed allocation (only one candidate) perform very close to the

optimal allocation, as shown by simulation. The binary-search and fixed-allocation

strategies extend to a MIMO-OFDM system by applying them on a tone-by-tone

basis. We provide the bit-error rate results on a MIMO-OFDM system with the pro-

posed bit-allocation strategies to show that the performance promised by theoretical

analysis is actually achieved.
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CHAPTER 1

INTRODUCTION

1.1 MIMO Wireless Communications

Recently, there has been a dramatic and rapid growth in wireless communications

from cellular phone service to high-definition television broadcasting. More and more

information is sent through wireless channels, and the demand for data rate is getting

higher and higher. Wireless channels are open to everybody, but this openness puts

a strict limit on the bandwidth and transmit power. To support high data rate for

limited bandwidth, we desire higher spectral efficiency.

In a multiple-input multiple-output (MIMO) channel, created by employing mul-

tiple antennas at the transmitter and receiver, the spectral efficiency dramatically in-

creases. Pioneering work by Foschini [24] and Telatar [60] showed the capacity of MT -

input MR-output MIMO can be min(MT ,MR) times larger than the single-antenna

capacity. In other words, the multiple transmit antennas are used to multiplex data

in space, where the gain by spatial multiplexing can be as large as min(MT ,MR). A

simplest form of spatial multiplexing is known as V-BLAST (vertical Bell Labs lay-

ered space-time) transmission [27], where independent layers of data are transmitted

form each antenna.

For reliable communications, high spectral efficiency must be accompanied with

low error rate. A major obstacle to reliability on wireless channels is fading, which

refers to deep attenuation of channel amplitude due to the mobility of users and

surrounding obstacles [53]. Traditionally, to mitigate the effects of fading, the receiver

uses multiple antennas, a technology known as antenna diversity. In a MIMO system,

we can obtain diversity from the MTMR links between transmitter and receiver. If

1



the links are statistically independent, the diversity gain can be as large as MTMR

compared to a single-input single-output (SISO) channel. However, achieving the

diversity is not quite straightforward with multiple transmit antennas. Alamouti

introduced a clever way to achieve the maximum (MTMR) diversity gain for two

transmit antennas [1]. Since then, many space-time codes have been proposed, which

effectively provide the spatial diversity on a MIMO channel [56, 57].

Another source for higher spectral efficiency and stronger reliability is frequency

selectivity. In wideband transmission, the channel response is frequency selective,

and multiple copies of a transmitted symbol arrive at the receiver over several sig-

naling intervals. Analogous to multiple antennas, we can harvest the diversity from

frequency selectivity [8]. Hence, the diversity gain is huge in a frequency-selective

MIMO channel.

Unfortunately, all the advantages of MIMO are not free. A dearest penalty would

be the interference between signals simultaneously emitted from the multiple trans-

mit antennas [6]. This interference considerably increases the detection complexity.

For example, a maximum-likelihood (ML) detector suffers a significant increase in

complexity, which exponentially grows with the number of transmit antennas [59].

To avoid the exponential growth in complexity, simpler solutions have been explored,

such as spatial equalizers or space-time codes specially designed to simplify the de-

tection process.

Resolving interference in MIMO is analogous to a traditional problem of equalizing

the effects of inter-symbol interference (ISI) on a frequency-selective channel. We can

hence extend well-known solutions for the equalizer to MIMO [6]. Particularly, a

decision-feedback equalizer is widely used in MIMO detection. For example, BLAST

uses zero-forcing decision-feedback detector, a special case of successive interference

cancellation [64]. However, spatial equalizer can cost a decrease in diversity. If

the zero-forcing decision-feedback detection is used without any help from an outer
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channel code, the diversity gain is only at most MR.

Another example is orthogonal space-time block codes (STBC) [57], a generaliza-

tion of Alamouti’s code to any number of transmit antennas. Orthogonal codes reduce

the detection complexity since a symbol can be detected without interference from

others owing to the orthogonality. To maintain orthogonality, however, orthogonal

STBC sacrifices spatial multiplexing gain, which is as large as unity (when MT = 2)

or less (when MT > 2) rather than the full multiplexing gain min(MT ,MR).

Generally speaking, there is a tradeoff among spatial multiplexing (increasing

spectral efficiency), diversity (mitigating fading), and complexity (mitigating inter-

ference). For example, if a simple decision-feedback detector is used, the diversity

gain is no greater than MR, smaller than maximum gain MTMR, while it achieves full

spatial multiplexing gain. Orthogonal STBC sacrifices multiplexing gain for simple

detection and full diversity gain. In both cases, either multiplexing gain or diversity

gain is abandoned to reduce the detection complexity. On the contrary, if an ML

detector is employed, the complexity is highest, but we can achieve full gains for

diversity and spatial multiplexing [63].

1.2 Closed-Loop MIMO

We consider a closed-loop MIMO system where the transmitter has channel state

information (CSI). By exploiting CSI at the transmitter, eigenbeamforming converts

a MIMO channel into a bank of scalar channels, with no crosstalk from one scalar

channel to next [7, 12, 38]. Thus, the complexity for detection only linearly increases

with the number of antennas. Eigenbeamforming is an optimal space-time processing

in the sense that it achieves the capacity of a MIMO channel, attaining the full multi-

plexing gain. Furthermore, the diversity is also fully achieved, as will be discussed in

depth later. Surprisingly, the transmitter CSI magically makes the above-mentioned

tradeoff ineffective and three goals of MIMO communications are attained at the same
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time.

Clearly, a new problem is the availability of CSI at the transmitter. An intu-

itive way to furnish the transmitter with CSI is to send the estimated CSI to the

transmitter. However, the feedback is redundant information, and the feedback delay

might cause a mismatch problem. On a slowly varying channel, the delay is not a

big issue, but the additional transmission load could be a problem. Thus, we have a

new tradeoff between the availability of CSI feedback and the optimality of MIMO.

In this work, we do not directly investigate the tradeoff problem, but try to answer in

part by showing that the advantage of knowing CSI at the transmitter is significant

to allow the redundancy by the feedback.

We base our research on information theory for fading channels [8]. On fading

channels, the mutual information between transmitter and receiver is a random vari-

able, and the capacity of a fading channel is either the expected value of mutual infor-

mation (average capacity) or the rate that achieves a target outage probability (outage

capacity), depending on the channel generation process [60]. CSI at the transmitter

does not dramatically impact the average capacity, as reported for a single-antenna

system [28]. The same is true for a MIMO channel, where there is a distinct advan-

tage of knowing CSI at low signal-to-noise ratio (SNR), but the advantage almost

disappears at high SNR [18, 24, 30, 60].

Meanwhile, the transmitter CSI helps improve the outage performance signifi-

cantly, not only for the single-antenna case [8, 13] but also for MIMO [7]. We use

the zero-outage capacity, also known as the delay-limited capacity [8, 32], to measure

the outage performance, which is the maximum achievable rate while maintaining

zero outage probability. If CSI is unknown to the transmitter, the outage probability

cannot be made zero and thus the zero-outage capacity is zero [8]. In stark contrast,

if the transmitter knows CSI, it is possible to achieve a positive zero-outage capacity

by controlling power at the transmitter to avoid any outage [13]. For some fading
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statistics, the zero-outage capacity is zero even when CSI is known at the transmitter,

such as on Rayleigh-flat-fading SISO channel [28]. However, when there is diversity,

such as from frequency selectivity or from multiple receive antennas, we can achieve

a positive zero-outage capacity [2, 8].

1.3 Objective and Contributions

We use the zero-outage capacity as a performance criterion to develop efficient and

low-complexity transmitter strategies for a closed-loop frequency-selective MIMO sys-

tem with orthogonal-frequency-division multiplexing (OFDM) [47]. Contributions

and organization of this thesis are as follows.

We begin by describing a MIMO-OFDM system in Chapter 2. OFDM transforms

a MIMO channel with memory into a set of memoryless channels {H1,H2, . . . ,HN}

over N tones for both the cases of spatially correlated and uncorrelated fading. The

eigenvalues of HnH
∗
n are crucial in the information-theoretical analysis. We summa-

rize the properties of eigenvalues.

In Chapter 3, we consider a closed-loop MIMO system. A combination of OFDM

and eigenbeamforming creates a bank of MN scalar channels. Each tone has M

spatial channels with the eigenvalues of HnH
∗
n as squared channel gains, where M is

the rank of each memoryless MIMO channel. We also address efficient implementation

of eigenbeamforming in a time-division duplex (TDD) system, and develop adaptive

algorithms for updating receive filters.

Chapter 4 reviews previous results on average and outage capacity. We have two

goals in this chapter: (1) to confirm the increased capacity and improved outage

performance on a MIMO channel; (2) to show the advantage of knowing CSI at the

transmitter. We explicitly show that CSI at the transmitter does not dramatically

increase the average capacity. In terms of the outage capacity, however, we can

achieve a substantial gain from the transmitter CSI. At the end of Chapter 4, we also
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propose the procedures for optimizing outage region in a closed-loop MIMO system.

Chapter 5 summarizes our contributions to the high-SNR analysis on average and

outage capacity. More specifically, we prove that a closed-loop MIMO system achieves

full diversity and multiplexing orders. We also rigorously derive the asymptotes of

capacity in terms of the geometric mean of the eigenvalues of HnH
∗
n. The geometric-

mean representation enables simple and insightful analysis on average and outage

capacity. Most importantly, we analyze the zero-outage capacity with respect to

channel memory L, showing that it is a nondecreasing function of L and quantifying

the increase in terms of MT , MR, and L.

We consider the power-allocation problem in Chapter 6. To achieve the zero-

outage capacity, the transmitter must find the power allocation, distributing power

to scalar channels. The optimal power allocation is based on water-filling over MN

scalar channels, but requires high complexity. In this work, we propose two simpler

allocation strategies: the frequency-uniform-spectral-efficiency (FUSE) allocation and

the fixed-rate (FIX) allocation. The FUSE allocation reduces the complexity by re-

stricting the scope of water-filling over M spatial channels for each tone, such that

each tone achieves the same spectral efficiency. In the FIX allocation, we further-

more abandon water-filling by fixing the achievable rate for each scalar channel. Thus,

power allocation can be calculated by a simple closed-form formula. The proposed al-

location strategies significantly reduce the allocation complexity, but inevitably incur

capacity penalties. However, we prove that the penalties of both allocations converge

to zero as the number of antenna array size tends to infinity. We also quantify the

penalties for a finite antenna array by high-SNR analysis and show that the penalties

quickly converge to zero.

The analysis in Chapter 6 provides useful insight to solving the bit-allocation

problem with a granularity constraint on supportable rates. The best bit allocation

is based on a full search over all possible candidates for the allocation, which is usually
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intractable for the complexity reason. In Chapter 7, we propose simple bit-allocation

strategies for flat-fading MIMO channels, Binary Search and Fixed Allocation, by

exploiting the properties of MIMO channels. Compared to the full-search allocation,

the proposed strategies exhibit nearly optimal performance, while the complexity

reduction is remarkable. We also extend the proposed strategies to MIMO-OFDM

by equally treating each tone similar to the FUSE allocation in Chapter 6.

Finally, in Chapter 8, we evaluate the bit-error rate (BER) performance with the

proposed bit-allocation strategies. We confirm that theoretical results in Chapter 6

and Chapter 7 also hold with quadrature amplitude modulation (QAM) constellations

and practical outer channel codes. From the BER results, we will see that CSI at the

transmitter indeed improves the performance critically.

To summarize, the main contributions of this work are as follows.

• We derive high-SNR asymptotes of capacity in terms of the geometric mean of

the eigenvalues of the MIMO channel, and analyze the zero-outage capacity by

using the properties of the geometric mean. (Chapter 5)

• We propose simple power-allocation strategies: the FUSE and Fixed allocations.

We prove that the proposed allocations are optimal in terms of the zero-outage

capacity as the number of antennas tends to infinity. We also show that the

proposed allocations perform well at a moderate number of antennas by high-

SNR analysis. (Chapter 6)

• We propose practical bit-allocation strategies, Binary Search and Fixed Allo-

cation, for MIMO flat-fading channels, which have remarkably low complexity.

We show that both strategies are nearly optimal as the number of antennas

grows. Extension to MIMO-OFDM is also considered. (Chapter 7)
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1.4 Notation Summary

We summarize acronyms and mathematical notations.

Notation Description

BER Bit-error rate

CDF Cumulative distribution function

CSI Channel state information

DMT Discrete multitone

FUSE Frequency uniform spectral efficiency

i.i.d. Independent and identically distributed

ISI Inter-symbol interference

MIMO Multiple input multiple output

MISO Multiple input single output

MRC Maximum-ratio combining

OFDM Orthogonal-frequency-division multiplexing

PDF Probability density function

RCSI Receiver channel state information

SIMO Single input multiple output

SISO Single input single output

SNR Signal-to-noise ratio

STBC Space-time block code

SVD Singular-value decomposition

TDD Time-division duplex

TRCSI Transmitter and receiver channel state information

|A| Cardinality of a set A

||A||F Frobenius norm of a matrix A

[A]p,q Element of a matrix A at the pth row and qth column
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1{·} Indicator function

AL Arithmetic mean over index set L

CN (µ, σ2) Complex Gaussian random variable with i.i.d. N (µ, σ2/2) entries

det(A) Determinant of a square matrix A

E[X] Expectation of a random variable X

En(x) Generalized exponential integral

IM M ×M identity matrix

GL Geometric mean over index set L

L Number of channel memory

M Rank of MIMO channel matrix

M̃ Number of available channels in FIX Allocation (Chapter 6)

MT Number of transmit antennas

MR Number of receive antennas

Ns Spatial index set at any tone in MIMO-OFDM

Nu Universe index set for all scalar channels of MIMO-OFDM

{s(m)
n } A set of squared singular values of channel matrix

tr(A) Sum of diagonal elements of a square matrix A

γ Euler constant γ ≈ 0.577215665

Γ SNR gap for bit allocation

Γ(x) Gamma function

Γ(x, y) Incomplete complementary Gamma function

ρ SNR per receive antenna

ΨL(x) Empirical distribution over index set L
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CHAPTER 2

MIMO CHANNELS AND PROPERTIES

This chapter describes a channel model for MIMO wireless channels. Among many

factors that characterize wireless channels, we mainly consider two factors: fading and

frequency selectivity. Fading refers to the severe attenuation in the channel amplitude

caused by the combination of multipath propagation and receiver movement [53].

Unlike the time-invariant channel for wired communications, the channel is time-

varying and its amplitude is often too small to deliver information reliably. Frequency-

selectivity is a typical phenomenon for wideband transmission. If the channel is

frequency selective, the received signals are impaired by inter-symbol interference

(ISI) [6]. Orthogonal-frequency-division multiplexing (OFDM) is an efficient solution

to removing the distortion by ISI [9].

We first describe a MIMO channel model with memory, which reflects fading

and frequency selectivity. Then, we show how OFDM removes ISI and converts a

frequency-selective channel into a bank of flat-fading (memoryless) MIMO channels.

Finally, we present important properties of MIMO fading channels.

2.1 MIMO Wireless Channels

We consider a discrete-time baseband model. Suppose that there are MT transmit

antennas and MR receive antennas, which create an MR×MT multiple-input multiple-

output (MIMO) channel. Let xk = [x
(1)
k , . . . , x

(MT )
k ] be the transmit signal vector at

the kth signaling interval. If the channel has memory L, the received signal vector,
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yk, is a linear combination of {xk,xk−1, . . .xk−L} [46], such that

yk =
L∑
l=0

Glxk−l + nk. (1)

The MR ×MT matrix Gl represents the MIMO channel at the lth delay. We assume

white Gaussian noise, such that the elements of nk in (1) are circularly symmetric

complex Gaussian random variable with zero mean and E[nkn
∗
k′ ] = N0δk−k′IMR

,

where (·)∗ denotes the Hermitian transpose, IM is an M ×M identity matrix, and

the Kronecker delta function δk is unity when k = 0 and zero otherwise.

The frequency response of (1) is

G(ejθ) =
L∑
l=0

Gle
−jlθ − π < θ ≤ π, (2)

where j =
√
−1. The response in (2) is frequency selective when L > 0. When L = 0,

G(ejθ) is flat in the frequency domain (flat fading), and the channel in (1) reduces to

a memoryless channel.

We assume Rayleigh fading, unless specified otherwise, throughout the thesis, so

that each element of Gl is a complex Gaussian random variable [53]. Elements of

each Gl can be spatially uncorrelated or correlated, but we assume for analytical

simplicity that there is no correlation between channel taps, that is, elements of Gl

and elements of Gl′ are uncorrelated if l 6= l′.

2.1.1 Spatially Uncorrelated Channel

If the channel is spatially uncorrelated, the channel matrix is given by Gl = σlWl,

where {σ2
l } denote the power profile [53]. The MR×MT matrix Wl denotes a spatially

uncorrelated matrix, whose elements are i.i.d. CN (0, 1), where CN (µ, σ2) denotes a

circularly symmetric complex Gaussian random variable, whose real and imaginary

parts are i.i.d. with mean µ and variance σ2/2 for each. Without loss of generality,

we normalize the channel, such that
∑L

l=0 σ
2
l = 1.
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Definition 2.1. The power profile {σ2
l } is said to be uniform when σ2

0 = σ2
1 = . . . =

σ2
L = 1/(L+ 1). �

The spatially uncorrelated model is useful for mathematical analysis. Particularly,

the random matrix theory for i.i.d. Gaussian elements provides powerful tools for

analysis [23].

2.1.2 Spatial Correlated Channel

For a spatially correlated channel, we introduce correlation matrices RTl (MT ×MT )

and RRl (MR × MR), which represent correlation at the transmitter and receiver,

respectively, for the lth delay, such that E
[
[Hl]p,j[Hl]

∗
q,k

]
= [RTl ]j,k[RRl ]p,q [18], where

[A]p,q denotes the element of a matrix A at the pth row and the qth column. We

assume that the correlation between the fading from transmit antennas j and k to a

particular antenna is [RTl ]j,k and does not depend on the receive antenna. The same

is true for [RRl ]p,q. Then, Gl can be factored in the form:

Gl = (RRl)
1
2 Wl(RTl)

1
2 , (3)

where (·) 1
2 denotes the matrix square root, and Wl is an MR × MT spatially un-

correlated matrix with i.i.d. CN (0, 1) entries. We normalize the channel, such that∑L
l=0 tr{RTl} = MT and

∑L
l=0 tr{RRl} = MR, where tr{·} denotes the trace of diag-

onal elements of a square matrix [33]. If the channel is uncorrelated, the correlation

matrices reduce to RTl = IMT
and RRl = IMR

The degree of correlation is measured by σ2
θl

, the variance of the angle spread for

the lth path with its departure or arrival angle θl [10]. For the lth path, θ̄Tl and θ̄Rl

denote average departure and arrival angles, respectively, and a is the array response

vector, defined as

a(θ) = [1, ej2π∆cos(θ), . . . , ej2π(K−1)∆cos(θ)]T , (4)
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where ∆ is the antenna spacing relative to wavelength and K is the number of anten-

nas (K = MT for the transmitter and K = MR for the receiver). If there is no angle

spread (σ2
θl

= 0) [10], the correlation matrices then become RTl = σ2
l a(θ̄Tl)a

T (θ̄Tl)

and RRl = σ2
l a(θ̄Rl)a

T (θ̄Rl), such that, each tap Hl can be written as [47]

Hl = σ2
l αla(θ̄Rl)a

T (θ̄Tl), (5)

where αl is i.i.d. CN (0, 1), representing Rayleigh fading, and where {σ2
l } is the power

profile.

For nonzero angle spread, we consider correlation only at the receiver, that is,

RTl = IMT
[10]. The receive correlation matrix can be approximated as [3]

[RRl ]p,q ≈ σ2
l e
−j2π|p−q|∆ cos(θRl )e−0.5(2π|p−q|∆ sin(θRl )σθl )

2

. (6)

In fact, the approximation in (6) is accurate only for small angle spread, but it

provides the correct trend for large spread [10]. Note that each RRl collapses to a

rank-1 matrix, RRl = σ2
l a(θ̄Rl)a

T (θ̄Rl), when σθl = 0.

2.2 MIMO-OFDM

If the channel is frequency selective, the received signals are distorted by ISI, which

makes detection difficult [6]. OFDM has emerged as one of most efficient ways to

remove such ISI [9]. In this section, we briefly review how a MIMO channel with

memory in (1) becomes a set of memoryless (no ISI) MIMO channels by OFDM.

Figure 1 illustrates the block diagram for MIMO-OFDM. Suppose that the trans-

mitter collects N symbol vectors: {u1, . . . ,uN}, where un = [u
(1)
n , . . . , u

(MT )
n ]T . We

regroup N signals {u(m)
1 , . . . , u

(m)
N } for m = 1, 2, . . . ,MT by the NMT ×NMT permu-

tation matrix P̂T in Figure 1. Each group of N signals is fed into the inverse discrete

Fourier transform (IDFT) block, which produces {x(m)
1 , . . . , x

(m)
N }. Then, we add a
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cyclic prefix of length L, such that

{x(m)
N−L+1, . . . , x

(m)
N︸ ︷︷ ︸

cyclic prefix

, x
(m)
1 , . . . , x

(m)
N } (7)

is the set of signals transmitted from the mth antenna after digital-to-analog (D/A)

conversion and upconversion.

At the receiver, we remove the cyclic prefix from the received signals after down-

conversion and analog-to-digital conversion (A/D), producing a group of N signals:

{y(m)
1 , . . . , y

(m)
N } for m = 1, 2, . . . ,MR. Discrete Fourier transform (DFT) block trans-

forms each group into {v(m)
1 , . . . , v

(m)
N }. After the permutation by P̂R, the received

signals are recollected such that vn = [v
(1)
n , . . . , v

(MR)
n ]T for n = 1, 2, . . . , N .

Equivalently, as shown in Figure 1, the received signals after DFT can be written

as

v1 = H1u1 + ñ1

...
...

...

vN = HNuN + ñN

, (8)

where {ñn} are additive noise. Since DFT/IDFT and permutations are unitary pro-

cesses, {ñn} are statistically identical to {nk} in (1). The MR × MT matrix Hn

represents the memoryless channel at the nth tone, where

Hn = G(ej2πn/N) =
L∑
l=0

Gle
−j2πln/N . (9)

Note that Hn is identical for all n when the channel is memoryless (L = 0).

For the rest of the thesis, we will consider the MIMO-OFDM model of (8) instead

of the underlying channel of (1).

Lemma 2.1. Given our assumption that the channel taps are uncorrelated, all {Hn}

are statistically identical to each other. If fading is spatially uncorrelated, each en-

try of Hn is i.i.d. CN (0, 1), that is, all {Hn} is statistically identical to spatially

uncorrelated Rayleigh flat fading.
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Figure 1: Block diagram for MIMO-OFDM and its equivalent channel model.

Proof. From (3), the channel matrix at each tap is Gl = (RRl)
1
2 Wl, where R

1/2
Rl

=

[rl,1, · · · , rl,MR
]T is the receiver correlation matrix and Wl = [wl,1, · · · ,wl,MT

] is an

MR ×MT matrix with i.i.d. CN (0, 1) elements, with rl,i and ql,i are MR × 1 vectors.

Then, the element of Hn at the p-th row and q-th column is

[Hn]p,q =
L∑
l=0

rTl,pwl,qe
−j2πln/N , (10)

where superscript T denotes the transpose of a vector. Since [Hn]p,q is a linear

combination of zero-mean unit-variance complex Gaussian random variables in wl,p,

[Hn]p,q is also a complex Gaussian random variable. Clearly, its mean and variance

E [[Hn]p,q] = 0 and E [|[Hn]p,q] |2 =
∑L

l=0 ||rl,i||2 are independent of n, where || · || is

the Euclidean norm [33]. Since a Gaussian random variable is fully described by its

mean and variance, it is sufficient to say that Hn has identical statistics for all n.

For spatially uncorrelated fading, the correlation matrix is RRl = σ2
l IMR

. Thus,

each element of Hn =
∑L

l=0 σ
2
l Wle

−j2πln/N is a Gaussian random variable with zero

mean and variance E
[
|[Hn]p,q|2

]
=
∑L

l=0 σ
2
l = 1. Also Hn inherits the spatially

uncorrelated property from {Wl}. Since a Gaussian random variable is fully described
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by its mean and variance, each Hn is statistically identical to a flat-fading MIMO

channel (L = 0). �

Corollary 2.1. Let M be the rank of Hn, such that M ≤ min(MT ,MR). Then, M

is constant for all n with probability one. If the channel is spatially uncorrelated,

M = min(MT ,MR) with probability one.

Proof. The proof is straightforward from Lemma 2.1. �

2.3 Functions for Eigenvalues

Eigenvalues of HnH
∗
n are crucial in the information-theoretical analysis. As Hn is a

random matrix, the eigenvalues are also random variables. This section introduces

some useful functions of eigenvalues for the use in analysis.

Eigenvalues of HnH
∗
n are closely related to singular-value decomposition (SVD)

of Hn.

Theorem 2.1 (SVD). For any complex MR ×MT matrix A with rank M , there

exists an SVD of the form:

A = UDV∗, (11)

where U (MR×MR) and V (MT ×MT ) are unitary. The MR×MT matrix D = [di,j]

has di,j = 0 for all i 6= j, and d1,1 ≥ d2,2 ≥ . . . ≥ dM,M > dM+1,M+1 = . . . = da,a = 0,

where a = min(MT ,MR). Then, the singular values of A, {di,i; i = 1, 2, . . . ,M}, are

the nonzero eigenvalues of AA∗, and hence are uniquely determined.

Proof. See [33]. �

The unitary matrices U and V are not unique. If MR ≤ MT and if AA∗

has distinct eigenvalues, then V is determined up to a right diagonal factor T =

diag(ejθ1 , . . . , ejθn) with real-valued θi; that is, if A = U1DV∗1 = U2DV∗2, then

V2 = V1T. If MR < MT , then V is never uniquely determined; if MR = MT = M
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and V is given, then U is uniquely determined. If MT ≤ MR, the uniqueness of U

and V is determined by considering A in a similar way of the case where MR ≤MT .

Corollary 2.2. Let {dm,m} beM nonzero singular values of Hn. Then, {s(m)
n = d2

m,m}

are M nonzero eigenvalues of either HnH
∗
n or H∗nHn.

Proof. See [33]. �

2.3.1 Arithmetic and Geometric Means of Eigenvalues

We begin with well-known arithmetic and geometric means of {s(m)
n }.

Definition 2.2. For a given index set L for (m,n), we define the arithmetic and

geometric means of {s(m)
n ; (m,n) ∈ L} as:

AL =
1

|L|
∑

(m,n)∈L

s(m)
n , (12)

and

GL =

 ∏
(m,n)∈L

s(m)
n

1/|L|

, (13)

respectively. �

A well-known inequality is that AL ≥ GL with equality if and only if s
(m)
n is

independent of m and n for any index set L of m and n. Both AL and GL are random

variables since they are just sum or product of {s(m)
n }. We can relate AL with the

channel taps {Gl} of (1), as follows.

Lemma 2.2. If Nu is the universe index set:

Nu = {(m,n);m = 1, . . . ,M, and n = 1, . . . , N} , (14)

which encompasses all m and n, then we have

ANu =
1

M

L∑
l=0

||Gl||2F =
1

M(L+ 1)

L∑
l=0

||Wl||2F , (15)
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where Wl is a MR × MT matrix with i.i.d. CN (0, 1) elements, and where ||A||F

denotes the Frobenius norm of A defined as

||A||F =
√

tr{AA∗}. (16)

Proof. From the definition of arithmetic mean,

ANu =
1

MN

N∑
n=1

M∑
m=1

s(m)
n =

1

MN

N∑
n=1

||Hn||2F . (17)

Since ||Hn||2F =
∑MR

p=1

∑MT

q=1 |[Hn]p,q|2, we have

N∑
n=1

||Hn||2F =
N∑
n=1

MR∑
p=1

MT∑
q=1

|[Hn]p,q|2

=

MR∑
p=1

MT∑
q=1

N∑
n=1

∣∣∣∣∣
L∑
l=0

[Gl]p,qe
j2πln/N

∣∣∣∣∣
2

=

MR∑
p=1

MT∑
q=1

N∑
n=1

{ L∑
l=0

|[Gl]p,q|2

+
∑
l 6=l′

2Re
[
[Gl]p,q[Gl]

∗
p,qe
−j2π(l−l′)n/N

]}
. (18)

Since
∑N

n=1 e
−j2π(l−l′)n/N = 0, (18) reduces to

N∑
n=1

||Hn||2F =
L∑
l=0

MR∑
p=1

MT∑
q=1

N∑
n=1

|[Gl]p,q|2 = N
L∑
l=0

||Gl||2F . (19)

Substituting (19) into (17), we obtain (15). �

Corollary 2.3. If the channel is spatially uncorrelated and the power profile is

uniform, M(L + 1)ANu is a chi-square random variable with a degree of freedom

MTMR(L+ 1) [39]. The probability density function (PDF) is

fM(L+1)ANu
(x) =

xMTMR(L+1)−1e−x

Γ(MTMR(L+ 1))
x ≥ 0, (20)

where

Γ(x) =

∫ ∞
0

tx−1e−tdt, (21)

is the Gamma function [29].1

1When x is an integer, Γ(x) = (x− 1)!, where ! denotes the factorial.
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Proof. With the uniform power profile, ANu = 1
M(L+1)

∑L
l=0 ||Wl||2F , where Wl has

i.i.d. CN (0, 1) entries. From the definition of the Frobenius norm, ANu is a chi-square

random variable with a degree of freedom MTMR(L+ 1). �

2.3.2 Empirical Distribution

Another important function for {s(m)
n } is the empirical distribution function [30].

Definition 2.3. Let θ
(m)
n = s

(m)
n /M . Then, the empirical distribution of {θ(m)

n } over

an index set L is given by

ΨL(x) =
1

|L|
∑

(m,n)∈L

1{θ(m)
n ≤ x}, (22)

where 1{·} is an indicator function, such that 1{A} is unity if the condition A is

satisfied or zero otherwise, and where |L| denotes the cardinality of L. �

Empirical distribution is a random variable when M is finite, but it is known to

converge to a non-random limit as M → ∞. For a spatially uncorrelated channel

with L = 0 memory, we can explicitly evaluate the limit of ΨNu(x), where Nu is the

universe index set in (14), as follows.

Theorem 2.2. We consider a spatially uncorrelated channel with L = 0 memory.

Suppose that M tends to infinity such that min(MT ,MR)
max(MT ,MR)

→ β ≤ 1. Then,

θ
(1)
n → a , (1 +

√
β)2

θ
(M)
n → b , (1−

√
β)2

, (23)

with probability one, for any n. In fact, the entire empirical distribution of a randomly

selected eigenvalue converges. Also, the empirical distribution converges to a non-

random limit, such that

dΨNu(x) =


1

2πβx

√
(x− a)(b− x) a ≥ x ≥ b

0 otherwise
(24)
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Proof. For a tutorial, see [30]. The proof for this theorem can be found in [5] for

the smallest eigenvalue and [4] for the largest eigenvalue, respectively. For the last

statement, see for example [35]. �

From Lemma 2.1, we deduce that ΨNu(x) also converges to a non-random limit when

L > 0.

2.3.3 Joint Distribution of Eigenvalues

When the channel is spatially uncorrelated, Lemma 2.1 states that each Hn is statisti-

cally identical to W, a random matrix with i.i.d. CN (0, 1) in its entries. In mathemat-

ics, WW∗ is called a Wishart matrix [23, 30]. The eigenvalues of a Wishart matrix

has been extensively studied. Particularly, the joint PDF of {s(m)
n } is known [23, 30].

For notational simplicity, we discard the tone index n in this section, since {s(m)
n ;m =

1, 2, . . . ,M} are statistically identical for any n.

Theorem 2.3 (Ordered Eigenvalue Distribution). The joint distribution of s =

[s(1), . . . , s(M)] is

fs(x1, x2, . . . , xM) =
πM(M−1)

ΓMT
(MR)ΓMR

(MT )
exp

(
M∑
u=1

xu

)
M∏
u=1

xDu
∏
u<v

(xu − xv)2, (25)

where D = max(MT ,MR)−min(MT ,MR), and where

Γm(x) = πm(m−1)/x

m∏
i=1

Γ(x− i+ 1). (26)

Proof. See [30]. �

Corollary 2.4. Let A and B be a× b and b×a matrices, respectively, with CN (0, 1)

in their entries. The eigenvalues of AA∗ and BB∗ have identical joint PDF.

Proof. The proof is straightforward from the symmetry of (25) with respect to MT

and MR. �

If we randomize the order of {s(m)}, we have a simpler distribution function.
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Theorem 2.4 (Unordered Eigenvalue Distribution). Let s be a randomly se-

lected eigenvalue from {s(m)}. Then, its PDF is given by

fs(x) =
1

M

M−1∑
k=0

k!xDe−x

(k +D)!

{
LDk (x)

}
, (27)

where Lmk (x) is the Laguerre polynomial of order k [29], defined as

Lmk (x) =
exx−m

k!

dk

dxk
{
e−xxk+m

}
=

k∑
i=0

(−1)i
(
k +m

k − i

)
xi

i!
. (28)

Proof. See [52]. �

Theoretically, it is possible to derive the marginal distribution by evaluating

(M − 1)-fold integration of (25). The required integrals, however, quickly become

intractable. To our knowledge, marginal PDF is known only for small MT and MR.

Example 2.1. When MT = MR = 2 and MT = MR = 3, marginal distribution

functions are:

fs(1)(x1) = (2− 2x1 + x2
1)e−x1

fs(2)(x2) = 2e−2x2 , (29)

and,

fs(1)(x1) =
1

4
(12− 24x1 + 24x2

1 − 8x3
1 + x4

1)e−x1

− 1

2
(12− 12x1 + 6x2

1 + 2x3
1 + x4

1)e−2x1 + 3e−3x1

fs(2)(x2) =
1

2
(12− 12x2 + 6x2

2 + 2x3
2 + x4

2)e−2x2 − 6e−3x2

fs(3)(x3) = 3e−3x3 , (30)

respectively [65]. �

In communications, the largest eigenvalue s(1) is of particular interest since it

carries the largest amount of information. A general form for the marginal CDF of

s(1) is known [30].
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Theorem 2.5. The marginal CDF of the largest eigenvalue (s1) is given by

Prob[s(1) < x] =
ΓMR

(MR)

ΓMR
(MT +MR)

xMTMR
1F1(MT ;MT +MR;−xI), (31)

where 1F1(; ; ) is the hypergeometric function of matrix argument [29].

Proof. See [30]. �

The hypergeometric function of matrix argument is extremely difficult to compute

as it is represented by slowly-converging Zonal polynomials [30]. Instead of (31), we

can directly derive the marginal distribution functions for some special cases.

Example 2.2. When MT = 1 and MR ≥ 1, namely a single-input multiple-input

(SIMO) channel and fading is spatially uncorrelated, there is only one nonzero eigen-

value (M = 1), and (31) reduces to

fs(1)(x) =
xMR−1e−x

Γ(MR)
. (32)

When MT ≥ 1 and MR = 1, namely a multiple-input single-output (MISO) channel,

(32) is valid with MT replacing MR. �

Example 2.3. When MT = MR = M = 4, the marginal PDF of the largest eigen-

value is

fs(1)(x) =
M∑
k=1

ϕk(x)e−kx, (33)

where

ϕ1(x) = 4− 12x+ 18x2 − 34

3
x3 +

7

2
x4 − 1

2
x5 +

1

36
x6

ϕ2(x) = −12 + 24x− 24x2 +
8

3
x3 − 1

2

ϕ3(x) = 12− 12x+ 6x2 +
14

3
x3 +

23

6
x4 +

5

6
x5 +

1

12
x6

ϕ4(x) = −4. (34)

�
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On the other hand, the marginal distribution of the smallest eigenvalue is known

for MT = MR.

Example 2.4. When MT = MR = M , the marginal PDF of the smallest eigenvalue

s(M) is [23]

fs(M)(x) = Me−Mx. (35)

Note that the smallest eigenvalue is exponentially distributed, which means that

E[1/s(M)]→∞. �
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CHAPTER 3

CLOSED-LOOP MIMO-OFDM

This chapter considers a closed-loop MIMO-OFDM system, where the transmitter

has perfect CSI. We address the transmit beamforming technique for a MIMO chan-

nel by exploiting CSI. If the transmitter uses the optimal beamforming, known as

eigenbeamforming, to maximize the achievable rate, a MIMO channel is transformed

into a bank of scalar channels with no crosstalk from one scalar channel to next.

Next, we briefly mention the feasibility of having CSI at the transmitter and propose

an filter-reuse scheme for a time-division duplex (TDD) system. Finally, we survey

adaptive algorithms for the receive filter of eigenbeamforming.

3.1 Transmit Beamforming

We consider the effective MIMO-OFDM channel in Figure 1:

v1 = H1u1 + ñ1

...
...

vN = HNuN + ñN

. (36)

For each Hn, we set a transmit filter and a receive filter at the receiver, as illustrated

in Figure 2. Joint optimization of the transmit and receiver filters for MIMO is

already a familiar topic in signal processing [45, 49, 51, 67]. In this thesis, we focus

on maximizing the achievable rate.

3.1.1 Principal Eigenmode

First, we consider the transmit beamforming with traditional weight vectors [26],

where we set vn as a transmit filter and u∗n as a receive filter for each Hn in Figure 2.
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Figure 2: Block diagram for transmit beamforming.

Then, the output of the receive filter is

zn = u∗nHnvnan + u∗nñn n = 1, 2, . . . , N, (37)

where an is the data signal and ñn is the noise vector. The receive SNR is maximized

by choosing vn and u∗n as the principal (corresponding to the largest eigenvalue)

eigenvectors to HnH
∗
n and H∗nHn, respectively, under the unit-norm constraint [66].

Then, (37) becomes:

zn =

√
s

(1)
n an + wn n = 1, 2, . . . , N, (38)

where wn = u∗nñn and where s
(1)
n is the largest eigenvalue of HnH

∗
n. For this reason,

we call the transmit beamforming scheme in (37) the principal-eigenmode transmis-

sion.

We will later see that the principal eigenmode achieves a full diversity on a spa-

tially uncorrelated channel. However, since there is only one scalar channel, the

spatial multiplexing gain of MIMO disappears and the principal eigenmode can suffer

a significant loss in rate. Practically, the principal eigenmode is considered to be

competitive since its implementation is quite simple. Especially, it is suitable to the

outdoor environment, where the largest eigenvalue is often dominantly larger than

others [25]. An extreme case is when there is only one path (L = 0) in the model of

(5). Then, the rank drops to M = 1, meaning that the largest eigenvalue is the only

nonzero eigenvalue. In such a case, the principal eigenmode is optimal.
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3.1.2 Eigenbeamforming

Beamforming weight vectors at both ends create a principal-eigenmode transmission,

in which only the largest eigenvalue of HnH
∗
n is used for sending data. In this sec-

tion, we examine the optimal beamforming, such that all eigenvalues are used for

transmission, so that it maximizes the achievable rate of a MIMO channel.

Instead of weight vectors, we use matrices for transmit and receive filters. For

MIMO-OFDM, the optimal (capacity-maximizing) beamforming is based on the SVD

of each Hn [11, 48]. Let Hn = UnDnV
∗
n be an SVD of Hn, where {s(m)

n } are M

nonzero eigenvalues of HnH
∗
n. Having CSI at the transmitter as well as at the receiver,

we set Vn as an eigenbeamforming filter at the transmitter and U∗n as a matched

filter at the receiver for each OFDM tone, as shown in Figure 3, which transforms the

MIMO-OFDM channel in (8) into a bank of MN memoryless scalar channels over

space (m) and frequency (n) [47]:

z
(1)
1 =

√
s

(1)
1 a

(1)
1 + w

(1)
1

...
...

z
(M)
1 =

√
s

(M)
1 a

(M)
1 + w

(M)
1

 1st tone

...
...

...

z
(1)
N =

√
s

(1)
N a

(1)
N + w

(1)
N

...
...

z
(M)
N =

√
s

(M)
N a

(M)
N + w

(M)
N

Nth tone

, (39)

as illustrated in Figure 3, where {a(m)
n } are the input signals to the eigenbeamforming

filters at the transmitter and {z(m)
n } are the output signals to the matched filters at

the receiver. The noise {w(m)
n } has the same statistics as the noise vector in (8), that

is, {w(m)
n } are i.i.d. Gaussian random variables with zero mean and E[|w(m)

n |2] = N0,

since Vn and Un are unitary. For each tone, eigenbeamforming creates M spatial

channels (eigenmodes).
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Figure 3: OFDM and eigenbeamforming transform a frequency-selective MIMO
channel into a bank of scalar channels over space and frequency.

Remark 3.1. In the case of eigenbeamforming, an a-input b-output channel is equiv-

alent with a b-input a-output channel in the sense that both have identical eigenvalues

{s(m)
n }. �

Example 3.1. Let us consider the case where MT = 1 but MR > 1 (SIMO). For sim-

plicity, we assume that flat fading (L = 0). A flat-fading SIMO channel is represented

by:

H =


h1,1

...

hMR,1

 . (40)

Let H = UDV∗ be an SVD of H, where D = [||H||F , 0, . . . , 0]T ; U = [û1, û2, . . . , ûMR
]

such that û1 = H/||H||F and û∗mH = 0 satisfying ||ûm||2 = 1 for m = 2, 3, . . . ,MR;

and V = 1. Let y = Hx +n be the received signal. Then

z = U∗y = ||H||Fa+ U∗n. (41)

Thus, eigenbeamforming reduces to the maximum-ratio combining (MRC) in a SIMO

channel [53]. �

Example 3.2. Suppose that MT > 1 and MR = 1 (MISO). Let H = UDV∗ be

an SVD of the channel matrix H = [h1,1, . . . , h1,MT
], where D = [||H||F , 0, . . . , 0];
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U = [1]; V = [v̂1, v̂2, . . . , v̂MT
] such that v̂1 = H∗/||H||F and v̂∗mH∗ = 0 satisfying

||v̂m||2 = 1 for m = 2, 3, . . . ,MT . Note that 1 ×M MIMO is equivalent to M × 1

MIMO after eigenbeamforming since both have the same effective channel D. �

The advantages of eigenbeamforming include

• There is no crosstalk between spatial channels (eigenmodes). Thus, conventional

channel codes are readily used, and the complexity of decoding only linearly

grows with the number of transmit antennas.

• Eigenbeamforming can be applied to any size and any rank of channel matrix

since SVD exists for any matrix, that is, eigenbeamforming is readily applicable

to spatially correlated channels.

• Finally and most importantly, eigenbeamforming is optimal in the information-

theoretical sense since unitary filters preserve information. We will discuss this

advantage in depth in the next chapter.

However, there are also drawbacks:

• It requires perfect CSI at the transmitter as well as at the receiver.

• SVD requires a high complexity with an order O3.

As the answers to the above drawbacks, we will address the availability of CSI at the

transmitter in Section 3.2 and develop low-complexity adaptive eigenbeamforming in

Section 3.3.

3.2 Availability of CSI at the Transmitter

In this section, we briefly review how a transmitter can obtain CSI. Generally speak-

ing, there are two ways: (1) sending back the estimated CSI from receiver to trans-

mitter via a dedicated feedback; (2) using reciprocity of a time-division duplex (TDD)

channel.
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3.2.1 Feedback of CSI

An intuitive way to furnish the transmitter with CSI is to feed back the estimated

CSI from receiver to transmitter. However, the feedback information is redundant

information, which has nothing to do with information data. Moreover, the delay

due to the feedback might cause a mismatch problem if the channel changes during

feedback. The latter is not a big problem on a slowly varying channel. However, the

redundant load of the feedback could be a serious problem, particularly when the

number of tones is large in MIMO-OFDM.

The question is whether the feedback of CSI is worthwhile despite the side in-

formation. We will answer this question by showing that a transmitter with CSI

performs significantly better than a transmitter ignorant of CSI in terms of outage

capacity in Chapter 4.

In some cases, a partial feedback of CSI would be sufficient. An example is

a transmit beamforming strategy using covariance matrix feedback [34]. On the

other hand, only the quality of channel is sent back to the transmitter. In this case,

beamforming or eigenbeamforming are not possible, but adaptive transmission using

partial CSI can improve performance.

3.2.2 Time-Division Duplex

In a TDD system, we can avoid a feedback of CSI to the transmitter if the reciprocity

of wireless channels is exploited [37, 54].

Despite the reciprocity of the propagation channel, there are nontrivial imple-

mentation issues that make the problem harder in a system with multiple transmit

antennas, namely the effects of transmission and reception electronics [37]. More pre-

cisely, the channel responses are cascades of the physical channel and the responses

of the transmission and reception electronics. Since the transmitter and receive elec-

tronics do not have the same response, they must be estimated using self-calibrating
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circuits. This is less of an issue in a single-antenna system, since estimates of the cas-

caded channels phase responses are not required. With multiple antennas, accurate

phase estimates are required to use techniques such as beamforming. Some important

practical issues are discussed in [41].

In this work, we assume that the reciprocity is perfect. Then, the receive filter may

be estimated while receiving signals from the other end, and the estimated receive

filter may be used as the transmit filter during transmission in the opposite direction.

As shown in Figure 4, where we assume flat fading for simplicity, there exist two links:

a forward link on the top and a reverse link on the bottom. Let H be the channel

for the forward link and H = UDV∗ be an SVD of H. In the forward link, we set

V as a transmit beamforming filter and U∗ as a receive beamforming filter, which

diagonalizes the channel matrix H:

zF = U∗HVaF + U∗nF = DaF +wF , (42)

where the subscript F denotes signals in the forward link. In the reverse link, due

to reciprocity, the channel matrix is HT , and the eigenbeamforming diagonalizes the

channel matrix, such that

zR = VTHT (U∗)TaR + VTnR = DaR +wR, (43)

where we use (U∗)T as a transmit filter and VT as a receive filter.

Note that both transmitters see the same effective channel D in (42) and (43). If

V is used for a transmit filter, its transpose is used as a receiver filter on the left-

handed side in Figure 4. The same is true for the right-handed side, implying that

no feedback is necessary.

3.3 Adaptive Eigenbeamforming

An intuitive method to estimate the receive filter U is to compute the SVD from an

estimate of H directly. However, as long as we know U and D, the explicit knowledge
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Figure 4: Reciprocity of TDD

of H is not necessary. In this section, we investigate adaptive methods to estimate

U and D at the receiver. We set either V (correct eigenbeamforming filter), or IMT

(arbitrary unitary filter) as the transmit filter and estimate U either blindly or with

a pilot sequence. We consider three different ways.

First, we use multidimensional phase-locked loop (MPLL) of [15] to solve the

problem of estimating an unitary filter U. Following [15], we define a partial rotation

from x to y as

Rλ(x→ y) = I +

[
u,v

] p− 1 −p
|p|

√
1− |p|2√

1− |p|2 |p| − 1


 u∗
v∗

 , (44)

where p is the normalized inner product, p = x∗z
||x||||z|| , with z = λy + (1 − λ)x,

and where {u,v} is a basis for the two-dimensional subspace spanned by x and y:

u = x
||x|| and v = z/||z||−pu√

1−|p|2
.1 Roughly stated, R is a unitary matrix that rotates all

of the way from x
||x|| to y

||y|| , so that Rλ rotates only a fraction λ of the way, where

0 < λ < 1. More precisely, Rλ is a unitary matrix satisfying Rλ x
||x|| = z

||z|| , where z

1For the case where x and y are collinear (|p| = 1), we take v = 0 in (44).
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is an intermediate vector lying between x and y.

For a blind scheme, the choice of transmit filter does not matter as long as it is

unitary. Let Ûk be an estimate for U at the kth signaling interval. The update for

Ûk is given by

Ûk = Ûk−1Rλ(Gz → z), (45)

where G = diag[g1, g2, . . . , gK ] is a diagonal matrix with g1 > g2 > ... > gK > 0 [16].

We emphasize that because the left factor U of an SVD is not unique, (45) does

not converge to a unique solution, but rather only to a U corresponding to one of

many possible singular-value decompositions. This uniqueness problem is typical in

blind algorithms, and the phase of diagonal elements of Û∗HV, where V is a valid

right factor of an SVD, cannot be completely resolved. For this reason, training is

necessary to resolve the rotation [16], or differential coding is used [21].

MPLL can also be used if the correct eigenbeamforming filter V is used. In such

a case, the update is given by

Ûk = Ûk−1Rλ(Da→ z), (46)

where a is the transmitted signal vector known at the receiver. At high SNR, the

estimation is almost perfect, but performance degrades as SNR decreases.

We can use traditional equalization methods to obtain U if V is used for the trans-

mit filter. The receive filter can be estimated by a stochastic gradient algorithm [6],

such that

C∗ = C∗ − µ(z − a)y∗, (47)

where µ is a step size for the update, if the receiver knows the transmitted signal

vector a, where we use C = [c1, . . . , cMR
] instead of U to emphasize that C is not

necessarily unitary. If the noise is absent, C converges to

cm =
um√
s(m)

. (48)
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The stochastic gradient algorithm works well for the detection of a. However, in a

TDD system, where we need to know an unitary matrix U, which will be used a

transmit filter in the opposite-direction transmission, a problem arises since there is

no constraint on the unitary property of the estimated filter in the update of (47)

and a slight error in cm leads to a large error in estimated U.

Finally, we introduce a method to estimate U from the eigenvectors of the covari-

ance matrix of the received signal vector v:

Kvv = E[vv∗]. (49)

If E[aa∗] = EaIMT
, (49) reduces to K = EaUD2U∗ + N0IMR

, from which we can

estimate U. Another case is when we use a valid right factor of an SVD as the

transmit filter, V, then K = UD̂U∗+N0IMR
, where D̂ = diag[s(1)e(1), . . . , s(M)e(M)].

Adaptive algorithms to estimate the eigenvectors form the covariance matrix has been

studied for a long time, such as [36]. Both blind or data-aided update is possible in

this case.

Recently, new algorithms for estimating transmit and receiver filters have been

proposed based on power method [21] and subspace estimation [22], both for a TDD

system. The algorithm based on power method can estimate the transmit and re-

ceive filters as well as eigenvalues blindly. The subspace method basically uses the

covariance matrix in (49) and calculate the receive filter from the eigenvectors of the

covariance matrix. Both algorithms work when only K (≤ M) eigenmodes are used

for transmission.
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CHAPTER 4

INFORMATION THEORY FOR MIMO

Information theory for MIMO fading channels has drawn considerable attention. As a

fading channel is a random variable, so is its mutual information between transmitter

and receiver. Thus, we need to map the random mutual information to a meaningful

deterministic value, such as average or outage capacity, depending on the channel

generation process [60].

In this chapter, we review the average and outage capacity of MIMO-OFDM

in Figure 1 assuming that CSI is known at the receiver. We consider both the cases

where perfect CSI is known and unknown at the transmitter. We have two goals in this

chapter: (1) to review increased capacity (spatial multiplexing) and improved outage

performance (diversity) in MIMO; (2) to show that the transmitter CSI considerably

improves the outage performance. We also present a contribution on outage-region

capacity at the end of this chapter. First, we begin by defining average and outage

capacity.

4.1 Definition of Average and Outage Capacity

In a wireless communication system, a transmitter is usually constrained in its power.

We consider the MIMO-OFDM model in Figure 1, where vn = Hnun + ñn for n =

1, 2, . . . , N . If Ĥ = diag[H1, . . . ,HN ], let Qn = E
[
unu

∗
n

∣∣∣Ĥ] be the covariance matrix

of the input signal vectors un to the nth memoryless channel Hn. We consider

two energy constraints: the total energy must satisfy either a long-term (average)

constraint

E

[
1

N

N∑
n=1

tr(Qn)

]
= Ē, (50)
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where the expectation is over Ĥ, or a short-term (instantaneous) constraint:

1

N

N∑
n=1

tr(Qn) = Ē. (51)

We note that the short-term constraint is a special case of the long-term constraint.

For both cases, the SNR per receive antenna is defined as

ρ = Ē/N0. (52)

With the long-term constraint, the transmitter can control power according to the cur-

rent channel status, known as power control for the single-user communications [13].

In fading environment, Ĥ is a random matrix. Thus, the maximum mutual infor-

mation1 for a particular channel realization Ĥ:

I(Ĥ) =
1

N

N∑
n=1

log2 det

(
IMR

+
HnQnH

∗
n

N0

)
(53)

is also a random variable. The units of I(Ĥ) are bits per signaling interval, which

reduce to bits/sec/Hz when the rate loss due to the cyclic prefix in (7) is negligible. To

characterize the information-theoretical aspects of (53), it is necessary to transform

the mutual information into a non-random quantity, such as the ensemble average or

the cumulative distribution function (CDF).

The average capacity is obtained by taking expectation of I(Ĥ).

Definition 4.1 (Average Capacity). The average capacity of MIMO-OFDM is

C = sup
{Qn}

E[I(Ĥ)], (54)

where the supremum is over all {Qn} satisfying the energy constraint. �

If the process that generates the channel is ergodic [39], such that the time average

of I(Ĥ) converges to the ensemble average E[I(Ĥ)] as the window for the time average

becomes large, there exists a channel code that is able to achieve (54) [60].

1Maximized for Gaussian noise by Gaussian distributed transmitted signals [20].
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However, the ergodic assumption is not necessarily satisfied, for example, when

the channel is chosen randomly at the beginning of transmission and remains fixed for

all channel uses [60]. In this case, the average capacity in (54) is not the achievable

rate any longer, but we use the outage probability. Let R be the transmission rate

in bits per signaling interval. Then, we declare an outage occurs when I(Ĥ) of (53)

is smaller than R. In other words, the transmission rate exceeds its limit, and no

code can achieve arbitrarily small error probability. We measure how often an outage

occurs by the probability of outage.

Definition 4.2 (Outage Probability). Let R be the fixed transmission rate. We

define the outage probability:

P
OUT

= FI(Ĥ)(R) = Prob[I(Ĥ) < R], (55)

where FI(Ĥ)(x) = Prob[I(Ĥ) < x] denotes the CDF of I(Ĥ).2 �

In some cases, it is impossible to make P
OUT

= 0 for any nonzero R, and there is

a tradeoff between outage probability and supportable rate.

Definition 4.3 (Outage Capacity). We define ε-achievable rate [7] as

Cε = sup
{Qn}

sup{R : Prob[I(Ĥ) < R] < ε}, (56)

where the first supremum is over all {Qn} satisfying the energy constraint. �

Conventionally, 1% outage capacity means Cε=10−2 . Clearly, Cε is reduced as ε de-

creases.

4.1.1 Spatial Multiplexing and Diversity Orders

We define two asymptotic measures for capacity C and outage probability P
OUT

at

high SNR: spatial multiplexing order and diversity order, which measure the advan-

tages of using multiple antennas on a MIMO channel.

2We use the definition Prob[X < x] for CDF instead of frequently used Prob[X ≤ x]. For a
continuous CDF, this difference is unimportant.
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Definition 4.4 (Spatial Multiplexing Order). When C denotes the capacity,

either average or outage, the spatial multiplexing order is defined as:

spatial multiplexing order = lim
ρ→∞

C

log2(ρ)
, (57)

where ρ is SNR. �

Definition 4.5 (Diversity Order). The diversity order quantifies how sharply the

outage probability decays as SNR grows [62], defined as:

diversity order = − lim
ρ→∞

log(P
OUT

)

log(ρ)
, (58)

where ρ is SNR.3 �

The spatial multiplexing order is the asymptotic rate at which C increases with

log-scale SNR. Graphically, the spatial multiplexing order measures the asymptotic

slope of C versus log-scale SNR. A MIMO channel offers a spatial multiplexing order

of as large as M , where M is the rank of Hn [62].

On the other hand, the diversity order measures the asymptotic slope of outage

probability versus SNR on a log-log scale, that is, how sharply the outage probability

decays as SNR grows. As the outage probability is a lower bound for the probability

of error, the diversity order is related to the reliability of communications on fading

channels. Intuitively, a MIMO channel has MTMR links between transmitter and

receiver, and thus provides MTMR times more protection against the effects of fading

than a SISO channel. If P
OUT

= 0 is possible at a finite SNR, the outage probability

curve drops vertically and its diversity order is infinite, as on non-fading channels. We

will see that an infinite diversity order can be achieved with CSI at the transmitter

when the long-term energy constraint in (50) is used.

3An alternative definition for diversity order, limρ→∞
log(Pe)
log(ρ) is also used as a design criterion,

where Pe is the pairwise error probability. This alternative definition is used in well-known space-
time code design [56, 57, 58, 59]
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4.2 CSI Unknown at Transmitter

When the transmitter is ignorant of CSI, it has no choice but to distribute power

equally over space, frequency, and channel realizations, such that:

Qn =
Ē

MT

IMT
, (59)

so that it satisfies the short-term constraint:

1

N

N∑
n=1

tr{Qn} = Ē. (60)

4.2.1 Average Capacity

With Qn = Ē
MT

IMT
, it is not hard to show that the mutual information in (53)

becomes:

I
RCSI

=
1

N

N∑
n=1

log2 det

(
IMR

+
ρ

MT

HnH
∗
n

)

=
1

N

N∑
n=1

M∑
m=1

log2

(
1 +

ρ

MT

s(m)
n

)
, (61)

where we use HnH
∗
n = UnSnU

∗
n from Definition 2.1 with Sn = diag[s

(1)
n , . . . , s

(M)
n ].

Then, the average capacity, constrained by the transmitter’s ignorance of CSI, is:

C
RCSI

= E [I
RCSI

]

= E

[
1

N

N∑
n=1

M∑
m=1

log2

(
1 +

ρ

MT

s(m)
n

)]
. (62)

Lemma 4.1. The average capacity in (62) is independent of n in the sense that

C
RCSI

= E

[
M∑
m=1

log2

(
1 +

ρ

MT

s(m)
n

)]
. (63)

Proof. Straightforward from Lemma 2.1. �

A distinct difference from the single-antenna case lies in the summation over M

spatial channels in (63), which implies the spatial multiplexing gain of a MIMO

channel can be at most M times larger, as will be shown in Chapter 5.
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4.2.1.1 Spatially Uncorrelated Channel

When the channel is spatially uncorrelated, the rank is M = min(MT ,MR) for all n,

and we can rewrite (62) as

C
RCSI

= E

[
M∑
m=1

log2

(
1 +

ρ

MT

s(m)

)]
, (64)

where the elements of W are i.i.d. CN (0, 1) and {s(m);m = 1, 2, . . . ,M} are the

eigenvalues of WW∗. From (64), C
RCSI

is independent of L.

Using the PDF of unordered eigenvalues in (27), C
RCSI

becomes:

C
RCSI

=

∫ ∞
0

log2

(
1 +

ρx

MT

) M∑
k=0

k!xDe−x

(k +D)!

{
LDk (x)

}2
dx, (65)

where D = max(MT ,MR)−min(MT ,MR) and Lmk (x) is the Laguerre polynomial of

order k defined in (28).

Theorem 4.1. The average capacity of a spatially uncorrelated MIMO Rayleigh-

fading channel can be expressed in a semi-analytic form as:

C
RCSI

=
eMT /ρ

log(2)

M−1∑
k=0

k∑
l=0

2l∑
i=0

{
(−1)i(2l)!(D + i)!

22k−il!i!(D + l)!
(66)

×
(

2k − 2l

k − l

)(
2l + 2b− 2a

2l − i

) D+i∑
j=0

Ej+1

(
MT

ρ

)}
, (67)

where

En(x) =

∫ ∞
1

e−xttndt. (68)

Proof. See [52]. �

We consider the SIMO and MISO cases.

Corollary 4.1. When MT ≥ 1 and MR = 1 (MISO),

C
RCSI

=
eMT /ρ

log(2)

MT−1∑
j=0

Ej+1

(
MT

ρ

)
, (69)
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Figure 5: The average capacity of a M ×M spatially uncorrelated Rayleigh-flat-
fading channel when M ∈ {1, 2, 4, 6, 8, 10}. Also plotted are the high-SNR asymptotes
of the average capacity.

and when MT = 1 and MR ≥ 1 (SIMO),

C
RCSI

=
e1/ρ

log(2)

MR−1∑
j=0

Ej+1

(
1

ρ

)
. (70)

Example 4.1. Figure 5 plots the average capacity in (66) of an M ×M Rayleigh-

flat-fading channel for M ∈ {1, 2, 4, 6, 8, 10}. We can see the increased spatial mul-

tiplexing order as the slope of C
RCSI

in Figure 5 at high SNR increases with M . For

emphasis, Figure 6 illustrates that the ratio of C
RCSI

/ log2(ρ), spatial multiplexing

order, converges to M for each M . �

4.2.1.2 Spatially Correlated Channel

Now we consider the case where the channel is spatially correlated. Following [10],

we assume that fading at the transmitter is spatially uncorrelated (RTl = IMT
) but

fading is correlated at the receiver (RRl 6= IMT
). In such a case, the average capacity

is given by the following theorem.
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Figure 6: The ratio of C
RCSI

/ log2(SNR) for M ∈ {1, 2, 4, 6}.

Theorem 4.2 (Average Capacity).

C
RCSI

= E

[
log2 det

(
IMR

+
ρ

MT

ΛWW∗
)]

, (71)

where

Λ = diag[λ1, λ2, . . . , λMR
] (72)

with λm denoting the mth eigenvalue of R =
∑L

l=0 RRl satisfying
∑M

m=1 λm = MR,

and where W is a MR ×MT matrix, whose elements are i.i.d. CN (0, 1).

Proof. See [10]. �

We remark that C
RCSI

is independent of the tone index n in (71), which agrees

with Lemma 4.1. However, unlike the uncorrelated channel, C
RCSI

increases with L

since the number of nonzero λm is dependent on L.

The average capacity C
RCSI

is maximized when {λm} are equal for all m, namely

when fading at the receiver is spatially uncorrelated, RRl = IMR
[10] . Therefore,
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L {θ̄l}
0 π/2
1 π/4, 3π/4
2 π/4, π/2, 3π/4
3 π/4, 5π/12, 7π/12, 3π/4
4 π/4, 3π/8, π/2, 5π/8, 3π/4
5 π/4, 7π/20, 9π/20, 11π/20, 13π/20, 3π/4

Table 1: θ̄l used in Example.

C
RCSI

of uncorrelated channel (62) is the upper limit of C
RCSI

with correlation (71),

and C
RCSI

(correlated) approaches C
RCSI

(uncorrelated) as L → ∞. We show the

increase of C
RCSI

(correlated) with respect to L by the following example.

Example 4.2. We assume that fading at the receiver is spatially correlated with the

correlation matrix in (6). For L ∈ {0, 1, 2, 3, 4, 5}, Figure 7 and Figure 8 illustrate

the average capacity in (71) for σθ = 0.25 (large spread) and σθ = 0 (small spread),

respectively. The average arrival angles, θ̄l is summarized in Table 1. Recall that

the spatial multiplexing order is dependent of the rank of
∑L

l=0 RRl . In Figure 7 and

Figure 8, we notice that C
RCSI

increases as L grows. Especially, when σθ = 0, where

each RRl collapses to a rank-1 matrix, a significant increase can be observed as L

grows in Figure 8. It is not surprising that the increase saturates from L = 3 since

the rank of
∑L

l=0 RRl becomes full (M = 4), and the rank is limited to M = 4 even

for L > 3. On the other hand, when σθ = 0.25, the rank of
∑L

l=0 RRl is already full

when L = 0. That is why the increase is less significant than when σθ = 0. But,

considering that there is no increase at all when the channel is spatially uncorrelated,

there is an increase in C
RCSI

when σθ = 0.25 as L grows as shown in Figure 7. �

4.2.2 Outage Performance

We investigate the outage performance of MIMO channels in terms of either the

outage probability in (55) or the outage capacity in (56).
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Figure 7: Average capacity for L ∈ {0, 1, 2, 3, 4, 5} when the channel is spatially
correlated with σθ = 0.25.
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Figure 8: Average capacity for L ∈ {0, 1, 2, 3, 4, 5} when the channel is spatially
correlated with σθ = 0.
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From (61), the outage probability when CSI is unknown to the transmitter is

P
OUT

= Prob

[
1

N

N∑
n=1

M∑
m=1

log2

(
1 +

ρ

MT

s(m)
n

)
< R

]

= Prob

[
1

N

N∑
n=1

In < R

]
, (73)

where

In =
M∑
m=1

log2

(
1 +

ρ

MT

s(m)
n

)
(74)

is the mutual information for the nth tone. From Lemma 2.1, In is identically dis-

tributed for all n, whether fading is spatially correlated or not, but is correlated with

each other. Recall that average capacity is independent of n, such that

C
RCSI

= E

[
1

N

N∑
n=1

In

]
= E [In] , (75)

since the expectation and summation are commutable. Therefore, the correlation of

In has no effect on average capacity [10]. For the outage probability in (73), however,

the probability and summation cannot commute, implying that the correlation from

frequency selectivity affects the outage probability.

In fact, frequency selectivity significantly improves the outage performance in a

SISO system [8]. For MIMO, there is a brief discussion in [10], saying that the number

of degrees of freedom in the channel is as large as MRMT (L+1) when each correlation

matrix is full rank (spatially uncorrelated). Thus, the diversity advantage of MIMO

can be MTMR(L + 1) times higher than on flat-fading SISO channels, which will be

rigorously proved in Chapter 5. The following example illustrates the well-known

antenna diversity at the receiver [53].

Example 4.3. For a spatially uncorrelated flat-fading channel with MT = 1 and

MR ≥ 1 (SIMO),

P
OUT

= 1−
Γ(MR,

2R−1
ρ

)

Γ(MR)
, (76)
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Figure 9: Outage probability on a spatially uncorrelated flat-fading channel with
MT = 1 and MR ≥ 1 in (76) at R = 4 bits per signaling interval.

where

Γ(x, y) =

∫ ∞
y

tx−1e−tdt (77)

is the incomplete complementary Gamma function. Figure 9 plots P
OUT

in (76) for

MR ∈ {1, 2, 4, 10} at R = 4 bits per signaling interval. Clearly, the slope of P
OUT

becomes more steeper as MR grows. In other words, the diversity order increases

with MR. With multiple antennas at the receiver, the outage performance remarkably

improves. �

With multiple antennas employed at the transmitter in a MIMO system, we can

obtain transmit diversity gain as well, expecting even better outage performance on

a MIMO channel.

Example 4.4. Figure 10 plots the outage probability at R = 4 bits per signaling

interval on an M × M spatially uncorrelated flat-fading MIMO channel for M ∈

{1, 2, 4, 6}. We can see the diversity order increasing with M . The improvement on
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Figure 10: Outage probability on a spatially uncorrelated channel with MT = MR =
M for M ∈ {1, 2, 4, 6} at R = 4 bits per signaling interval.

outage performance is drastic. In terms of SNR at P
OUT

= 10−2, the advantage of

M = 2 over M = 1 is more than 15 dB. From Figure 10, we confirm that the diversity

advantage is incredibly increased on a MIMO channel. �

This diversity gain from frequency selectivity is a well-known fact on a SISO

channel [8]. We investigate the outage probability of a MIMO-OFDM system in the

following example and show that diversity order increases with L in the following

example.

Example 4.5. Figure 11 illustrates the outage probability of a 4 × 4 spatially un-

correlated channel at R = 10 bits per signaling interval and L ∈ {0, 1, 2, 3, 4, 5}.

Clearly, the outage probability drops more sharply as L grows, implying higher di-

versity order. �

From Definition 4.3, outage capacity Cε, when CSI is available only at the receiver,
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Figure 11: The outage probability of a spatially uncorrelated 4× 4 Rayleigh-fading
channel with memory L ∈ {0, 1, 2, 3, 4, 5} at R = 10 bits per signaling interval.

is

Cε = F−1
I
RCSI

(ε), (78)

where I
RCSI

= 1
N

∑N
n=1 In and FI

RCSI
(x) is its CDF. Clearly, Cε is affected by the

correlation of In. A well-known result is that Cε achieves M spatial multiplexing

order regardless of ε > 0 [62]. However, Cε is zero when ε = 0.

Example 4.6. For a spatially uncorrelated Rayleigh-flat-fading channel with MT =

MR = 1 (SISO), the outage capacity is given by:

Cε = log2

(
1 + ρ log((1− ε)−1)

)
. (79)

Figure 12 illustrates Cε for ε ∈ {10−1, 10−2, 10−5}. It is not surprising that Cε=10−1 is

the largest. However, as SNR tends to infinity, the spatial multiplexing orders (or the

slopes of the curves) are identical, though there is a difference in convergence speed.

�
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Figure 12: The outage capacity for 1× 1 spatially uncorrelated Rayleigh flat fading
with P

OUT
∈ {10−1, 10−2, 10−5}.

For MIMO flat fading, calculating FI
RCSI

(x) is difficult, so we resort to Monte-

Carlo simulations to obtain Cε.

Example 4.7. Consider an M ×M spatially uncorrelated Rayleigh-flat-fading chan-

nel. Figure 13 illustrate the outage capacity Cε for ε = 0.01 and M ∈ {1, 2, 4, 6}.

Clearly, the spatial multiplexing order increases as M grows. The capacity improve-

ment of MIMO, when compared to M = 1, is remarkable. For emphasis, the spatial

multiplexing order is plotted in Figure 14. As SNR gets larger, the spatial multiplex-

ing order converges to M for each M . �

Since Cε is a function of FI
RCSI

(x), it also depends on n. On a spatially uncorrelated

channel, Cε increases with L, but the spatial multiplexing order remains unchanged,

M = min(MT ,MR).

Example 4.8. We consider a 4 × 4 spatially uncorrelated Rayleigh-fading channel

with memory L and N = 128. In Figure 15, we plot the outage capacity at P
OUT

=
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Figure 13: The outage capacity Cε=0.01 on anM×M spatially uncorrelated Rayleigh-
flat-fading channel with M ∈ {1, 2, 4, 6}.
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Figure 14: Spatial multiplexing order on an M×M spatially uncorrelated Rayleigh-
flat-fading channel with M ∈ {1, 2, 4, 6}.
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Figure 15: 1% outage capacity on a 4 × 4 spatially uncorrelated Rayleigh-fading
channel with memory L ∈ {0, 1, 2, 3, 4, 5}.

0.01 for L ∈ {0, 1, 2, 3, 4, 5}. Unlike the average capacity, which is independent of

L, there is a distinct increase as L grows form 0 to 5. To further understand this

behavior, Figure 16 shows the PDF of I at ρ = 8 dB as L ranges from 0 to 5. The PDF

curves are centered at the same point, meaning that the average capacity is identical

regardless of L. However, as L grows, the PDF curves have narrower widths, meaning

that the outage capacity increases with L. �

4.3 CSI Known at Transmitter

The previous section reviewed the results on average and outage capacity assuming

that CSI is available only at the receiver. In this section, we assume a closed-loop

system in Chapter 3, where CSI is also known to the transmitter, and examine the

information-theoretical results. From Chapter 3, we know that eigenbeamforming is

optimal in the sense that information is preserved. We consider the parallel channels
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, (80)

First, we address the classical problem of allocating power to parallel channels. Then,

we examine average and outage capacity mainly with the long-term energy constraint

in (50). We also provide the results with the short-term energy constraint in (51) for

comparison.
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4.3.1 Power Allocation Problem

For the parallel channels in (80), we first consider the mutual information in (53).

For the nth tone, let Hn = UnDnV
∗
n be an SVD of Hn. As described in Figure 3,

the input vector to each Hn is sn = Vnan, where an = [a
(1)
n , . . . , a

(m)
n ]T . Given

Ĥ = diag[H1, . . . ,HN ], the covariance matrix of xn can be written as:

Qn = E
[
sns

∗
n

∣∣∣Ĥ] = VnEnV
∗
n, (81)

where En = diag{e(1)
n , . . . , e

(M)
n } = E

[
ana

∗
n

∣∣∣Ĥ]. Then, the mutual information of

(53) becomes

I
TRCSI

=
1

N

N∑
n=1

log2 det

(
IMR

+
HnQnH

∗
n

N0

)

=
1

N

N∑
n=1

log2 det

(
Un

(
IMR

+
DnEnDn

N0

)
U∗n

)

=
1

N

N∑
n=1

M∑
m=1

(
1 +

s
(m)
n e

(m)
n

N0

)
, (82)

which is a function of {e(m)
n } as well as {s(m)

n }.

Unlike equal distribution of energy when CSI is unknown, the transmitter with

CSI has an additional task, power-allocation problem. With either short-term or

long-term energy constraint, the transmitter must decide {e(m)
n } in order to achieve

a certain goal, such as maximizing the average capacity E[I
TRCSI

] or minimizing the

outage probability Prob[I
TRCSI

< R]. Power allocation is a common problem in a

closed-loop system. The solution for the optimal allocation is in the form of the

water-filling procedure [20].

4.3.2 Average Capacity

We consider the average capacity with the long-term constraint in (50). The power-

allocation problem for average capacity is described by

C
TRCSI

= sup
{e(m)
n }

E [I
TRCSI

] , (83)
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where the supremum is over all {e(m)
n } satisfying the long-term constraint. Note that

the optimization is not only over MN scalar channels but also over all realizations of

{s(m)
n } because of the expectation in (83). Goldsmith et al. [28] presents a solution

for the problem in (83) in the case of SISO. The solution can be generalized to the

MIMO case [7], as follows:

Theorem 4.3. The power allocation {e(m)
n } that achieves C

TRCSI
is

e(m)
n = N0

{
λ− 1

s
(m)
n

}+

, (84)

where {x}+ = max(x, 0) and λ ensures that the average energy constraint in (50) is

satisfied. Then, the resulting average capacity is

C
TRCSI

= E

[
1

N

N∑
n=1

M∑
m=1

{
log2

(
λs(m)

n

)}+

]
, (85)

at an SNR of

ρ
TRCSI

= E

[
1

N

N∑
n=1

M∑
m=1

{
λ− 1

s
(m)
n

}+
]
. (86)

Proof. See [28]. �

Remark 4.1. The average capacity C
TRCSI

is independent of n in the sense that (85)

and (86) are equivalent to

C
TRCSI

= E

[
M∑
m=1

{
log2

(
λs(m)

n

)}+

]
, (87)

and

ρ
TRCSI

= E

[
M∑
m=1

{
λ− 1

s
(m)
n

}+
]
, (88)

since {s(m)
n ;m = 1, 2, . . . ,M} are identically distributed for all n from Lemma 2.1. If

the channel is spatially uncorrelated, C
TRCSI

is independent of L. �

In Theorem 4.3, the optimal power allocation is linked with SNR via the water-

level parameter λ. Solving (85) or (86) to obtain λ is quite difficult due to the

expectation, which requires multiple integrals. For the case of single transmit antenna,
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it can be represented as a semi-analytic form, but no analytic solution is known for

MIMO.

Example 4.9 (From [2]). When MT = 1 and MR ≥ 1 (SIMO) on a spatially

uncorrelated Rayleigh fading channel,4

C
TRCSI

=
JMR

(1/λ)

Γ(MR)λMR log(2)
, (89)

where

Jn(x) =

∫ ∞
1

tn−1 log(t)e−xtdt (90)

=
(n− 1)!

xn

n−1∑
k=0

Γ(k, x)

k!
, (91)

where Γ(k, x) is the incomplete complementary Gamma function defined in (77). The

SNR is:

ρ =
λ

Γ(MR)
Γ

(
MR,

1

λ

)
− 1

Γ(MR)
Γ

(
MR − 1,

1

λ

)
. (92)

If MR = 1 (SISO),

C
TRCSI

=
E1(1/λ)

log(2)
(93)

and

ρ = λ exp(−1/λ)− E1(1/λ), (94)

where E1(x) is defined in (68). �

We emphasize that C
TRCSI

is the average capacity with the long-term constraint.

If the short-term constraint of (51) is used, the average capacity at an SNR of ρ is [18]

C
TRCSI,ST

=
1

N

N∑
n=1

M∑
m=1

{
log2(λs(m)

n )
}+

, (95)

where λ satisfies

ρ =
1

N

N∑
n=1

M∑
m=1

{
λ− 1

s
(m)
n

}+

. (96)

4Also true for MT ≥ 1 and MR = 1 (MISO).
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Figure 17: Comparison between C
TRCSI

and C
RCSI

on a spatially uncorrelated
Rayleigh fading when MT = MR = M with M ∈ {1, 2, 4, 6}. Note that both are
independent of L.

Clearly, we have C
TRCSI

≥ C
TRCSI,ST

≥ C
RCSI

. It can be shown that C
TRCSI,ST

is 4 times

larger than C
RCSI

as ρ→ 0, but the advantage vanishes as SNR grows [18].

However, the difference between C
TRCSI

and C
RCSI

is not dramatically large, as

discussed for SISO [28]. In fact, as will be shown in Chapter 5, the difference converges

to zero at high SNR if MT ≥ MR. To see how M affects the difference, we consider

the following example.

Example 4.10. Figure 17 illustrates C
TRCSI

and C
RCSI

for an spatially uncorrelated

M ×M channel with M ∈ {1, 2, 4, 6}. The capacity gap between C
TRCSI

and C
RCSI

increases with M . The gap is more conspicuous at low SNR, and C
RCSI

seems to

converges to C
TRCSI

at high SNR. We also plot C
TRCSI,ST

in (95). From Figure 17,

C
TRCSI,ST

is almost as large as C
TRCSI

, especially when M is large, pointing out that

water-filling over channel realizations (for C
TRCSI

) is unnecessary as M grows. �
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4.3.3 Zero-Outage Capacity

In a closed-loop system with the long-term constraint, the concept of the outage

probability is slightly different. With the knowledge of CSI, the transmitter knows

whether the channel can support the transmission rate, and it would attempt to

reduce the rate or to stop transmission if the current rate is not supportable. Hence,

we declare an outage occurrence when the transmitter reduces the rate to zero. Let

R
OFF

denote a set of channel realizations {s(m)
n } for which the transmitter decides not

to transmit. Then, we define the outage probability as

P
OUT

= Prob[{s(m)
n } ∈ ROFF

]. (97)

We mean by zero outage that R
OUT

is a null set, such that data is transmitted at a

nonzero rate for any realization of channel.

We assume that the transmission rate is fixed as R. By using the ε-capacity,

defined in (56), we define zero-outage capacity.

Definition 4.6 (Zero-Outage Capacity). Given a nonzero rate R, the zero-outage

capacity is defined as

C0 = lim
ε→0

sup
{e(m)
n }

sup {R;P
OUT
≤ ε} , (98)

where the first supremum is over all {e(m)
n } satisfying the long-term constraint of

(50) [7].5 �

The optimization in (98) is also a power-allocation problem, where we find {e(m)
n }

such that C0 is maximized. The optimal solution is obtained by finding {e(m)
n } that

minimize

Ē = E

[
1

N

N∑
n=1

M∑
m=1

e(m)
n

]
, (99)

5If the instantaneous energy constraint is used instead of the average energy constraint, the
zero-outage capacity is zero even though the channel is known at the transmitter [7].
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subject to

1

N

N∑
n=1

M∑
m=1

log2

(
1 +

s
(m)
n e

(m)
n

N0

)
= R. (100)

Then, Ē is a function of R, that is Ē = f(R). The zero-outage capacity at an SNR

of ρ = Ē/N0 is then obtained by inverting this function, C0 = f−1(Ē). The optimal

solution to the power-allocation problem is based on the water-filling procedure [20].

Theorem 4.4 (Optimal Allocation). The optimal power allocation is given by

e
(m)
n = N0{λ− 1/s

(m)
n }+, where {x}+ = max(0, x), and where

λ =
2RN/|M|

GM
(101)

ensures that the constraint in (100) is satisfied. The index setM in (101) identifies the

used channels according to M = {(m,n);λs
(m)
n ≥ 1}. With this optimal allocation,

the minimum average energy required for P
OUT

= 0 is:

ρ0 = E

 1

N

∑
(m,n)∈M

(
λ− 1

s
(m)
n

) . (102)

Proof. See [7]. �

From Theorem 4.4, the zero-outage capacity can be written as

C0 = E

 1

N

∑
(m,n)∈M

log2

(
λs(m)

n

) . (103)

When MT = 1 on flat fading (L = 0), only one scalar channel is available, and C0

can be analytically evaluated as the power allocation is trivial.

Example 4.11. When MT = 1 on a flat-fading channel, the strategy in Theorem 4.4

is often called channel inversion because the transmitter inverts channel by

e = N0
2R − 1

s(1)
. (104)

Then the SNR required for zero outage probability is:

ρ =
E[e]

N0

= (2R − 1)E[1/s(1)], (105)

57



and therefore the zero-outage capacity is:

C0 = log2

(
1 +

ρ

E[1/s(1)]

)
. (106)

When MT = MR = 1 (SISO) on a spatially uncorrelated Rayleigh-fading channel,

E[1/s(1)] diverges since

E[1/s(1)] =

∫ ∞
0

e−x

x
dx = E1(0)→∞, (107)

where e−x is the PDF of s(1).

However, when MT = 1 but MR > 1 (SIMO), there is only one nonzero eigenvalue

(s(1)) and its density function is:

fs(1)(x) =
xMR−1e−x

Γ(MR)
x ≥ 0. (108)

Then

E[1/s(1)] =

∫ ∞
0

xMR−2e−x

Γ(MR)
dx =

1

MR − 1
. (109)

Therefore, the zero-outage capacity for MT = 1 and MR > 1 is positive. In fact, the

zero-outage capacity is [2]:

C0 = log2(1 + ρ(MR − 1)), (110)

which is nonzero for MR > 1. �

Another example is the principal eigenmode in Section 3.1.1.

Example 4.12. For the principal eigenmode transmission, the zero-outage capacity

is:

C0 = log2

(
1 +

ρ

E[1/s(1)]

)
. (111)

Table 2 summarizes E[1/s(1)] for spatially uncorrelated channels. �

For more than one scalar channels, evaluating (103) is usually difficult, even for

2× 2 MIMO as illustrated in the following example.
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1× 1 2× 2 3× 3 4× 4 6× 6 8× 8 10× 10

E[1/s(1)] ∞ 0.3864 0.1755 0.1110 0.0627 0.0433 0.0329

Table 2: E[1/s(1)] for an M ×M spatially uncorrelated Rayleigh fading with M ∈
{1, 2, 3, 4, 6, 8, 10}.

Example 4.13. When MT = MR = 2, so as to achieve C0 , the required SNR is

ρ = (2C0 − 1)

∫ ∞
0

∫ 2−C0 x1

0

p(x1, x2)

x1
dx2dx1

+ 2
√

2C0

∫ ∞
0

∫ x1

2−C0 x1

p(x1, x2)
√
x1x2

dx2dx1

−
∫ ∞

0

∫ x1

2−C0 x1

(
1

x1

+
1

x2

)
p(x1, x2)dx2dx1

=

[
2 log(1 + 2−C0 )−

(
2

1 + 2C0

)2
]

(2C0 − 1)

+ 2
√

2C0

∫ ∞
0

∫ x1

2−C0 x1

p(x1, x2)
√
x1x2

dx2dx1

−
[(

2−C0 − 1

2−C0 + 1

)2

+ 2

(
2−C0 − 1

2−C0 + 1

)
+ 2 log

(
2

2−C0 + 1

)
+ 1 +

2−C0 − 3

(2−C0 + 1)2
− 1

2−C0 + 1
+ 2 log

(
2−C0 + 1

2

)
+ 2C0 log(2)

]
, (112)

where

p(x1, x2) = (x1 − x2)2e−x1e−x2 for x1 ≥ x2 ≥ 0. (113)

The second integral in (112) is difficult to evaluate. At high SNR, the above equation

can be approximated as

C0 ≈ 2 log2(ρ)− 2 log2(π), (114)

where we use

lim
C0→∞

(1 + 2−C0 )2C0 = e, (115)

and

lim
C0→∞

2

∫ ∞
0

∫ x1

2−C0 x1

p(x1, x2)
√
x1x2

dx2dx1 = π. (116)

�
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We have seen that C0 is not always nonzero. Generally, the following theorem

states under what conditions C0 is nonzero.

Theorem 4.5. C0 > 0 if E[1/GNu ] <∞, where Nu is the universe index set in (14).

Proof. See [7]. �

We note that C0 is always suboptimal to C
TRCSI

since the water-filling for C0 is

performed over space (m) and frequency (n), while the water-filling for C
TRCSI

is per-

formed over all channel realizations as well. The omission of water-filling over channel

realizations can greatly simplify the power allocation. In the following example, we

compare C0 and C
TRCSI

.

Example 4.14. Consider a spatially uncorrelated M ×M channel. Figure 18 shows

C0 and C
TRCSI

for M ∈ {1, 2, 4, 6}. When M = 1 (SISO), C0 is zero, as mentioned

in Example 4.11, where C0 incurs an infinite SNR penalty relative to C
TRCSI

. When

M = 2, however, C0 is nonzero and not far from C
TRCSI

. For M = 4 and M = 6, C0

approaches C
TRCSI

closely. �

In fact, the difference between C
TRCSI

and C0 vanishes as the number of antennas

tends to infinity.

Theorem 4.6. C0 asymptotically converges to C
TRCSI

as M →∞.

Proof. See [7]. �

A conclusion of this section is that the advantage of knowing CSI at the transmitter

is tremendous with the long-term constraint. Theorem 4.6 suggests that the zero-

outage capacity is nearly optimal, namely close to the average capacity. In stark

contrast, without CSI at the transmitter, the outage probability cannot be made zero

at a finite SNR. In other words, knowing CSI at the transmitter offers an infinite SNR

advantage.
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Figure 18: C0 and C
TRCSI

on a M ×M spatially uncorrelated Rayleigh-flat-fading
channel for M ∈ {1, 2, 4, 6}.

4.3.4 Minimum Outage Probability

To achieve zero-outage capacity, the transmitter always makes sure that no outage

occurs. In other words, however bad a channel is, the transmitter inverts the channel

for each scalar channel, such that e
(m)
n = (2r

(m)
n − 1)/s

(m)
n . In the average sense,

this channel inversion is acceptable as long as the long-term constraint is satisfied.

However, small {s(m)
n } can cause a very high instantaneously required energy:

E(s) =
1

N

N∑
n=1

M∑
m=1

e(m)
n , (117)

where s = [s
(1)
1 , . . . , s

(M)
1 , . . . , s

(1)
N , . . . , s

(M)
N ].

We define the peak-power probability as

P
PEAK

= Prob [E(s) > E
TH

] , (118)

for a given threshold E
TH

. For any finite MT and MR and a finite channel memory L,

P
PEAK

is always nonzero since the joint distribution function of s is continuous and
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nonzero for any s
(m)
n > 0. There is a tradeoff between P

OUT
and P

PEAK
in the sense

that we never make both zero at the same time.

Example 4.15. When MT = 1 and MR > 1 (SIMO), we have seen that C0 is positive

for spatially uncorrelated Rayleigh flat fading (L = 0). In this case, the peak-power

probability, at a rate of R, can be evaluated as

P
PEAK

= 1−
Γ(MR,

2R−1
ρ

TH
)

Γ(MR)
, (119)

where ρ
TH

= E
TH
/N0. Figure 19 illustrates P

PEAK
as MR ranges from 2 to 10. We can

see the tendency that P
PEAK

decays more sharply as MR increases. When MR = 2, the

probability that E(s) exceeds 20 dB is 10−2, but we expect a very small probability

for MR = 10. In Figure 19, we never attain P
PEAK

= 0 for R > 0 however large MR

is. �

Example 4.16. Consider a spatially uncorrelated M×M MIMO channel with L = 0.

Figure 20 illustrates P
PEAK

for M ∈ {2, 4, 6}. Again, we can see a distinct reduction

in P
PEAK

as M grows, but P
PEAK

cannot be made zero. �

Clearly, the above examples show that employing more antennas improves the

peak-power performance. For a small size of antenna array, forcing zero outage prob-

ability results in very large instantaneous energy requirement at the transmitter with

a relatively large probability, which is practically impossible. The peak-power view-

point motivates us to use an outage region R
OFF

. With an outage region, however,

the actual transmission rate reduces to R(1−P
OUT

) if R is the transmission rate when

s /∈ R
OFF

.

We consider a power-allocation problem: Find {e(m)
n } such that P

OUT
is minimized

subject to the long-term constraint when ρ and R are given. This problem is solved

for a single transmit antenna in [13] and generalized to MIMO in [7].

62



−5 0 5 10 15 20
10−4

10−3

10−2

10−1

100

SNR threshold (dB)

P
ro

ba
bi

lit
y 

of
 P

ea
k 

P
ow

er

M
R

=3

M
R

=2 

M
R

=10

Figure 19: Peak-power probability for MT = 1 and MR > 1 on a spatially uncorre-
lated Rayleigh-flat-fading channel for MR ∈ {2, 3, . . . , 10}.
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Figure 20: Peak-power probability on an M ×M spatially uncorrelated Rayleigh-
flat-fading channel for M ∈ {2, 4, 6}.
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Theorem 4.7 (Minimum-Outage-Probability Allocation). For given R and ρ,

the outage probability is minimized when the power allocation is given by:

e
(m)
n

N0

=


{
λ− 1

s
(m)
n

}+

s /∈ R
OFF

0 s ∈ R
OFF

, (120)

where λ is determined by (101). The outage region R
OFF

is determined such that

E

[
1

N

N∑
n=1

M∑
m=1

{
λ− 1

s
(m)
n

}+

1{s /∈ R
OFF
}

]
= ρ. (121)

Proof. See [7]. �

Remark 4.2. The minimum-outage-probability allocation in Theorem 4.7 reduces

to the allocation in Theorem 4.4 for the zero-outage capacity by setting E
TH

= 0.

Example 4.17. Consider a SIMO channel (MT = 1 and MR ≥ 1). The instantaneous

SNR requirement is

ρ(s) =


2R−1
s

2R−1
s
≥ ρ

TH

0 2R−1
s

< ρ
TH

, (122)

where ρ
TH

is a threshold. The outage probability is

P
OUT

= Prob

[
2R − 1

s
> ρ

TH

]
= 1− Γ(MR, ρTH

)

Γ(MR)
, (123)

when SNR is

ρ = E[ρ(s)] = (2R − 1)
Γ(MR − 1, ρ

TH
)

Γ(MR)
, (124)

P
OUT

and ρ are linked through ρ
TH

. Figure 21 illustrates P
OUT

at R = 4 bits per

signaling interval for MR ∈ {1, 2, 4, 10}. We confirm that P
OUT

becomes zero at

ρ = (2R − 1)Γ(MR−1,0)
Γ(MR)

for MR > 1 when ρ
TH

= 0.

As a benchmark, we also plot P
OUT

in (55) when CSI is unknown to the transmitter.

See that the advantage knowing CSI at the transmitter is remarkable, especially for

small MR. However, when MR is large, the advantage is reduced, but exists. For

example, the SNR advantage is approximately 5 dB to achieve P
OUT

= 10−3 for

MR = 10. �
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Example 4.18. Consider a MIMO channel with MT = MR = M . As no closed-

form for P
OUT

is known, we resort to Monte-Carlo simulations by generating 105

independent channels. Figure 22 illustrates P
OUT

at R = 5 bits per signaling interval

for M ∈ {2, 4, 6}, where we can confirm the infinite asymptotic slope of P
OUT

. In

other words, C0 = R = 5 is achieved at the point where P
OUT

drops vertically.

Also plotted is P
OUT

with the short-term constraint for both cases where CSI is

known at the transmitter (TRCSI) and where CSI is available only at the receiver

(RCSI). Notice that the slopes of P
OUT

for both the cases are finite and identical,

implying that CSI at the transmitter cannot achieve an infinite diversity order with

the short-term constraint. However, P
OUT

with TRCSI is smaller than P
OUT

with

RCSI. Intriguingly, the gap between these two P
OUT

curves becomes larger as M

grows. This fact favors knowing CSI at the transmitter even with the short-term

constraint. �

4.4 Optimal Outage Region in MIMO

In Theorem 4.7, we addressed the problem of finding minimum outage probability

P
OUT

for given R and ρ. However, it should be pointed out that R(1 − P
OUT

) is not

necessarily the maximum achievable rate with an outage region at an SNR of ρ. For

instance, there might be R′ such that R′(1−P ′
OUT

) ≥ R(1−P
OUT

) at the same SNR.

In this section, we consider the optimal choice of outage region in the sense that it

maximizes the achievable rate.

Definition 4.7 (Outage-Region Capacity). Let R
OFF

denote outage region. The

maximum achievable rate is achieved by solving

C
OR

= sup
R

OFF

1

N

N∑
n=1

M∑
m=1

{
log2(λs(m)

n )
}+

(1− P
OUT

), (125)

called outage-region (OR) capacity, where λ and P
OUT

are determined by

P
OUT

= Prob
[
{s(m)

n } ∈ ROFF

]
, (126)
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Figure 21: Outage probability for MT = 1 and MR ≥ 1 spatially uncorrelated
Rayleigh fading when CSI is known at the transmitter at R = 4 bits per signaling
interval. As a benchmark, outage probability when CSI is unknown at the transmitter
is also plotted.
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and

ρ = E

[
1

N

N∑
n=1

M∑
m=1

{
λ− 1

s
(m)
n

}+ ∣∣∣∣{s(m)
n /∈ R

OFF

]
. (127)

�

For a SIMO system (MT = 1) on flat fading, the outage-region capacity was

studied [2, 28], known as truncated channel inversion. Since there is only M = 1

nonzero eigenvalue (s(1)), the instantaneous SNR requirement at the transmitter is

ρ(s(1)) =


2R−1
s(1)

2R−1
s(1) ≤ ρ

TH

0 otherwise
, (128)

where the outage region is R
OFF

=
{
s(1) : 2R−1

s(1) ≤ ρ
TH

}
.6 The transmitter truncates

s(1) ∈ R
OFF

and stops transmission, which is the reason it is called truncated channel

inversion. The optimal choice of ρ
TH

that maximizes R·Prob[s(1) /∈ R
OFF

] is as follows.

Theorem 4.8. For MT = 1 and MR ≥ 1 (SIMO) on a spatially uncorrelated

Rayleigh-flat-fading channel,

C
OR

= max
ρ

TH

Γ(MR, ρTH
)

Γ(MR)
log2

1 +
ρ

Γ(MR−1,ρ
TH

)

Γ(MR)

 . (129)

When MR = 1 (SISO), it can be more simplified:

C
OR

= max
ρ

TH

e−ρTH log2

(
1 +

ρ

E1(ρ
TH

)

)
, (130)

where E1(x) is defined in (68).

Proof. See [2]. �

Remark 4.3. As SNR tends to infinity, ρ
TH

converges to zero. Therefore, the spatial

multiplexing order of C
OR

,
Γ(MR,ρTH

)

Γ(MR)
, is unity since Γ(x, 0) = Γ(x). �

6We discard the tone index n.
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Corollary 4.2. For any MT and MR, we have

C
TRCSI

≥ C
OR
≥ C0 . (131)

Proof. The optimization in (125) includes the case where R
OFF

is a null set corre-

sponding to C0 . Therefore, we have C
OR
≥ C0 . We view C

OR
as a most primitive

form of the rate adaptation, choosing between R and 0. As C
TRCSI

has more freedom

on the rate adaptation, we infer that C
TRCSI

≥ C
OR

. �

Example 4.19. For MT = 1 and MR = 2, spatially uncorrelated Rayleigh flat fading,

Figure 23 illustrates C
OR

along with C0 . The figure shows the gap between them is

relatively large, while it seems to converges to zero as SNR grows. Intuitively, ρ
TH

becomes small as SNR grows, which implies that C
OR

is close to C0 at high SNR. In

Figure 23, we also plot R(1 − P
OUT

) against ρ, where P
OUT

is minimized according

to Theorem 4.7 for R ∈ {4, 6, 8}. When SNR is large enough so that P
OUT

= 0,

R(1−P
OUT

) approaches C0 . On its way to C0 , the curve R(1−P
OUT

) once meets the

curve C
OR

. At the meeting point, it is R(1 − P
OUT

) is maximum in the sense that

R(1− P
OUT

) ≥ R′(1− P ′
OUT

) for R 6= R′. �

For the MIMO case, to our knowledge, no closed-form formula for C
OR

, such as

(129) or (130), exists, and it can be only solved by a numerical method. In the

following, we propose procedures to obtain the outage-region capacity. To simplify

the notation, we assume flat fading and ignore the tone index n.

Given C
OR

For R ∈ [C
OR
,∞), repeat:

1. Determine λ from R =
∑M

m=1

{
log2(λs(m))

}+
.

2. Set P
OUT

(R) = 1− C
OR

R
.

3. Determine α such that E
[
1
{∑M

m=1{λ−
1

s(m)}+
}
> α

]
= P

OUT
(R).

68



−15 −10 −5 0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

SNR (dB)

C
ap

ac
ity

 (b
its

 p
er

 s
ig

na
lin

g 
in

te
rv

al
)

C
OR

C
0

R(1−P
OUT

)

R(1−P
OUT

), R=4

C
OR

 

C
0
 R(

1−
P O

UT
), 

R=
6

R(
1−

P O
UT

), 
R=

8

Figure 23: Comparison between C
OR

and C0 on a 2×1 spatially uncorrelated channel
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Theorem 4.7 for R ∈ {4, 6, 8}.
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4. γ =


∑M

m=1

{
λ− 1

s(m)

}+ ∑M
m=1

{
λ− 1

s(m)

}+
> α

0 otherwise
.

5. ρ(R) = E[γ].

Choose R that has minimum ρ(R).

Then, R with minimum ρ(R) is C
OR

at an SNR of ρ(R). These procedures can be

interpreted as

ρ = inf
R∈[C

OR
,∞)

ρ(R, P
OUT

(R)), (132)

where ρ(R, P
OUT

(R)) is the average SNR required by R and P
OUT

(R) in Theorem 4.7.

Notice that R(1 − P
OUT

(R)) = R
(

1−
(

1− C
OR

R

))
= C

OR
for any R in the above

procedures.

Example 4.20. Consider an M×M spatially uncorrelated Rayleigh-flat-fading chan-

nel. Figure 24 shows C
OR

for M ∈ {1, 2, 4, 6}. As a benchmark, C
TRCSI

and C0 are

also plotted from Figure 18. We confirm that the inequalities, C
TRCSI

≥ C
OR
≥ C0 ,

hold. As shown in Example 4.14, the gap between C
TRCSI

and C0 becomes very small

as M grows. The gap between C
OR

and C0 is even smaller. Even for M = 2, the

advantage of C
OR

almost vanishes at high SNR, which is contrasted to when M = 1,

where C
OR

is nonzero while C0 = 0, that is, an infinite SNR penalty. �
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CHAPTER 5

ASYMPTOTIC BEHAVIORS AT HIGH SNR

The previous chapter reviewed information-theoretical concepts of MIMO fading

channels, such as average capacity or outage probability, depending on the availability

of CSI at the transmitter. In this chapter, we examine the asymptotic behaviors of

outage probability and capacity at high SNR. In the analysis of capacity, the high-

SNR assumption is popular because it makes the analysis tractable, while analysis

is difficult or impossible at normal SNR. Moreover, even when a closed-form formula

exists at normal SNR, such as average capacity with CSI at the receiver in (66), the

formula is sometimes too complicated to get insight from it. High-SNR analysis will

provide simplicity and insight.

In the case of MIMO, high-SNR analysis is particularly useful to understand the

behaviors at a finite number of antennas. For example, Theorem 4.6 showed that C0

converges to C
TRCSI

as M →∞, but the theorem says nothing about the convergence

speed. We will use the high-SNR assumption to show whether the convergence is fast

or slow. Also, the high-SNR assumption is directly related to the spatial multiplexing

order in Definition 4.4 or the diversity order in Definition 4.5.

In this chapter, we present our contributions on the high-SNR analysis. More

precisely, the contributions are as follows.

• We prove the diversity order of MIMO-OFDM is MTMR(L + 1) when CSI is

only available at the receiver.

• With the short-term energy constraint in (51), we prove that a closed-loop

MIMO system achieves full diversity and multiplexing orders.
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• We derive the asymptotes for C
RCSI

, C
TRCSI

, Cε, and C0 in terms of the geo-

metric means of {s(m)
n }, and show that the spatial multiplexing order is M =

min(MT ,MR) for all the cases.

• We derive a closed-form formula for the approximation of C
RCSI

at high SNR

when the channel is spatially uncorrelated.

• We show that the outage capacity Cε, when CSI is available only at the receiver,

increases with L, but is finite when L→∞.

• We show that the convergence (C0 → C
TRCSI

as M → ∞) in Theorem 4.6 is

fast, and the difference between them is small for a moderate M .

• We investigate the impact of L on C0 , where an upper bound of C0 is analytically

derived.

We begin with the diversity order, and then move to the capacity.

5.1 Diversity Order

Diversity order, defined in Definition 4.5, measures the degree of protection against

the effects of fading in the case of outage occurrence. When CSI is unknown to the

transmitter, the diversity order is finite and limits the outage probability as we have

seen in Section 4.2.2. On MT -input MR-output MIMO channels, the diversity order

can be as large as MTMR. When the transmitter knows CSI, we showed that the

diversity order can be infinite with the long-term energy constraint in Section 4.3.3.

With the short-term energy constraint, however, the diversity order is finite even with

the transmitter CSI.

5.1.1 CSI Unknown to Transmitter

On an MT -input MR-output MIMO channel, there are MTMR links between trans-

mitter and receiver. If the channel is spatially uncorrelated, the fading in each link is
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independent, and the probability that all links are in deep fades is far less probable

than in a SISO system. Intuitively, we expect MTMR times better protection against

the effects of fading in MIMO. On Rayleigh flat fading, we can derive the diversity

order.

Theorem 5.1. On spatially uncorrelated Rayleigh flat fading (L = 0), the diversity

order is MTMR.

Proof. See [62]. �

Theorem 5.1 indicates a significant increase in diversity order, MTMR times higher

than SISO flat fading. We expect a further increase in diversity order when the

channel has memory. In Section 4.2.2, we had a discussion that a MIMO channel

with L memory has a degree of freedom of MTMR(L + 1) and hence significantly

better outage performance is expected. In [43], a matched-filter bound is used to

show that a system with two transmit antenna has a diversity order of 2MR(L + 1).

In the following, we derive the diversity order in a frequency-selective channel directly

from its definition.

Proposition 5.1. On a spatially uncorrelated MIMO channel with memory L, the

diversity order is at least MTMR(L+ 1) when the power profile is uniform.

Proof. Deferred to Section 5.3. �

From (61), the mutual information is bounded by

I
RCSI

≥ 1

N

N∑
n=1

M∑
m=1

log2

(
ρ

MT

s(m)
n

)

= log2

( N∏
n=1

M∏
m=1

s(m)
n

)1/N (
ρ

MT

)M . (133)

Then,

P
OUT
≤ Prob

[
GNu <

2R/M

ρ/MT

]
, (134)
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where GNu is the universe index set in (14). At high SNR, the upper bound (134) is

very tight since log(1 + x) ≈ log(x) when x� 1. We find the lower bound useful as

the PDF of GNu is independent of ρ, while the PDF of I
RCSI

changes with ρ. Also,

from GNu ≥ ANu , we have the inequality:

Prob

[
GNu <

2R/M

ρ/MT

]
≥ Prob

[
ANu <

2R/M

ρ/MT

]
. (135)

We remark that (135) is a lower bound of the high-SNR approximation of P
OUT

,

namely Prob
[
GNu <

2R/M

ρ/MT

]
. The lower bound in (135) can be analytically evaluated

for the uniform power profile, such that

Prob

[
ANu <

2R/M

ρ/M

]
= 1−

Γ
(
MTMR(L+ 1), (M(L+ 1)2R/M

ρ/M
)
)

Γ(MTMR(L+ 1))
. (136)

From (136), we conjecture that the diversity order is no greater than MTMR(L + 1)

with the uniform power profile.

Example 5.1. We consider a 4×4 spatially uncorrelated MIMO channel with memory

L. In Figure 25, we plot Prob
[
ANu <

2R/M

ρ/M

]
in (136) at R = 10 bits per signaling

interval as L ranges from 0 to 10. Figure 25 clearly shows the increase in the diversity

order as L grows, which agrees with Proposition 5.1. �

5.1.2 Eigenbeamforming with Short-Term Constraint

Now we turn our attention to the case where the transmitter knows CSI. With the

short-term energy constraint in (51), achieving zero outage probability is impossible,

and the diversity order is finite in contrast to the infinite diversity order with the long-

term energy constraint. as illustrated in Figure 22. We saw that eigenbeamforming

in Chapter 3 is optimal in the sense that it does not incur any information loss owing

to the unitary filters. In this section, we examine the diversity order of the parallel

channels in (39), created by eigenbeamforming, with the short-term constraint. We

assume flat fading in this section, and ignore the tone index n for the notational

convenience.
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Figure 25: The lower bound in (136) of the outage probability on a 4× 4 spatially
uncorrelated Rayleigh-fading channel with memory L ∈ {0, 1, 2, 3, 4, 10}.

First, we consider the principal-eigenmode transmission discussed in Section 3.1.1,

where only the largest eigenmode, corresponding to s(1), is used for transmission.

From the marginal CDF of s(1) in (31), outage probability is given by

P
OUT

=
ΓM(M)

ΓM(MT +MR)
χMTMR

1F1(M ;MT +MR;−χIM), (137)

where χ = (eR − 1)/ρ, assuming a spatially uncorrelated flat-fading channel.

Lemma 5.1. On a spatially uncorrelated flat-fading MIMO channel, the diversity

order of the principal-eigenmode transmission is MTMR.

Proof. From (137), we have

log(P
OUT

)

log(ρ)
=

log
(

ΓM (M)
ΓM (MT+MR)

)
+MTMR log(χ) + log (1F1(M ;MT +MR;−χIM))

log
(

2R−1
χ

) .

(138)

From the zonal representation of 1F1(; ; ) [30], 1F1(M ;MT + MR;−χIM) with χ = 0
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(ρ→∞) is positive and finite. Therefore,

− lim
ρ→∞

log(P
OUT

)

log(ρ)
= MTMR, (139)

since the first and last terms in the numerator of (138) are finite. �

Lemma 5.1 suggests that the diversity order is full even when the principal eigen-

mode is only used. Thus, if we use all eigenmodes (i.e. all scalar channels) of a MIMO

system, we expect a diversity order of at least MTMR.

Proposition 5.2. On a spatially uncorrelated flat-fading channel, the diversity order

of the parallel channels in (80) is MTMR.

Proof. First, the mutual information of (80) is always larger than or equal to the

mutual information of the principal eigenmode. Thus, the diversity order of (80) is

at least MTMR. To show that the diversity order cannot exceed MTMR, we consider

a bank of M scalar channels {s(1), s(1), . . . , s(1)}, whose mutual information is clearly

larger than or equal to that of (80). The outage probability of {s(1), s(1), . . . , s(1)} is

P
OUT

= Prob

[
s(1) <

2R/M − 1

ρ/M

]
. (140)

Since 2R/M−1
ρ/M

goes to zero as ρ→∞, the diversity order is MTMR from Lemma 5.1.

Therefore, MTMR is also an upper limit for the diversity order of (80), which com-

pletes the proof. �

The results in Proposition 5.2 is somewhat obvious. We already saw the outage

probability with the short-term constraint in Figure 22, which illustrates that the

diversity order of “TRCSI ST” (CSI known to both the transmitter and receiver with

the short-term constraint) is equal to the diversity order of “RCSI” (CSI known only

at the receiver). We also explained that the SNR gap between “TRCSI ST” and

“RCSI” becomes wider as M grows.
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5.2 Capacity at High SNR

The spatial multiplexing order in Definition 4.4 suggests that capacity is linearly

proportional to log(SNR) as SNR tends to infinity. In this section, we derive the

asymptotes of average and outage capacity in terms of the geometric mean of eigen-

values {s(m)
n }, and investigate the spatial multiplexing orders.

5.2.1 CSI Unknown to Transmitter

First, we assume that CSI is available only at the transmitter.

5.2.1.1 Average Capacity

We begin with the average capacity in Lemma 4.1. We already saw in Figure 6

that the ratio
C

RCSI

log2(ρ)
converges to M as SNR ρ tends to infinity when the channel is

spatially uncorrelated. Generally, the asymptote of C
RCSI

is as follows.

Proposition 5.3. At high SNR, the asymptote of C
RCSI

is

C
RCSI
→M log2

(
ρ

MT

)
+ME [log2(GNu)] , (141)

where Nu is the universe index set in (14).

Proof. See Section 5.4. �

In fact, M log2

(
ρ
MT

)
+ ME [log2(GNu)] is a lower bound on C

RCSI
for any ρ, and

Proposition 5.3 indicates that the bound asymptotically approaches C
RCSI

as ρ→∞.

An implication of Proposition 5.3 is that the spatial multiplexing order is M . The

term ME [log2(GNu)] accounts for the parallel shift of the asymptote of (141). Note

that

ME [log2(GNu)] =
1

N

N∑
n=1

E

[
M∑
m=1

log2(s(m)
n )

]

= E

[
M∑
m=1

log2(s(m)
n )

]
for any n, (142)
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from Lemma 2.1. Hence, C
RCSI

at high SNR is independent of n, and it is not affected

by L for spatially uncorrelated fading, which agrees with Lemma 4.1.

If the channel is spatially uncorrelated and square (MT = MR = M), we evaluate

E [log2(GNu)] by averaging over 10,000 independent channels, resulting in -0.8314,

-0.2256, 2.9097, and 7.5466 for M ∈ {1, 2, 4, 6}, respectively. In fact, we can evaluate

the approximation of C
RCSI

analytically.

Proposition 5.4. At high SNR for a finite MT and MR,

C
RCSI
≈M log2

(
ρ

MT

)
+K − Γ/ log(2), (143)

where Γ ≈ 0.577215665 is the Euler constant and

K =
1

log(2)

M−1∑
k=0

k∑
l=0

2l∑
i=0

{
(−1)i(2l)!(D + i)!

22k−il!i!(D + l)!

×
(

2k − 2l

k − l

)(
2l + 2D

2l − i

) D+i∑
j=0

1

j

}
, (144)

with D = max(MT ,MR)−min(MT ,MR).

Proof. See Section 5.5. �

From Proposition 5.4, we infer that E [log2(GNu)] ≈ K − Γ/ log(2) holds, but this

does not imply E [log2(GNu)] = K − Γ/ log(2) since E [log2(GNu)] is from the exact

asymptote as ρ → ∞ in Proposition 5.3, while K − Γ/ log(2) is from an approxi-

mation in Proposition 5.4. Nonetheless, E [log2(GNu)] ≈ K − Γ/ log(2) is very exact

approximation, as shown in Figure 6, where we used (66) to calculate the asymptote

of C
RCSI

.

5.2.1.2 Outage Capacity

We proceed to the outage capacity Cε in (78) when the transmitter is ignorant of

CSI. In contrast to C
RCSI

, Proposition 5.1 shows that the channel memory L has an

distinct impact on Cε. Figure 15 showed that Cε increases with L. What happens if
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L→∞? According to Figure 15, Cε seems to saturate. To investigate the impact of

L, we use the high-SNR assumption.

Proposition 5.5. At high SNR, the outage capacity when P
OUT

= ε can be approx-

imated as

Cε ≈M log2

(
ρ

MT

)
+M log2

(
F−1
GNu

(ε)
)
, (145)

where FGNu (x) is the CDF of GNu .

Proof. We use the approximation log(1 + x) ≈ log(x) when x � 1. Then, from

(61), I
RCSI
≈ M log2

(
GNu

ρ
MT

)
, resulting in P

OUT
≈ FGNu

(
2R/M

ρ/MT

)
. When P

OUT
= ε,

R ≈M log2

(
ρ
MT
F−1
GNu

(ε)
)

. By setting R = Cε, the proof completes. �

Proposition 5.5 suggests that the spatial multiplexing order is M regardless of

fading statistics. If the channel is uncorrelated, the spatial multiplexing order is

independent of L. However, Cε is still affected by L through the term F−1
GNu

(ε) in

(145).

Example 5.2. Figure 26 illustrate FGNu (x) on a 4×4 spatially uncorrelated channel

for L ∈ {0, 1, 2, 3, 4, 5}. For small FGNu (x) = ε on the vertical axis, we can clearly see

that F−1
GNu

(ε) (corresponding points on the horizontal axis) increases with L. There-

fore, Cε in (145) also increases with L. From Figure 26, we can also confirm that Cε

decreases with ε and becomes zero when ε = 0, that is, Cε=0 = 0. �

We conjecture that Cε is bounded as L grows, and discuss the conjecture with an

example.

Conjecture 5.1. When L→∞, F−1
GNu

(ε) is finite if ε < 1. Therefore, Cε is bounded.

Example 5.3. With the inequality GNu ≤ ANu , we have FGNu (x) ≥ FANu (x) or

F−1
GNu

(ε) ≤ F−1
ANu

(ε). For the uniform power profile in Definition 2.1, FANu (x) can be

evaluated as

FANu (x) = 1− Γ(MTMR(L+ 1),M(L+ 1)x)

Γ(MTMR(L+ 1))
. (146)
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Figure 26: CDF of GNu on a 4 × 4 spatially uncorrelated channel for L ∈
{0, 1, 2, 3, 4, 5}.

Figure 27 plots (146) for MT = MR = 4 for L ∈ {0, 1, 2, 5, 10, 100, 1000}. When

L = 1000 or lager, FANu (x) is nearly a step function, where there is a jump from 0 to

1 near x = 4 in Figure 27. Thus, F−1
ANu

(ε) is approximately 4 for 0 < ε < 1. Therefore,

F−1
ANu

(ε) is finite as L→∞ for 0 < ε < 1. From F−1
GNu

(ε) ≤ F−1
ANu

(ε), we conclude that

F−1
GNu

(ε) is also finite. �

5.2.2 CSI Known at Transmitter

When the transmitter knows CSI, the capacity is achieved by water-filling and its

analysis is extremely difficult. High-SNR analysis gives us insights into the behaviors

of capacity.

5.2.2.1 Average Capacity

We consider the average capacity with the transmitter CSI, namely, C
TRCSI

in (85).

We already saw that C
TRCSI

≥ C
RCSI

always holds. From Figure 17, we observed that
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Figure 27: CDF of ANu on a 4 × 4 spatially uncorrelated channel for L ∈
{0, 1, 2, 5, 10, 100, 1000}.

the gap between C
TRCSI

and C
RCSI

is reduced as SNR grows. Thus, we expect C
TRCSI

has the same spatial multiplexing order M as C
RCSI

. In the following proposition, we

derive the asymptote of C
TRCSI

.

Proposition 5.6. At high SNR, the asymptote of C
TRCSI

is given by

C
TRCSI

→M log2

( ρ
M

)
+ME[log2(GNu)]. (147)

Proof. Deferred to Section 5.6. �

Proposition 5.6 shows that C
TRCSI

is equal to C
RCSI

at high SNR except that M

replaces MT for C
TRCSI

. Therefore, C
TRCSI

= C
RCSI

for MT ≤ MR, but C
TRCSI

>

C
RCSI

for MT < MR at high SNR. Proposition 5.6 also implies that E[log2(GNu)] is

independent of n, as discussed for C
RCSI

. Therefore, C
TRCSI

is not affected by L on

spatially uncorrelated fading.
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5.2.2.2 Zero-Outage Capacity

Finally and most importantly, we consider the zero-outage capacity C0 in (164). The

asymptote of C0 is derived in [7], as follows.

Theorem 5.2. As SNR tends to infinity, C0 asymptotically approaches:

C0 →M log2

( ρ
M

)
+M log2

(
1

E[1/GNu ]

)
, (148)

as long as E[1/GNu ] exists.

Proof. See [7]. �

From Theorem 5.2, we can confirm that the spatial multiplexing order is M .

Theorem 4.6 tells us that C0 converges to C
TRCSI

as M → ∞, suggesting that C0

is optimal for infinite M . However, Theorem 4.6 does not indicate how fast C0

approaches C
TRCSI

. To investigate the convergence speed, we use Proposition 5.6 and

Theorem 5.2.

Corollary 5.1. At high SNR, C
TRCSI

≥ C0 .

Proof. From Jensen’s inequality [20],

E [log(X)] = E

[
log

(
1

1/X

)]
≥ log

(
1

E [1/X]

)
, (149)

since log(1/x) is a convex function. By applying (149) to E [log2(GNu)], we have the

assertion. �

We define the SNR penalty as the additional SNR required by C0 , which is

SNR penalty =
ρ0

ρ
TRCSI

= 2E[log2(GNu )]
E[1/GNu ], (150)

from
ρ0

ME[1/GNu ]
=

ρ
TRCSI

M
2E[log2(GNu )]. The SNR penalty in dB corresponds to the

horizontal separation between C0 and C
TRCSI

in a capacity-versus-log(SNR) plot. We

investigate the SNR penalty as M ranges 2 from 10 in the following example in order

to see the convergence speed of Theorem 4.6.
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Figure 28: SNR penalty in (150) for M ∈ {2, 3, . . . , 10} on a M × M spatially
uncorrelated Rayleigh flat fading.

Example 5.4. We evaluate the SNR penalty as M ranges from 2 to 10 on a M ×

M flat-fading channel by averaging over 10,000 independent channels. Figure 28

summarizes the SNR penalty in dB as M ranges from 2 to 10. We can see that

the penalty rapidly reduces towards 0 dB as M grows. We emphasize that the SNR

penalty is the worst case since it is maximum as SNR tends to infinity. The SNR

penalties at finite SNR would be even smaller. �

Unlike E[log2(GNu)] in C
TRCSI

, which is independent of n in the sense that we ignore

the summation over n in E[log2(GNu)] such that E[log2(GNu)] =
∑M

m=1 log2(s
(m)
n ),

we cannot ignore the product over n in E[1/GNu ]. When the channel is spatially

uncorrelated, 1/E[1/GNu ] is an nondecreasing function of L, which implies that C0

also increases with L. Since C0 never exceeds C
TRCSI

, we conjecture that C0 increases

with L, but it is bounded as L → ∞. We resort to Monte-Carlo simulations to

evaluate 1/E[1/GNu ] as summarized in Table 3 for L ∈ {0, 1, . . . , 5} and M ∈ {2, 4, 6}
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L 0 1 2 3 4 5

M = 2 0.638 0.824 0.864 0.876 0.890 0.894
M = 4 1.496 1.604 1.628 1.636 1.640 1.644
M = 6 2.274 2.358 2.370 2.376 2.388 2.388

Table 3: 1/E[1/GNu ] of M ×M Rayleigh-fading channels with channel memory L
by Monte-Carlo simulations.

by averaging over 10,000M×M Rayleigh independent channels. Table 3 clearly shows

that 1/E[1/GNu ] increases with L.

However, it would still be nice to have a closed-form formula for 1/E[1/GNu ] to

understand the behaviors of C0 better. We are also interested in what would happen

when L→∞. Does C0 increase without a bound when L→∞? How fast does the

penalty converge to zero as M → ∞? To answer these questions, we use arithmetic

mean, instead of geometric mean, to derive a closed-form bound as follows:

Proposition 5.7. The asymptote of C0 in (148) is bounded by

C0 ≤M log2

(
ρ

ME[1/ANu ]

)
, (151)

which is maximized when σ2
0 = . . . = σ2

L = 1/(L+ 1), that is, when the power profile

is uniform. For the uniform power profile, 1/E[1/ANu ] in (151) can be evaluated as

1

E[1/ANu ]
=
MTMR(L+ 1)− 1

M(L+ 1)
, (152)

on a spatially uncorrelated channel.

Proof. Deferred to Section 5.7. �

From Proposition 5.7, we deduce that C0 is bounded even when L is infinite,

which can be seen from the limiting result: 1
ME[1/ANu ]

converges to max(MT ,MR)
min(MT ,MR)

as

L → ∞. On the other hand, when L is fixed and M tends to infinity such that

max(MT ,MR)
min(MT ,MR)

→ β ≥ 1, 1
ME[1/ANu ]

converges to β. Therefore, the upper bound of C0 in

(151) is no longer increased by L.
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5.3 Proof of Proposition 5.1

First, we borrow from [44] the inequality:

log2 det (IMR
+ aHH∗) ≥ log2

(
1 + a||H||2F

)
, (153)

where H is an MR ×MT matrix and || · ||F denotes the Frobenius norm. With this

inequality, the mutual information in (61) becomes

I
RCSI

=
1

N

N∑
n=1

log2 det

(
IMR

+
ρ

MT

HnH
∗
n

)

=
1

N

N∑
n=1

det

(
INMR

+
ρ

MT

ĤĤ∗
)

≥ 1

N
log2

(
1 +

ρ

MT

||Ĥ||2F
)
, (154)

for Ĥ = diag[H1, . . . ,HN ]. Hence, the outage probability is upper-bounded by

Prob[I
RCSI

< R] ≤ Prob

[
||Ĥ||2F (L+ 1)

N
<

(2RN − 1)(L+ 1)

ρN/MT

]
, (155)

where we denote the upper bound Prob
[
||Ĥ||2F (L+1)

N
< (2RN−1)(L+1)

ρN/MT

]
as P

OUT,UB
. The

arithmetic mean of the eigenvalues {s(m)
n } is

ANu =
1

MN

N∑
n=1

||Hn||2F =
1

MN
||Ĥ||2F . (156)

From Lemma 2.2, ||Ĥ||2F (L + 1)/N is a chi-square random variable with the degree

of freedom MTMR(L + 1), implying that − limρ→∞
log(P

OUT,UB
)

log(ρ)
= MTMR(L + 1).

Therefore, the diversity order is lower-bounded by MTMR(L+ 1).

5.4 Proof of Proposition 5.3

We remove the index n for the notational simplicity since C
RCSI

is independent of n

in Lemma 4.1. From (62),

C
RCSI

= E

[
M∑
m=1

log2

(
1 +

ρ

MT

s(m)

)]

≥ E

[
M∑
m=1

log2

(
ρ

MT

s(m)

)]
. (157)
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Thus, the inequality:

C
RCSI
≥M log2

(
ρ

MT

)
+ME [log2(GNu)] , (158)

holds for any ρ.

On the other hand, we can rewrite (62) as

C
RCSI

= E

[
M∑
m=1

log2

(
ρ

MT

s(m)

(
1 +

MT

ρs(m)

))]

≤ M log2

(
ρ

MT

)
+ME [log2(GNu)] +ME

[
log2

(
1 +

MT

ρs(M)

)]
, (159)

since s(M) ≥ s(m) for all m. We only need to prove E
[
log2

(
1 + MT

ρs(M)

)]
converges to

0 as ρ→∞. If E[1/s(M)] <∞, the proof is simple. From Jensen’s inequality,

E

[
log2

(
1 +

MT

ρs(M)

)]
≤ log2

(
1 +

MT

ρ
E

[
1/s(M)

])
. (160)

Since MT

ρ
E

[
1/s(M)

]
→ 0 as ρ → ∞, E

[
log2

(
1 + MT

ρs(M)

)]
also converges to zero. If

E[1/s(M)] is infinite, such as on Rayleigh fading,

E

[
log2

(
1 +

MT

ρs(M)

)]
=

∫ ∞
0

log2

(
1 +

MT

ρx

)
fs(M)(x)dx

=

∫ MT
a

0

log2

(
1 +

MT

ρx

)
fs(M)(x)dx+

∫ ∞
MT
a

log2

(
1 +

MT

ρx

)
fs(M)(x)dx

≤ B

∫ MT
a

0

log2

(
1 +

MT

ρx

)
dx+ log

(
1 +

a

ρ

)∫ ∞
MT
a

fs(M)(x)dx, (161)

for any a > 0. The inequality in (161) is from (1) fs(M) ≤ B for 0 < x < MT/a with

a certain B ≥ 0, since fs(m) is a continuous function1 and its integration from 0 to

MT/a is finite; (2) log2

(
1 + MT

ρx

)
≤ log2

(
1 + a

ρ

)
for x ≥MT/a. The second term in

(161) clearly converges to 0 as ρ→∞. The first term in the limit of ρ→∞ becomes

lim
ρ→∞

∫ MT
a

0

log

(
1 +

MT

ρx

)
dx = lim

ρ→∞
MT

[
log
(
ρ+a
a

)
ρ

+
1

a
log

(
1 +

a

ρ

)]
= 0, (162)

1We consider Rayleigh fading, whose joint PDF is continuous. However, the proof can be gener-
alized for the discontinuous case.
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where we use ∫
log(1 + x)

x2
dx = log

(
x

1 + x

)
− log(1 + x)

x
. (163)

Combining two inequalities completes the proof.

5.5 Proof of Proposition 5.4

We can rewrite (66) as

C
RCSI

=
eMT /ρ

log(2)

M−1∑
k=0

k∑
l=0

2l∑
i=0

{
(−1)i(2l)!(D + i)!

22k−il!i!(D + l)!

×
(

2k − 2l

k − l

)(
2l + 2D

2l − i

)[
E1

(
MT

ρ

)
+

D+i∑
j=1

Ej+1

(
MT

ρ

)]}
, (164)

where we use the relation:

En(x) =
1

n− 1

{
e−x − xEn−1(x)

}
n > 1, (165)

if x is real. As x→ 0, we can approximate En(x) as

E1(x) = − log(x)−
∞∑
k=1

(−x)k

k · k!
− Γ ≈ − log(x)− Γ, (166)

and

En(x) ≈ 1

n− 1
n > 1, (167)

since limx→0 x log(x) = 0. If we use the following identity:

M−1∑
k=0

k∑
l=0

2l∑
i=0

(−1)i(2l)!(D + i)!

22k−il!i!(D + l)!

(
2k − 2l

k − l

)(
2l + 2D

2l − i

)

=
M−1∑
k=0

1

4k

k∑
l=0

(2l)!

l!(D + l)!

(
2k − 2l

k − l

) 2l∑
i=0

(−1)i(t− i)!
2−ii!

(
2l + 2D

2l − i

)

=
M−1∑
k=0

1

4k

k∑
l=0

(2l)!

l!(D + l)!

(
2k − 2l

k − l

)
(D + l)!

l!

=
M−1∑
k=0

1

4k

k∑
l=0

(2l)!

l!l!

(
2k − 2l

k − l

)
= M. (168)
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substituting (166) and (167) into (164) results in

M log2

(
ρ

MT

)
+K − Γ/ log(2) (169)

where K is defined in (144).

5.6 Proof of Proposition 5.6

The proof consists of two parts, similar to the proof of Proposition 5.3. As C
TRCSI

is

independent of n, we ignore the tone index n. First, we prove

C
TRCSI

≈M log2

( ρ
M

)
+ME[log2(GNu)], (170)

and then proceed to the proof of (147).

From (85), we have the following inequality:

C
TRCSI

= E

[
M∑
m=1

{
log2(λs(m))

}+

]

≥ E

[
M∑
m=1

log2(λs(m))

]
= M log2(λ) + E[M log2(GNu)]. (171)

On the other hand, from (86), we have

ρ = E

[
M∑
m=1

{
λ− 1

s(m)

}+
]

≤ E

[
M

M∑
m=1

λ

]
= Mλ. (172)

Therefore, we have the inequality:

C
TRCSI

≥M log2

( ρ
M

)
+ E[M log2(GNu)]. (173)

Then, we prove that

C ≤M log2

( ρ
M

)
+ E[M log2(GNu)] (174)
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at SNR tends to infinity, which will complete the proof. First, we note that the

optimal λ in (84) is given by

λ =
2C/M

GMall

, (175)

where GMall
is the geometric mean over the index set

Mall =
{

all realizations of s(m);λs(m) ≥ 1
}
. (176)

Clearly, GMall
is deterministic, as it is averaged in a geometric sense over all real-

izations of {s(m)}. Let Nall =
{

all realizations of s(m)
}

. Then, the following equality

holds: log2 GNall
= E[log2 GM]. We define s(M) = min

{
s(m),m ∈ {1, 2, . . . ,M}

}
.

Then, the average SNR requirement is

ρ = E

[
M∑
m=1

{
λ− 1

s(m)

}+
]

≥ E

[
M∑
m=1

{
λ− 1

s(M)

}+
]

≥ E

[
M∑
m=1

{
2C/M

GNall

− 1

s(M)

}
1
{
s(M) > GNall

2−C/M
}]

= M2C/M
(
E

[
1
{
s(M) > GNall

2−C/M
}]

GNall

− 2−C/ME

[
1

s(M)

∣∣∣∣s(M) > GNall
2−C/M

])
. (177)

As SNR tends to infinity, so does C. As C →∞,

E

[
1
{
s(M) > GNall

2−C/M
}]
→ 1. (178)

Now we show that

2−C/ME

[
1

s(M)

∣∣∣∣s(M) > GNall
2−C/M

]
→ 0. (179)

We assume that the PDF of {s(m)} is continuous. The marginal PDF of s(M) is also

continuous and thus bounded: fs(M)(x) ≤ B for all x. Then,

2−C/ME

[
1

s(m)

∣∣∣∣s(m) > GNall
2−C/M

]
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=

∫ ∞
x=GNall

2−C/M

fs(m)(x)

x
dx

≤ B2−C/M

[∫ a

x=GNall
2−C/M

dx

x
+

∫ ∞
a

f(x)

a
dx

]
, (180)

for any GNall
2−C/M < a <∞. Clearly,

∫∞
a

f(x)
a
dx is bounded, and

lim
C→∞

2−C/M log(GNall
2−C/M) = 0. (181)

If we rewrite the above inequality with respect to C, we have

C ≤ M log2

( ρ
M
GNall

)
= M log2

( ρ
M

)
+ E[M log2(GNu)]. (182)

Therefore, by combining two inequalities, we have the assertion in (147).

5.7 Proof of Proposition 5.7

In this section, we prove Proposition 5.7. The upper bound in (151) comes from

ANu ≥ GNu . To prove that the uniform power profile maximizes the upper bound,

we consider the following lemma.

Lemma 5.2. Suppose that x = [X0, X1, . . . , XL]T is an (L + 1) × 1 vector, whose

elements are i.i.d. random variables with Pr[Xl > 0] = 1. Let Z = sTx be a scalar,

where s = [σ2
0, σ

2
1, . . . , σ

2
L]T is an (L + 1) × 1 deterministic vector. Then, {σ2

l } that

minimize E[1/Z] subject to
∑L

l=0 σ
2
l = 1 are:

σ2
0 = σ2

1 = . . . = σ2
L =

1

L+ 1
. (183)

Proof. Let f(s) = E[1/Z] be a function from a vector space S = {s;
∑L

l=0 σ
2
l = 1} to

a real scalar value. For any s1 and s2 belonging to S, we have the inequality:

λf(s1) + (1− λ)f(s2)
(a)
= E

[
λ

sT1 x
+

1− λ
sT2 x

]
(b)

≥ E

[
1

λsT1 x+ (1− λ)sT2 x

]
= f(λs1 + (1− λ)s2), (184)
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if 0 ≤ λ ≤ 1, where (a) comes from the fact that E[·] is a linear operator. The

inequality (b) is because g(x) = x−1(x > 0) is convex:

λg(sT1 x) + (1− λ)g(sT2 x) ≥ g(λsT1 x+ (1− λ)sT2 x), (185)

for 0 ≤ λ ≤ 1. Therefore, from (184), f(s) is convex.

Define an (L+ 1)× (L+ 1) permutation matrix:

P =

 0TL×1 1

IL 0L×1

 , (186)

where 0L×1 denotes an N × 1 all-zero vector. Note that P0 = PL+1 = IL+1. Then we

have:

f(s)
(a)
=

1

L+ 1

L∑
l=0

f(Pls)

(b)

≥ f

(
1

L+ 1

L∑
l=0

Pls

)
where (a) is true because {Xl} are i.i.d. and thus the order of {σ2

l } does not matter,

that is, f(s) = f(Pls) for any l, and where (b) comes from Jensen’s inequality [20]

since f(s) is convex. The equality in (b) holds if and only if {Pls} are constant.

Therefore, from
∑L

l=0 σ
2
l = 1, we prove that (183) minimizes E[1/Z]. �

From (187), the arithmetic mean is ANu = 1
M

∑L
l=0 σ

2
l ||Wl||2F if the channel is

uncorrelated. Then, by letting Xl = ||Wl||2F/M , we have the assertion that the

uniform power profile maximizes the upper bound, which completes the first part of

the proof.

Now we derive (152). From Lemma 2.2, we have

ANu =
1

M

L∑
l=0

||Gl||2F =
1

M(L+ 1)

L∑
l=0

||Wl||2F , (187)

by assuming uniform power profile, where the elements of Wl are i.i.d. CN (0, 1).

Then, M(L+1)ANu is a chi-square random variable with a degree of freedomMTMR(L+

1). We can evaluate E[1/ANu ] with the PDF in Corollary 2.3, which results in (152).
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CHAPTER 6

APPROACHING ZERO-OUTAGE CAPACITY

WITHOUT WATER-FILLING

We consider the power-allocation problem for the zero-outage capacity in a closed-loop

MIMO-OFDM system in Figure 3. The optimal allocation in Theorem 4.4 is based

on water-filling over all scalar channels over space (antennas) and frequency (tones).

The computational complexity required by water-filling is high, especially when the

number of scalar channels is large. In this chapter, we propose simpler allocation

strategies. We will show that the proposed strategies have much less complexity, but

performs nearly as well as the optimal allocation. The contributions of this chapter

will be

• To propose reduced-complexity allocation strategies and to derive their optimal

power allocation.

• To prove that the performance penalties of the proposed strategies relative

to the optimal allocation, in terms of the zero-outage capacities they achieve,

approach zero as the number of antennas tends to infinity.

• To show by the high-SNR analysis that the penalties of the proposed strategies

are small for a moderate number of antennas.

6.1 Problem Statement

We assume that CSI is known at the transmitter and a MIMO-OFDM channel in

Figure 1 converts into a bank of MN scalar channels in Figure 3. Recall from Theo-

rem 4.4 that so as to achieve the zero-outage capacity in (98), the transmitter decides

93



the power allocation {e(m)
n } by solving the following problem:

Minimize Ē = E
[

1
N

∑N
n=1

∑M
m=1 e

(m)
n

]
Subject to 1

N

∑N
n=1

∑M
m=1 log2

(
1 + e

(m)
n s

(m)
n

N0

)
= R

, (188)

where SNR is a function of the rate, namely ρ = Ē/N0 = f(R). By inverting this

function, C
0,OPT

= f−1(ρ) is the zero-outage capacity at SNR ρ.1 The optimal solution

for {e(m)
n } is presented in Theorem 4.4, which requires water-filling considering all MN

scalar channels. In MIMO-OFDM, MN is often large, and the complexity required

by water-filling can be very high. In the following, we propose the frequency-uniform-

spectral-efficiency and fixed-rate allocations by applying stricter constraints than the

constraint in (188).

6.2 FUSE Allocation

First, we introduce the frequency-uniform-spectral-efficiency (FUSE) constraint. In-

stead of the constraint in (188), the FUSE constraint forces M spatial channels

{s(m)
n ;m = 1, 2, . . . ,M} at each n to achieve the same spectral efficiency, so that

the allocation problem becomes

Minimize Ē = E
[

1
N

∑N
n=1

∑M
m=1 e

(m)
n

]
Subject to

∑M
m=1 log2

(
1 + s

(m)
n e

(m)
n

N0

)
= R for all n

. (189)

The optimal solution to (189) is as follows.

Proposition 6.1 (FUSE Allocation). The power allocation that solves (189) is

e
(m)
n = N0{µn − 1/s

(m)
n }+, where

µn =
2R/|Mn|

GMn

(190)

ensures that
∑M

m=1 log2

(
µns

(m)
n

)
= R is satisfied for all n, and where

Mn = {(m,n);µns
(m)
n ≥ 1} for a specfic n (191)

1For emphasis, we denote C0,OPT , instead of C0 , as the zero-outage capacity with the optimal
allocation.
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is the index set for the used channels of the nth tone, such that |Mn| ≤M .

Proof. From (189), the objective function can be rewritten as

E

[
1

N

N∑
n=1

M∑
m=1

e(m)
n

]
=

1

N

N∑
n=1

E

[
M∑
m=1

e(m)
n

]
. (192)

Thus, the problem reduces to N independent smaller problems:

Minimize E
[∑M

m=1 e
(m)
n

]
Subject to

∑M
m=1 log2

(
1 + s

(m)
n e

(m)
n

N0

)
= R

for all n. (193)

For each n, the optimal {e(m)
n } is in the same form of Theorem 4.4, where µn is the

water-level parameter and Mn is the index set for the used channels. �

Proposition 6.1 suggests that the FUSE constraint breaks the original power-

allocation problem in (188) into a set of smaller problems in (193). Each problem in

(193) is also solved by water-filling, but the scope of water-filling reduces to M scalar

channels {s(m)
n ;m = 1, 2, . . . ,M} for each n. Thus, the FUSE allocation performs

water-filling over M spatial channels independently N times instead of performing

water-filling over MN channels. In MIMO-OFDM, M is much smaller than MN ,

and hence the complexity can be considerably reduced.

The complexity reduction is not free, incurring a penalty in the zero-outage ca-

pacity. In other words, the FUSE allocation requires larger average energy than the

optimal allocation, that is, Ē
FUSE

≥ Ē
OPT

always holds. In terms of the zero-outage

capacity, the zero-outage capacity with FUSE constraint, C
0,FUSE

, is always less than

or equal to C
0,OPT

.

Note that the energy En =
∑M

m=1{µn − 1/s
(m)
n }+ required by each tone is not

constant for a certain realization of {s(m)
n }. In the average sense, however, the average

energy E[En] required by each tone is uniform since the statistics of {s(m)
n ;m =

1, 2, . . . ,M} are identical for all n from Lemma 2.1. Therefore, C
0,FUSE

is equal to

the zero-outage capacity of the memoryless MIMO channel {s(m)
n ;m = 1, 2, . . . ,M}
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for any n. If the channel is spatially uncorrelated, each {s(m)
n ;m = 1, 2, . . . ,M} is

statistically identical to a flat-fading (L = 0) channel, which yields the following

remark:

Remark 6.1. On a spatially uncorrelated channel, C
0,FUSE

= C
0,OPT,L=0

since each

channel matrix Hn is statistically equivalent to a flat-fading MIMO channel from

Lemma 2.1. Thus, C
0,FUSE

is constant independent of L �

From Remark 6.1, we can confirm the inequality C
0,FUSE

≤ C
0,OPT

since C
0,OPT

increases

with L, while C
0,FUSE

remains unchanged.

On a Rayleigh-fading SISO channel (MT = MR = 1), C
0,FUSE

is zero regardless of

L since C
0,OPT,L=0

is zero when the channel is memoryless. In contrast, C
0,OPT

can be

nonzero for L > 0 owing to the diversity from frequency selectivity [55]. Hence, the

FUSE allocation is grossly suboptimal to the optimal allocation in a SISO channel,

incurring an infinite SNR penalty in the sense that an infinite SNR is required to

achieve a positive zero-outage capacity.

With multiple antennas at the transmitter and receiver, the FUSE allocation

benefits from the spatial diversity and C
0,FUSE

increases to a nonzero value. Intuitively,

as the number of antennas grows, the spatial diversity becomes more dominant than

the frequency diversity, and C
0,FUSE

would be close to C
0,OPT

. As an extreme case,

when M = min(MT ,MR) tends to infinity, we expect that the benefit from the

frequency diversity is negligible, and C
0,FUSE

would be as large as C
0,OPT

. In the

following proposition, we prove that the gap between C
0,FUSE

and C
0,OPT

disappears

for large M .

Proposition 6.2. On a spatially uncorrelated channel, the power allocation with the

FUSE constraint is asymptotically optimal as the number of antennas gets large, in

the sense that C
0,FUSE

→ C0 as M →∞.
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Proof. The proof is based on the fact that the power allocation depends on the em-

pirical distribution in (22). In other words, if two systems have the same empirical

distribution for all channel realizations, they achieve the same zero-outage capacity.

Consider two index sets: the universe index set Nu in (14) and the spatial index set

Ns = {(m,n);m = 1, 2, . . . ,M for specific n} , (194)

where ΨNu(x) and ΨNs(x) correspond to C
0,OPT

and C
0,FUSE

, respectively. When M

is finite, the empirical distribution functions for Nu and Ns are different, ΨNu(x) 6=

ΨNs(x). However, their expected values are equal [42], such that

E[ΨNu(x)] = E[ΨNs(x)]. (195)

As M → ∞, both ΨNu(x) and ΨNs(x) converge to non-random limits, as shown

in Theorem 2.2, implying that ΨNu(x) = E[ΨNu(x)] and ΨNs(x) = E[ΨNs(x)]. There-

fore, from (195), we have ΨNu(x) = ΨNs(x) at infinite M , and both ΨNu(x) and

ΨNs(x) achieve the same zero-outage capacity. �

Proposition 6.2 suggests that the penalty by FUSE constraint converges to zero as

M grows. It is an encouraging result to justify the use of FUSE constraint in power

allocation, but we are more interested in its performance at a finite M . We will show

that the convergence is fast by high-SNR analysis (Section 6.4) and experimental

results (Section 6.5).

6.3 Fixed-Rate Allocation

Another simplifying constraint for the allocation problem is the fixed-rate (FIX) con-

straint, where the achievable rate of each scalar channel, r
(m)
n = log2(1+s

(m)
n e

(m)
n /N0),

is fixed independent of {s(m)
n }. With the FIX constraint, the problem in (188) reduces

to a simpler problem:

Minimize Ē = E
[

1
N

∑N
n=1

∑M
m=1 e

(m)
n

]
Subject to log2

(
1 + s

(m)
n e

(m)
n

N0

)
= r

(m)
n for all m and n

, (196)
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where {r(m)
n } are independent of {s(m)

n }, and satisfy 1
N

∑N
n=1

∑M
m=1 r

(m)
n = R.

Once {r(m)
n } are determined, power allocation can be simply calculated from a

closed-form formula, e
(m)
n = N0(2r

(m)
n − 1)/s

(m)
n , and thus no water-filling is needed.

We emphasize that fixing {r(m)
n } does not mean the equal allocation, where {r(m)

n }

are uniform for m and n, which would be a bad allocation, resulting in a very large

average energy Ē. For best results, the choice of {r(m)
n } must be optimized to the

anticipated channel statistics so as to minimize the average energy Ē.

First, we define the number of available channels for the FIX constraint.

Definition 6.1. Let M̃ be the largest integer satisfying E[1/sM̃,n] < ∞ for each n,

which is the number of scalar channels we can use for power allocation at each tone.

�

If a nonzero rate were allocated to (m,n) with E[1/s
(m)
n ] → ∞, the average energy

requirement for (m,n) would be infinite. For this reason, we avoid using such a scalar

channel. From Lemma 2.1, M̃ is identical for all n. For example, when the channel is

spatially uncorrelated flat fading and square (MT = MR = M), M̃ is at most M − 1

since s
(M)
n is exponential distributed and E[1/s

(M)
n ] diverges [23]. We conjecture, from

computer simulations, that M̃ = M − 1 for any M × M channel though we can

prove this only for small M by explicitly calculating E[1/s
(m)
n ] from the marginal

distribution of {s(m)
n } [65]. When the channel is non-square (MT 6= MR), we have

M̃ = M = min(MT ,MR) as deduced from [23].

The optimal choice of {r(m)
n } is also given by water-filling, as illustrated in the

following proposition.

Proposition 6.3 (FIX Allocation). The optimal choice of {r(m)
n } that minimizes

Ē is

r(m)
n =


{

log2

(
ν

E[1/s
(m)
n ]

)}+

1 ≤ m ≤ M̃

0 otherwise
, (197)
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where

ν =
2RN/|MFIX|

ΓM
FIX

(198)

ensures that 1
N

∑N
n=1

∑M
m=1 e

(m)
n = R is satisfied, and where

M
FIX

= {(m,n); ν/E[1/s(m)
n ] ≥ 1} (199)

is the index set for used channels out of M̃ channels for each n. In (198) and (199),

ΓM
FIX

denotes the geometric mean of 1/E[1/s
(m)
n ] over M

FIX
, namely,

ΓM
FIX

=

 ∏
(m,n)∈M

FIX

1/E[1/s(m)
n ]

1/|MFIX|
. (200)

The optimal power allocation can be calculated from e
(m)
n = N0(2r

(m)
n − 1)/s

(m)
n .

Proof. Since {r(m)
n } are independent of {s(m)

n }, the objective function in (196) becomes

Ē

N0

= E

[
1

N

N∑
n=1

M∑
m=1

2r
(m)
n − 1

s
(m)
n

]
=

1

N

N∑
n=1

M̃∑
m=1

(2r
(m)
n − 1)

u
(m)
n

, (201)

where u
(m)
n = 1/E[1/s

(m)
n ]. In (201), {u(m)

n } act as the squared channel gains, and

each tone has M̃ scalar channels. Since {u(1)
n , . . . , u

(M̃)
n } is identical for all n, the

problem reduces to water-filling over M̃ scalar channels, such that ν is the water-

level parameter and M
FIX

is the index set for used channels. The geometric mean

ΓM
FIX

replaces GMn in this case. �

From (197), we can confirm that {r(m)
n } are deterministic, obtained from per-

forming water-filling over deterministic channels, {1/E[1/s
(m)
n ]}. Thus, we only need

{1/E[1/s
(m)
n ]}, not all statistics of {s(m)

n }, to decide {r(m)
n }. Once {r(m)

n } are predeter-

mined according to Proposition 6.3, power allocation is trivial, done by a closed-form

formula:

e(m)
n =

2r
(m)
n − 1

s
(m)
n /N0

=

 N0

{
ν

s
(m)
n E[1/s

(m)
n ]
− 1

s
(m)
n

}+

1 ≤ m ≤ M̃

0 otherwise
, (202)
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for each realization of {s(m)
n }.

From Lemma 2.1, the effective channels at each tone {1/E[1/s
(m)
n ];m = 1, 2, . . . ,M}

are identical for all n. Thus, the FIX allocation has no dependency on n. We already

mentioned that M̃ is constant for all n. In Proposition 6.3, ν and M
FIX

are also

independent of n. As {1/E[1/s
(m)
n ];m = 1, 2, . . . ,M} are deterministic, so are ν and

M
FIX

.

Corollary 6.1. The FIX constraint inherently implies the FUSE constraint in the

sense that {r(m)
n } in Proposition 6.3 satisfy

∑M
m=1 r

(m)
n = R.

Proof. Straightforward from the proof of Proposition 6.3. �

Complexity reduction is remarkable with the FIX constraint, but fixing {r(m)
n }

could incur a significant penalty. Let C
0,FIX

denote the zero-outage capacity with the

FIX constraint. Since the FIX constraint is stricter than the FUSE constraint, we

have C
0,OPT

≥ C
0,FUSE

≥ C
0,FIX

.

On a spatially uncorrelated SISO channel (M = 1), we have M̃ = 0 for the FIX

allocation, that is, no channel is available, since 1/E[1/s
(1)
n ] = 0. Thus, C

0,FIX
is

always zero. With multiple antennas, similar to C
0,FUSE

, C
0,FIX

becomes nonzero as

M̃ > 0. However, the number of available channels (M̃) can be smaller than the

maximum multiplexing order (M), such as on a M ×M channel with M̃ ≤ M − 1,

incurring a significant penalty due to the smaller spatial multiplexing order. As M

grows, however, we have the following proposition.

Proposition 6.4. On a spatially uncorrelated channel, the power allocation with the

FIX constraint is asymptotically optimal as the number of antennas gets large, in the

sense that C
0,FIX
→ C0 as M →∞.
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Proof. Let θ
(m)
n = s

(m)
n /M and let Ns be the spatial index set in (194). From Propo-

sition 6.3, C
0,FIX

depends on the empirical distribution of 1/E[1/θ
(m)
n ]:

VNs(x) =
1

|Ns|

M∑
m=1

1
{

1/E[1/θ(m)
n ] ≤ x

}
, (203)

if including 1/E[1/θ
(m)
n ] = 0, which is identical for all n. The goal is to show that

VNs(x) is equal to ΨNs(x), the empirical distribution for {s(m)
n } in (22), as M →∞.

When M →∞, ΨNs(x) becomes non-random, and thus 1{θ(m)
n ≤ x} = E[1{θ(m)

n ≤

x}] = Prob[θ
(m)
n ≤ x], implying that the distribution function of θ

(m)
n is a delta

function at θ
(m)
n . Therefore, 1/E[1/θ

(m)
n ] = θ

(m)
n . If 1/E[1/θ

(m)
n ] = 0, this corresponds

to θ
(m)
n = 0. Therefore, by substituting 1/E[1/θ

(m)
n ] = θ

(m)
n into (22), we obtain

VNs(x) = ΨNs(x) for infinite M . Therefore, C
0,FIX

converges to C
0,FUSE

as M → ∞

sine VNs(x) and ΨNs(x) account for C
0,FIX

and C
0,FUSE

, respectively. Proposition 6.2,

we deduce that C
0,FIX

is asymptotically identical to C
0,OPT

as M →∞. �

We showed in Proposition 6.2 that water-filling over spatial channels is sufficient

to approach C
0,OPT

. Furthermore, Proposition 6.4 illustrates that a nonadaptive al-

location for {r(m)
n }, if carefully chosen as described in Proposition 6.3, also achieves

C
0,OPT

. In other words, no water-filling is necessary to approach C
0,OPT

in MIMO.

We remark that the FIX allocation must be matched to channel statistics, while the

FUSE allocation only needs to know the current channel status.

6.4 Asymptotic Behaviors

In this section, we conduct high-SNR analysis on the FUSE and FIX allocations.

There are two goals: (1) we can approximately quantify the SNR penalty of C
0,FUSE

at high SNR, and show that the penalty quickly approach 0 dB (no penalty) as M

grows; (2) we derive the asymptote of C
0,FIX

and discuss the ill effects of deficient M̃ .
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6.4.1 FUSE Allocation

Recall from Theorem 5.2, that the asymptote of C
0,OPT

is

C
0,OPT

→M log2

( ρ
M

)
+M log2

(
1

E[1/GNu ]

)
, (204)

at high SNR, and from Proposition 5.7 that the upper bound of C
0,OPT

is

C
0,OPT

≤M log2

(
ρ

ME[1/ANu ]

)
, (205)

where 1/E[1/ANu ] can be evaluated for the uniform power profile as

1

E[1/ANu ]
=
MTMR(L+ 1)− 1

M(L+ 1)
, (206)

on a spatially uncorrelated channel. Since C
0,FUSE

is equal to the zero-outage capacity

of the spatial channels {s(m)
n ;m = 1, 2, . . . ,M}, (204) can be modified to obtain the

asymptote of C
0,OPT

.

Corollary 6.2. As SNR tends to infinity, C
0,FUSE

asymptotically approaches

C
0,FUSE

→M log2

(
ρ

ME[1/GNs ]

)
≤M log2

(
ρ

ME[1/ANs ]

)
, (207)

where Ns is the spatial index set in (194).

Proof. The proof is straightforward from Proposition 6.1. �

Corollary 6.2 shows that the spatial multiplexing order is also M . To measure the

penalty by the FUSE constraint, we define the SNR penalty as

SNR penalty =
1/E[1/GNu ]

1/E[1/GNs ]
, (208)

which accounts for the additional SNR required by the FUSE constraint at high

SNR, relative to the optimal allocation. We can show that the SNR penalty is always

greater than or equal to unity since

E

[
1

GNu

]
= E


 N∏
n=1

(
M∏
m=1

1

s
(m)
n

) 1
M


1
N

 ≤ E
 1

N

N∑
n=1

(
M∏
m=1

1

s
(m)
n

) 1
M

 = E

[
1

GNs

]
,

(209)
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where the inequality in the above equation comes from the inequality of arithmetic

and geometric means of
{

(
∏M

m=1 1/s
(m)
n )1/M ;m = 1, 2, . . . ,M

}
.

If the channel is spatially uncorrelated, {s(m)
n ;m = 1, 2, . . . ,M} is statistically

identical to a flat-fading MIMO channel, so that GNs is equal to GNu,L=0
. The term

1
E[1/ANs ]

in (207) can be evaluated as 1
E[1/ANs ]

= (MTMR − 1)/M . Then, we can

explicitly evaluate the approximate SNR penalty as

SNR penalty ≈ 1/E[1/ANu ]

1/E[1/ANu,L=0
]

=
MTMR(L+ 1)− 1

(MTMR − 1)(L+ 1)
, (210)

for the uniform power profile. We are particularly interested in the uniform power

profile because it maximizes the approximate SNR penalty, namely, (210) is the worst

case penalty of the FUSE allocation.

The approximation in (210) is useful to see how M and L affect the SNR penalty

of the FUSE allocation. We can confirm that the approximate SNR penalty in (210)

becomes 0 dB (no penalty) when either L = 0 or M → ∞. The result for M → ∞

agrees with Proposition 6.2. When L → ∞, it converges to MTMR/(MTMR − 1),

that is, the penalty is bounded. We take examples to verify the validness of the

approximate SNR penalty and to investigate the impact of M and L on the SNR

penalty.

Example 6.1. If the channel is square (MT = MR = M), Figure 29 illustrates the

approximate SNR penalty in (210) for L = 4 as M grows from 1 to 10, in which we

observe that the penalty rapidly decreases toward 0 dB. The actual penalty in (208)

is also plotted in Figure 29, slightly larger than (210), which also decreases toward 0

dB as M grows. Figure 29 suggests that the convergence in Proposition 6.2 is fast.

�

Example 6.2. Figure 30 plots the approximate SNR penalty in (210) forMT = MR =

M ∈ {2, 3, . . . , 10} when L ∈ {0, 1, 2, 5, 10, 100, 1000}. Clearly, the approximate SNR
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Figure 29: SNR penalty of the FUSE allocation and its approximation as M grows
at high SNR.

penalty converges as L grows. The convergence of Proposition 6.2 is slower as L gets

larger. �

Example 6.3. In this example, we consider three cases: (1) MT = 1 and MR = k; (2)

MT = MR = k; and (3) MT = k and MR = 2k when k ranges from 2 to 10. Figure 31

plots the approximate SNR penalty for the three cases. Clearly, the convergence is

slowest for the case (1) and fastest for the case (3). �

6.4.2 FIX Allocation

Now we proceed to deriving the asymptote of the FIX allocation at high SNR.

Proposition 6.5. As SNR tends to infinity,

C
0,FIX
→ M̃ log2

(
ρ

M̃/Γ ˜Nu,L=0

)
, (211)
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Figure 30: Approximate SNR penalty of the FUSE allocation for L ∈
{0, 1, 2, 5, 10, 100, 1000}.
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where Γ ˜Nu,L=0 is the geometric mean of 1/E[1/s
(m)
n ] over the index set ˜Nu, L = 0,

and where M̃ = {(m,n);m = 1, 2, . . . , M̃and n = 1, 2, . . . , N} is the index set for

available channels in Proposition 6.3.

Proof. Deferred to Section 6.6. �

Proposition 6.5 shows that the spatial multiplexing order is M̃ rather than M . As

already discussed, the deficiency in the spatial multiplexing order leads to a significant

loss in C
0,FIX

. As before, we define the SNR penalty as the additional SNR required by

the FIX allocation to achieve the same capacity as the optimal allocation (C
0,OPT

=

C
0,FIX

= R), that is,

SNR penalty =
ρ

FIX

ρ
OPT

=
M̃

MΓÑE[1/GNu ]
2R( 1

M̃
− 1
M ), (212)

where ρ
OPT

and ρ
FIX

are the SNR required by the optimal and FIX allocations, re-

spectively, to achieve R. From (212), the SNR penalty diverges if M 6= M̃ since (211)

assumes SNR tends to infinity, which implies that R → ∞. If M = M̃ , the SNR

penalty is finite and depends only on the term M̃
MΓÑE[1/GNu ]

. As L grows, 1/E[1/GNu ]

also increases, but ΓÑ is unchanged on a spatially uncorrelated channel. Thus, the

SNR penalty of the FIX allocation is proportional to L.

As an infinite penalty is too pessimistic, we consider large but finite SNR, for

which C
0,FIX
≈ M̃ log2

(
ρ

M̃/Γ ˜Nu,L=0

)
. In such a case, we take logarithm on both sides

of (212), yielding

log2(SNR penalty) =

(
1

M̃
− 1

M

)
R + log2

(
M̃

MΓÑE[1/GNu ]

)
, (213)

which is linearly proportional to R, with a slope of 1
M̃
− 1

M
. When M is large, however,

the slope quickly approaches zero, and the SNR penalty is reduced. As M → ∞,

we have 1
M̃
− 1

M
→ 0 and M̃

MΓÑE[1/GNu ]
→ 1, implying that log2(SNR penalty), which

agrees with Proposition 6.4. To check the convergence speed, we consider the following

example.
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Figure 32: A plot of 1
M̃
− 1

M
versus M on a M ×M MIMO channel.

Example 6.4. On a M ×M spatially uncorrelated channel with memory L = 4,

we conjectured that M̃ = M − 1. Figure 32 shows that 1
M̃
− 1

M
= 1

M(M−1)
rapidly

decreases to 0 as M grows. �

To calculate the SNR penalties for small R, we must resort to Monte-Carlo sim-

ulations in the following section.

6.5 Numerical Results

We have proposed three power-allocation strategies for MIMO-OFDM with eigen-

beamforming:

• Optimal allocation (Theorem 4.4)

• FUSE-constrained allocation (Proposition 6.1)

• FIX-constrained allocation (Proposition 6.3)
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which achieve C
0,OPT

, C
0,FUSE

, and C
0,FIX

, respectively. It has been shown that both

C
0,FUSE

and C
0,FIX

converge to C
0,OPT

as the antenna array size tends to infinity. In this

section, we show via Monte-Carlo simulations that C
0,FUSE

and C
0,FIX

are also nearly

optimal for moderate antenna array sizes. Monte-Carlo simulations generated 10,000

independent sets of channels, {Gl}, with the uniform power profile. We assume that

OFDM has N = 256 tones.

6.5.1 Spatially Uncorrelated Channels

First, we consider a spatially uncorrelated channel.

6.5.1.1 Square Channels

We assume that the channel matrices are square (MT = MR = M). Figure 33 shows

C
0,OPT

, C
0,FUSE

, and C
0,FIX

against SNR in dB for L = 4 and M ∈ {1, 2, 4, 6} when the

channel is spatially uncorrelated. When M = 1 (SISO), both C
0,FUSE

and C
0,FIX

are

zero, as reported in [28]. The optimal allocation has nonzero C
0,OPT

because water-

filling across tones exploits the frequency diversity from channel memory, otherwise

it too would be zero.

In stark contrast, when M = 2, C
0,FUSE

and C
0,FIX

become nonzero due to spatial

(antenna) diversity. As explained in Corollary 6.2, C
0,OPT

and C
0,FUSE

have the same

asymptotic slope, i.e. spatial multiplexing order, (M = 2), while C
0,FIX

has a lower

slope (M̃ = 1). Thus, it can be seen that the gap between C
0,FIX

and C
0,OPT

grows

with SNR, and the FIX constraint incurs an unbounded penalty in the end as SNR

tends to infinity.

As the antenna array sizes increase to M = 4 and M = 6, both C
0,FUSE

and C
0,FIX

are very close to C
0,OPT

, as expected from Figure 29. For M = 4 or M = 6, C
0,FIX

has

a lower asymptotic slope (M̃ = M − 1) than C
0,OPT

or C
0,FUSE

, and eventually incurs

an unbounded penalty as SNR goes to infinity. However, for a range of practical SNR,

Figure 33 illustrates the penalty of the FIX allocation is small, as in part explained
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Figure 33: Zero-outage capacities of the FUSE and FIX allocations on an M ×M
spatially uncorrelated Rayleigh-fading channel with L = 4 memory.

in the previous section.

To emphasize how far C
0,FUSE

and C
0,FIX

are separated from C
0,OPT

, Figure 34 and

Figure 35 illustrate the SNR penalty, which is the additional SNR required by the

FUSE and FIX allocations relative to the optimal allocation at a given target rate R

ranging from 2 to 14. The SNR penalty corresponds to horizontal separation from

C
0,OPT

in Figure. 33.

The FUSE allocation incurs an SNR penalty of more than 0.8 dB for M = 2, but

the penalty reduces to less than 0.3 dB for M = 4 and M = 6 in Figure 34. From

Figure 29, the SNR penalties converge to {1.47, 0.41, 0.20} in dB for M ∈ {2, 4, 6},

respectively, as the target rate goes to infinity.

For the FIX allocation, the SNR penalty at M = 2 is quite large due to a smaller

multiplexing order (M̃ = 1) in Figure 33. Figure 35 illustrates that the penalty is
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Figure 34: SNR penalty of the FUSE allocation on an M×M spatially uncorrelated
Rayleigh-fading channel with L = 4 memory for M ∈ {2, 4, 6}.

more than 1 dB and quickly diverges. For M = 4 and M = 6, the FIX allocation also

has a shallower slope in Figure 33 and the SNR penalties ultimately diverge. However,

Figure 35 demonstrates that the SNR penalties for 2 ≤ R ≤ 14 are surprisingly small,

less than 0.5 and 0.3 dB for M = 4 and M = 6, respectively. For both the FUSE and

FIX allocations, Figure 35 confirms that the penalties become small for a moderate

M , implying the convergence of C
0,FUSE

and C
0,FIX

toward C
0,OPT

is fast.

As observed before, the SNR penalty is a function of L. When L = 0, there is

no penalty, while the SNR penalty increases with L. In Figure 36, we plot the SNR

penalty of the FUSE-constrained allocation for various L. An interesting observation

is that the increase step is getting smaller as L grows and looks to converge to a finite

value. This agrees with Proposition 5.7, where we have shown the SNR penalty is

finite.
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Figure 35: SNR penalty of the FIX allocation on an M ×M spatially uncorrelated
Rayleigh-fading channel with L = 4 memory for M ∈ {2, 4, 6}.
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Figure 37: Zero-outage capacities of the FUSE and FIX allocations on spatially
uncorrelated 2× 2, 4× 2, and 6× 2 channels with L = 4 memory.

6.5.1.2 Non-square Channels

Now we consider non-square MIMO channels with MT = 2 and MR ∈ {2, 4, 6} with

channel memory L = 4. As observed in Figure 33, when MT = MR = 2, C
0,FIX

has

a lower slope (M̃ = 1) than C
0,OPT

and C
0,FUSE

, whose slopes are M = 2, and hence

C
0,FIX

can be significantly smaller than C
0,OPT

and C
0,FUSE

, especially at high SNR.

However, as the number of receive antennas grows to MR = 4 (4 × 2) or MR = 6

(6×2), as shown in Figure 37, C
0,FIX

has the same slope as C
0,OPT

and C
0,FUSE

, namely

M = M̃ = 2, and also the gaps between the curves are reduced owing to higher

spatial diversity orders, namely MTMR = 8 for 4 × 2 and MTMR = 12 for 6 × 2.

Note that the slopes (the multiplexing orders) for all MR ∈ {2, 4, 6} are identical as

M = min(MT ,MR) = 2 in Figure 37.
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6.5.2 Spatially Correlated Channels

In the section, we examine the case where the fading on the transmitter side is

spatially uncorrelated, while spatial fading at receive antennas is correlated with

RTl given in (6). Based on the correlation model in Section 2.1.2, we calculate C
0,OPT

,

C
0,FUSE

, and C
0,FIX

via Monte-Carlo simulations. As the rank of Rl is increasing with

L, C
0,OPT

also increases notably. Simulations show that this is true for C
0,FUSE

and

C
0,FIX

.

Figure 36 illustrates the SNR penalty of the FUSE constraint for M = 4 when

cluster angle spread is either large (σθl = 0.25) or small (σθl = 0) as well as the

SNR penalty of uncorrelated channels as a benchmark. We assume that there are

L = 4 clusters, whose average angles {θ̄l} are {π/4, 3π/8, π/2, 5π/8, 3π/4}. From

Figure 38, it can be seen that the SNR penalties are 0.1 dB for small spread and

0.15 dB for large spread, both of which are less than the penalty on the uncorrelated

channel. Figure 38 shows a tendency that the SNR penalty of a spatially correlated

channel increases as the cluster angle spread gets larger and in the end reaches the

SNR penalty of a spatially uncorrelated channel.

6.6 Proof of Proposition 6.5

The proof is similar to Theorem 5.2 [7], but much easier since E[1/s(m)] < ∞ for

m = 1, 2, . . . , M̃ . Let u
(m)
n = 1/E[1/s

(m)
n ]. First, we derive a lower bound for C

0,FIX
,

which holds for all SNR. From Proposition 6.3, we have

ρ = E

 M̃∑
m=1

{
νu

(m)
n

s
(m)
n

− 1

s
(m)
n

}+
 ≤ E

 M̃∑
m=1

νu
(m)
n

s
(m)
n

 = M̃ν. (214)

Then,

C
0,FIX

=
M̃∑
m=1

{
log2

(
νu(m)

n

)}+

≥
M̃∑
m=1

log2

(
νu(m)

n

)
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Figure 38: SNR penalty of FUSE constraint on a 4× 4 spatially correlated channel
with L = 4 memory when σθl = 0 and σθl = 0.25.

≥
M̃∑
m=1

log2

(
ρu

(m)
n

M̃

)
, (215)

where the second inequality comes from (214). Thus, we have the inequality

C
0,FIX
≥M log2

(
ρ

M̃

)
+M log2 (ΓÑ ) . (216)

On the other hand, we consider a region:

{[
u(1)
n , . . . , u(M̃)

n

]
;u(M̃)

n > ΓÑ2−R/M̃
}
, (217)

for which we use all M̃ channels at a rate of R, such that |M
FIX
| in Proposition 6.3

is M̃ . Then,

ρ ≥ E

 M̃∑
m=1

2R/M̃u
(m)
n

ΓÑ s
(m)
n

− 1

s
(m)
n

 1
{
u(M̃)
n > ΓÑ2−R/M̃

}
= 2R/M̃

(
1

ΓÑ
− 2−R/M̃E

[
1

s
(m)
n

∣∣∣∣1{u(M̃)
n > ΓÑ2−R/M̃

}])
. (218)
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As R → ∞, E
[

1

s
(m)
n

∣∣∣1{u(M̃)
n > ΓÑ2−R/M̃

}]
→ E

[
1

s
(m)
n

]
< ∞. Therefore, (218)

asymptotically becomes

C
0,FIX
≤M log2

(
ρ

M̃

)
+M log2 (ΓÑ ) , (219)

at high SNR. From (216) and (219), we have the assertion in (211).
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CHAPTER 7

RATE ALLOCATION WITH GRANULARITY

CONSIDERATIONS

With {e(m)
n } from power allocation, the corresponding achievable rate of the mth

spatial channel at the nth tone is r
(m)
n = log2

(
1 + s

(m)
n e

(m)
n

N0

)
. When calculating {e(m)

n },

there is no restriction in {r(m)
n } except that it should be real and nonnegative. In

practice, however, infinite-precision rate can hardly be realizable for the complexity

reason, and thus a granularity constraint is applied to {r(m)
n }, that is, {r(m)

n } must be

chosen from a discrete and finite set.

In this chapter, we investigate the allocation problem with granularity considera-

tions, often known as bit-allocation problem. Traditionally, the bit-allocation problem

has been extensively studied for DSL applications [14, 17, 19], which basically mod-

ifies the water-filling allocation to meet the granularity constraint. In this work, we

attack the bit-allocation problem with a different viewpoint, and propose very sim-

ple allocation strategies for MIMO flat-fading channels by exploiting the properties

of MIMO channels, and extend the proposed strategies to MIMO-OFDM combined

with the FUSE constraint in Proposition 6.1.
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7.1 Bit-Allocation Problem and Full-Search Allo-

cation

We restrict our attention to the flat-fading channel, which is converted by eigenbeam-

forming into a bank of M scalar channels:

z(1) =
√
s(1)a(1) + w(1)

...
...

z(M) =
√
s(M)a(M) + w(M)

, (220)

as illustrated in Figure 3, where s = [s(1), s(2), . . . , s(M)] are the nonzero eigenvalues

of HH∗ such that s(1) ≥ s(2) ≥ . . . ≥ s(M) > 0, and where the noise {w(m)} are i.i.d.

CN (0, N0). Note that we ignore the tone index n for the notational simplicity.

So as to achieve a rate of r(m) bits per signaling interval across the mth scalar chan-

nel, its SNR s(m)e(m)/N0 must be at least Γ(2r
(m)−1), where e(m) = E

[
|a(m)|2

∣∣{s(m)}
]
,

and where Γ is an SNR gap, which accounts for the additional SNR required for a

practical code to achieve a given target error probability [19]. With an ideal capacity-

achieving code, Γ reduces to unity. Then, the energy required by the transmitter to

achieve a given set of rate {r(m)} is:

E(s) =
M∑
m=1

e(m) = Γ
M∑
m=1

2r
(m) − 1

s(m)/N0

. (221)

Without the granularity restriction, the rate allocation that minimizes (221) to achieve

a given total rate of R =
∑M

m=1 bits per signaling interval is given by the water-filling

solution:

r(m) =

{
log2

(
λs(m)

Γ

)}+

, (222)

where λ ensures that R =
∑M

m=1 r
(m).

In practice, complexity considerations require that {r(m)} be drawn from a discrete

and finite set. Let the granularity β be the smallest incremental unit for r(m). Then,

the rate of any scalar channel is given by r(m) = βB(m), where B(m) is a non-negative

integer and B(m) is limited to Bmax.
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Definition 7.1 (Bit-Allocation Problem). With the granularity β and the max-

imum limit Bmax, the bit-allocation problem, given {s(m)}, is to find the {r(m)} with

r(m) ∈ {0, β, 2β, . . . , Bmaxβ}, 1 (223)

that minimizes the energy requirement in (221) subject to a rate constraint, R =∑M
m=1 r

(m). �

Clearly, the best allocation is based on a full search that enumerates all possible

candidates and chooses the candidate that has minimum energy requirement in (221).

In other words, the best allocation compare all candidates in the full-search set, as

follows.

Definition 7.2 (Full-Search Set). We define a full-search set:

B =

{
[r(m)];

M∑
m=1

r(m) = R, r(1) ≥ . . . ≥ r(M) ≥ 0, r(m) ∈ {0, β, 2β, . . . , Bmaxβ}

}
,

(224)

where the ordering r(1) ≥ r(2) ≥ . . . ≥ r(M) is due to the increasing nature of {s(m)}

since we never allocate more bits to s(m) than to s(m′) for m < m′. �

We present a couple of examples of the full-search sets. As a short-hand notation,

[r(1), r(2), . . . , r(M)] is used to represent the bit allocation.

Example 7.1. Suppose that we use uncoded modulation based on complex-valued

constellations, such as QAM. Then, the incremental unit is β = 1. If Bmax = 6, when

R = 4 and M = 4, the full-search set is:

B = {[4, 0, 0, 0], [3, 1, 0, 0], [2, 2, 0, 0], [2, 1, 1, 0], [1, 1, 1, 1]} , (225)

whose cardinality is only |B| = 5. When R = 8 and M = 4,

B =
{

[6, 2, 0, 0], [6, 1, 1, 0], [5, 3, 0, 0], [5, 2, 1, 0], [5, 1, 1, 1], [4, 4, 0, 0], (226)

[4, 3, 1, 0], [4, 2, 2, 0], [4, 2, 1, 1], [3, 3, 2, 0], [3, 3, 1, 1], [2, 2, 2, 2]
}
, (227)

1We have freedom to choose the set with an irregular step size, such as {0, β, 4β}.
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whose cardinality increases to 12. �

Example 7.2. We assume uncoded modulation as in Example 7.1, but only even

constellations (e.g. 4QAM, 16QAM, 64QAM) are allowed, so that β = 2. When

R = 4 and M = 4, the full-search set is:

B = {[4, 0, 0, 0], [2, 2, 0, 0]} , (228)

whose cardinality is |B| = 2. When R = 8 and M = 4,

B =
{

[6, 2, 0, 0], [4, 4, 0, 0], [4, 2, 2, 0], [2, 2, 2, 2]
}
, (229)

whose cardinality is to |B| = 4. �

Example 7.3. In this example, we investigate the size of search set, |B|, with respect

to M and R. Suppose that β = 1 for uncoded modulation and Bmax = 6. Figure 39

illustrates |B| for M ∈ {2, 4, 6} as R grows. For M = 2, |B| is relatively small. For

M = 4 and M = 6, in contrast, |B| can be large. �

According to the above examples, the size of the full-search set is relatively small

compared to that of MIMO-OFDM. However, the size can be still too large to consider

all candidates of B for the bit allocation when M and R are large. In the following,

we investigate the properties of the full-search allocation and show that only a few

candidates from B are sufficient for the members of the search set.

We use the average energy requirement

Ē = E [E(s)] = E

[
Γ

M∑
m=1

2r
(m) − 1

s(m)/N0

]
, (230)

as the performance criterion. Let bj = [b
(1)
j , . . . , b

(M)
j ] indicate the jth candidate

(arbitrary ordering) in B and let Aj be the subregion in an M -dimensional space

{s = [s(1), . . . , s(M)]; s(1) ≥ s(2) ≥ . . . ≥ s(M)}, in which bj is the optimal choice in
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Figure 39: Size of full-search set for M ∈ {2, 4, 6}.

terms of (230). In other words, if s ∈ Aj, we will choose r(m) = b
(m)
j for m = 1, . . . ,M .

Then, the average energy requirement for the full search becomes

Ē = EAj

[
Es

[
Γ

M∑
m=1

2b
(m)
j − 1

s(m)/N0

∣∣∣∣Aj
]]

= Γ

|B|∑
j=1

Pj

M∑
m=1

(
2b

(m)
j − 1

)
Es

[
1

s(m)

∣∣∣∣Aj]

= Γ

|B|∑
j=1

Pjεj, (231)

where εj =
∑M

m=1

(
2b

(m)
j − 1

)
Es

[
1/s(m)|Aj

]
is the partial energy requirement con-

ditioned on Aj. The probability mass function of candidates is denoted by Pj =

Prob[s ∈ Aj] for j = 1, . . . , |B|, which indicates how often bj is selected over realiza-

tions of s.

Example 7.4. Suppose β = 3/4 and R = 9 on a 6×6 Rayleigh-flat-fading channel. If

Bmax = 8, there are 51 members (candidates) in B. We use Monte-Carlo simulations
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Label Candidate

a [4,4,2,2,0,0]
b [5,3,2,2,0,0]
c [5,4,3,0,0,0]
d [4,3,3,2,0,0]
e [5,3,3,1,0,0]
f [4,4,3,1,0,0]
g [5,4,2,1,0,0]

Table 4: Dominant allocation candidates for M = 6 and R = 9, which are denoted
in the form of [r(1)/β, . . . , r(M)]/β.

by generating 105 independent {s(m)} to calculate Pj. Figure 40 plots Pj for 51

candidates. Out of 51 candidates, only a few candidates have large Pj. We define

the candidates with Pj > 0.05 as dominant candidates.2 In Figure 40, there are

seven dominant candidates. Alphabetical labels in Figure 40 identify seven dominant

candidates, summarized in Table 4. �

If an candidate has small Pj, its contribution to the average energy requirement in

(231) is marginal unless εj is enormously large. Thus, small-Pj candidates are deleted

from considerations without significantly increasing (231). A natural question is how

many dominant candidates a full-search set has.

Observation 7.1. In a MIMO channel, the number of dominant candidates is small

relative to the size of the full-search set |B|. �

This observation can be explained in part by the fact that {s(m)} are more pre-

dictable in MIMO, especially when M is large. A justification for the predictability

is that, s(m)/M converges with probability one to a non-random value from Theo-

rem 2.2. To show the above observation more explicitly, we consider the following

example.

2The definition of dominant candidates is arbitrary. To investigate the properties of Pj , we choose
0.05 as a threshold.
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Figure 40: Probability that a certain allocation is used for M = 6 and R = 9.

Example 7.5. Consider 4×4 and 6×6 Rayleigh fading with β = 3/4 and Bmax = 8.

We say that a candidate is dominant if Pj > 0.05. The number of dominant candidates

is |B|·Prob[Pj < 0.05]. Figure 41 shows the number of dominant candidates for various

B = R/β. We can see that the number of dominant candidates is small (less than

or equal to 8) for all B, which justifies Observation 7.1. For small B, the number of

dominant candidates is small since |B| is small though Prob[Pj < 0.05] is relatively

large. When B is large, Prob[Pj < 0.05] is small, which compensates for large |B|. �

From Observation 7.1, we know that most candidates, except only a few dominant

candidates, have insignificant Pj. According to (231), insignificant Pj does not affect

the average energy requirement Ē, that is, deleting these insignificant candidates from

considerations does not degrade the performance considerably.

Observation 7.2. If Pj is negligible, deleting its candidate bj from B and using

other candidate(s) for Aj will increase the average energy requirement in (231), but

the increase is only marginal. �
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Figure 41: Number of dominant candidates (Pj > 0.05) for 2× 2, 4× 4, and 6× 6
MIMO channels, respectively.

To illustrate Observation 7.2, we reduce the number of candidates for the bit-

allocation search. Let Bk denote reduced search set, which contains k candidates, such

that Bk = B if k = |B|. Instead of considering all candidates in B, we restrict our

search to Bk. Clearly, as k becomes small, the complexity for the bit-allocation search

is reduced, whereas the performance is more degraded. According to Observation 7.2,

the degradation is insignificant as long as dominant candidates remain in the search

set. Let ρBk denote the average SNR, ρ = E[E(s)]/N0, required by restricting search

to Bk. Clearly, the inequality ρBk ≥ ρB holds for any k. To measure the degradation,

we examine the SNR penalty by restricting search to Bk instead of B, defined as

SNR penalty =
ρBk
ρB

. (232)

We calculate the SNR penalty by deleting candidates in B one by one. The procedures

are as follows:

• Initialize k = |B|.
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Figure 42: SNR penalty as we delete allocations one by one from a full-search set
for M = 6 and R = 9.

• Repeat while k > 1

1. Calculate Pj for Bk.

2. Delete the member with the smallest Pj to constitute Bk−1.3

3. Calculate ρBk−1
.

4. k = k − 1

Example 7.6. Suppose β = 3/4, Bmax = 8, and R = 9 on 6 × 6 Rayleigh fading.

Figure 42 illustrates the SNR penalty of (232) in dB as the size of the search set is

reduced. The alphabetical labels in Figure 42 matches the dominant candidates in

Figure 40. Until deleting seven (labeled) dominant candidates, the SNR penalty is

negligible, which agrees with Observation 7.2. �

In Figure 42, we notice that the SNR penalty begins to grow sharply by removing

3If more than one members have the same smallest Pj , choose randomly one of them.
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‘a’ candidate because Pj is no longer negligible. However, when all but one candidate

are removed from considerations (B1), the SNR penalty reaches up to 0.13 dB, which

is reasonably small. From simulations for other M and R, we have the following

observation:

Observation 7.3. The penalty by removing dominant candidates is not negligible

any longer, but still small especially for large M . �

To illustrate Observation 7.3, we consider an extreme case where only one candi-

date, {b(m)
fix ,m = 1, 2, . . . ,M}, remains in the search set (B1), that is, the bit allocation

is fixed independent of s. Then, the average energy requirement becomes

Ē = Γ

|B|∑
j=1

Pj

M∑
m=1

(
2b

(m)
fix − 1

)
Es

[
1

s(m)

∣∣∣∣Aj]
≈ Γ

∑
dominantj

Pjε
fix
j , (233)

where we denote the partial error as εfix
j =

∑M
m=1

(
2b

(m)
fix − 1

)
Es

[
1

s(m)

∣∣∣Aj]. Then,

the difference between the average energy with the fixed allocation in (233) and the

average energy of the full search in (231) lies in εfix
j replacing εj in (231), where

εfix
j ≥ εj.

Given channel statistics, the distance between dominant candidates is relatively

small, where the distance of r = [r(1), . . . , r(M)] and r′ = [r′(1), . . . , r′(M)] is defined

as the norm of r − r′. In Table 4, we can confirm that each r(m) differs only by β

if different. Usually, the distance between dominant candidates is not significantly

large, which is also in part explained by the predictability of MIMO channels, that

is, MIMO channels have more deterministic nature as M grows. Thus, εfix
j is usually

only slightly greater than εj. We take an example to justify Observation 7.3.

Example 7.7. From Example 7.4, there are seven dominant candidates in B for

β = 3/4, M = 6, and R = 9, which are alphabetically labeled in Figure 40. Figure 43

plots the excessive SNR requirement for each dominant candidate by restricting search
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Figure 43: The partial SNR requirement when restricting search to B1 (εfix
j ) in

comparison with the partial SNR requirement of full search (εj).

to the candidate with label g, namely B1 = {bfix}. For the candidate with label g, we

can confirm that εfix
j = εj. For other dominant candidates, εfix

j is clearly larger than

εj, but none of them costs significantly large excessive SNR. �

Another justification comes from the fixed-rate allocation (without granularity

constraint) in Proposition 6.3. Proposition 6.4 showed that the fixed-rate allocation

is optimal as M →∞, and numerical results in Section 6.5.1 revealed that the SNR

penalty of the fixed allocation is small forM = 4 and M = 6. These results guarantees

that restricting search to B1 will not incur a significant penalty.

In this section, we showed by three observations that only a few candidates are

sufficient for the members of search set without harming the performance significantly.
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7.2 Proposed Bit-Allocation Strategies

In the previous section, we observed that reducing search-set size does not seriously

degrade performance. Examples showed that we can reduce up to B1, which contains

only one candidate, without harming the performance significantly when M = 6.

However, when M is small, more candidates are necessary in the search set. In this

section, we propose two bit-allocation strategies based on B1 and B2 and discuss the

optimal choice of B1 and B2. Here are two proposed allocation strategies:

• Binary Search: Bit-allocation search is restricted over two candidates: B2 =

{b1, b2}. For each realization of {s(m)}, the transmitter chooses over b1 and b2,

whichever has lower energy requirement of (230).

• Fixed Allocation: One allocation b
FIX

is used independent of {s(m)}, such

that B1 = {b
FIX
}.

A remaining problem is how to choose b1 and b2 in Binary Search and b
FIX

in

Fixed Allocation among all candidates in B. If the transmitter knows fading statistics,

the choice can be made beforehand. One way is to delete the candidate which has

the smallest Pj and to repeat this process until one or two candidates remain as in

Example 7.6. However, this deleting process does not necessarily lead to the optimal

choice that minimizes (230).

Instead, we compare average energy of (230) for all possible combinations that

constitute Bk, and choose the one that produces minimum average energy. For Fixed

Allocation (B1), the optimal choice is very simple. For each bj ∈ B, we calculate

ρ = E

[
M∑
m=1

2b
(m)
j − 1

s(m)

]
=

M̃∑
m=1

(2b
(m)
j − 1)E

[
1

s(m)

]
, (234)

where M̃ is the largest integer satisfying E[1/s(M̃)] < ∞, and then choose bj with

minimum ρ. If b
(m)
j > 0 for m > M̃ , we remove the corresponding bj from consid-

erations. Notice that all it requires for calculating (234) is {E[1/s(m)]}. Also, note
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that Γ and N0 in (230) do not affect the optimal choice, which are hence removed in

(234).

For Binary Search, the optimal choice is more complicated. For every possible

pair of b1 and b2 from B, we calculate

ρ = Pb1

M∑
m=1

(2b
(m)
1 − 1)E

[
1

s(m)

∣∣∣∣Ab1

]
+ Pb1

M∑
m=1

(2b
(m)
2 − 1)E

[
1

s(m)

∣∣∣∣Ab2

]
, (235)

where Ab1 and Ab2 are the regions of s, where b1 and b2 are used, respectively, such

that Ab1 ∩ Ab2 is a null space and Ab1 ∪ Ab2 is the entire space of s, and where

Pb1 = Prob[Ab1 ] and Pb2 = Prob[Ab2 ]. For many cases, evaluating (235) is a difficult

and tedious job. When M = 2, however, we can derive a closed-form formula for (235)

without difficulty, and the optimal choice does not require Monte-Carlo simulations,

which generate {s(m)} to calculate (235).

Example 7.8. On a 2× 2 Rayleigh-fading channel, we consider Binary Search: B =

{b1 = [b
(1)
1 , b

(2)
1 ], b2 = [b

(1)
2 , b

(2)
2 ]}. For every realization of {s(m)}, we choose either b1

or b2 by comparing

2b
(1)
1 − 1

s(1)
+

2b
(2)
1 − 1

s(2)

b1

<
>
b2

2b
(1)
2 − 1

s(1)
+

2b
(2)
2 − 1

s(2)
. (236)

The boundary of choice can be expressed as:

s(2) = Ks(1), (237)

where

K =
2b

(2)
2 − 2b

(2)
1

2b
(1)
1 − 2b

(1)
2

≤ 1. (238)

Then, the average SNR requirement is:

ρ = E

[
2r

(1) − 1

s(1)
+

2r
(2) − 1

s(2)

]
, (239)

where r(1) is chosen between {b(1)
1 , b

(2)
1 } and r(2) is chosen between {b(1)

2 , b
(2)
2 }. If the

fading is Rayleigh, the joint PDF of {s(m)} is given in (113). Then, the average SNR
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Binary Search Fixed Allocation

B = 2 [2,0],[1,1] [2,0]
B = 4 [4,0],[3,1] [4,0]

M = 2
B = 6 [6,0],[5,1] [6,0]
B = 8 [8,0],[6,2] [8,0]
B = 4 [3,1,0,0],[2,2,0,0] [3,1,0,0]
B = 8 [4,3,1,0],[5,3,0,0] [4,3,1,0]

M = 4
B = 12 [5,4,3,0],[6,4,2,0] [6,4,2,0]
B = 16 [7,5,4,0],[7,6,3,0] [7,6,3,0]
B = 8 [3,3,2,0,0,0],[4,3,1,0,0,0] [4,3,1,0,0,0]
B = 12 [5,4,2,1,0,0],[4,4,3,1,0,0] [5,4,2,1,0,0]

M = 6
B = 18 [6,5,3,2,0,0],[5,5,4,2,0,0] [6,5,3,2,0,0]
B = 24 [6,5,4,3,2,0],[7,5,4,3,1,0] [7,5,4,3,1,0]

Table 5: Samples of Binary Search and Fixed Allocation strategies optimized to
2× 2 Rayleigh fading in the form of [r(1)/β, . . . , r(M)/β].

requirement becomes:

ρ = (b
(1)
1 − 1)

{
2 log(K + 1)−

(
2K

K + 1

)2
}

+ (b
(1)
2 − 1)

{(
K − 1

K + 1

)2

+ 2

(
K − 1

K + 1

)
+ 2 log

(
2

K + 1

)}

+ (b
(2)
2 − 1)

{
1 +

K − 3

(K + 1)2
− 1

K + 1
+ 2 log

(
K + 1

2K

)}
. (240)

The derivation of (240) is in Section 7.6. �

Table 5 summarizes the optimal choice for Binary Search and Fixed Allocation

for M ∈ {2, 4, 6} when β = 3/4 and Bmax = 8. In the table, a short-hand notation,

[r(1)/β, . . . , r(M)/β] is used. For example, an allocation denoted as [4, 3] means r(1) =

4β and r(2) = 3β. We can confirm that the optimal choice in Table 5 coincides with

the results by deleting most infrequently used candidates in Example 7.4, but there

are a few exceptions especially for M = 2.

Advantages of proposed Binary Search and Fixed Allocation include

• A great reduction in complexity.

• No increase in complexity as M grows.
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• Applicable to any constraint on rate (e.g. any β or Bmax).

Complexity reduction is quite impressive when compared to the full-search strategy.

For example, only two calculations of (221) are required for Binary Search in contrast

to 51 calculations required for a full search when M = 6 and R = 9. Especially

low in complexity is Fixed Allocation, where no search is required for bit allocation.

The complexity reduction will be particularly valuable when these ideas extend to a

frequency-selective channel, as will be discussed in Section 7.5.

On the other hand, there are drawbacks. The optimal choice of Binary Search and

Fixed Allocation must be matched to fading statistics, otherwise a mismatch would

incur a significant penalty. We will discuss the mismatch problem in Section 7.3. It

is clear that both Binary Search and Fixed Allocation, though candidates in B1 and

B1 are optimally selected, are suboptimal to the full-search allocation (B). However,

the suboptimality is not a serious problem in MIMO fading channels. We show this

by the following example.

Example 7.9. We consider an M×M Rayleigh-flat-fading channel for M ∈ {2, 4, 6}.

Suppose that each rate is restricted to discrete values with β = 3/4 and Bmax = 6. We

evaluate the performance of Binary Search and Fixed Allocation strategies by using

(230) with Γ = 1. Figure 44 plots the achievable rate versus SNR. As a benchmark,

C
0,OPT

and C
0,FIX

from Chapter 64. Note that Binary Search and Fixed Allocation are

bounded by C0 and C
0,FIX

, respectively, in Figure 44. We can see that the performance

penalty of Binary Search and Fixed Allocation relative to the full-search strategy is

nonzero, but very small. An exception is Fixed Allocation for M = 2, which incurs a

large penalty, as expected from its lower bound C
0,FIX

, which has a lower multiplexing

order (M̃ = 1) than C
0,OPT

or C
0,FUSE

, as discussed in Chapter 6. For M = 4 and

M = 6, however, Fixed Allocation shows nearly optimal performance.

4As we assume flat fading, C0,OPT = C0,FUSE
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Figure 44: Achievable rates of Binary Search and Fixed Allocation.

To emphasize the penalty, Figure 45 and Figure 46 illustrate the SNR penalty

of Binary Search and Fixed Allocation compared to the full-search strategy, respec-

tively. The Binary Search strategy is only worse by at most 0.2 dB, and the penalty

decreases as M grows. In the case of Fixed Allocation, there is a distinct performance

degradation for M = 2, but the SNR penalty is only less than 0.3 dB for M = 4 and

M = 6. �

This section proposed Fixed Search and Fixed Allocation bit-allocation strategies,

which approach C
0,OPT

for a moderate M .

7.3 Robust Allocation Strategy

In the previous section, we have seen that a mismatch in fading statistics can incur a

significant penalty when using Binary Search or Fixed Allocation. Now, we consider a

bit-allocation strategy that shows robust performance for various types of fading. An

intuitive solution is increasing the size of search set, but there is a tradeoff between
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robustness and complexity. We will show that a few additions, incurring a small

increase in complexity, is sufficient for a robust allocation.

To reflect the change in fading statistics, we consider Ricean fading. Given Ricean

factor K, which accounts for the line-of-sight component, each channel is generated

according to N (µ, σ) + jN (µ, σ), where µ =
√

K
2(K+1)

and σ =
√

1
2(K+1)

[53]. We

consider an example on Ricean fading with K = 4.45.

Example 7.10. For a 4 × 4 spatially uncorrelated MIMO, channel generation is

according to Ricean fading with K = 4.45. Suppose that Binary Search optimized to

Rayleigh fading (K = 0) incurs a large SNR penalty, more than 2 dB for some R, as

illustrated in Figure 47. We create a robust search set consisting of three members:

Brobust = {b
FIX,K=0

, b
FIX,K=2.41

, b
FIX,K=6.46

}, (241)

where b
FIX,K

is the optimal choice of Fixed Allocation for Ricean fading with K.

Therefore, for K ranging from 0 to 6.46, the allocation based on Brobust is expected to

show consistent performance. Figure 47 illustrates the SNR penalty of Brobust when

K = 4.45. As a benchmark, Figure 47 also shows the SNR penalty of Fixed Allocation

and Binary Search optimized to actual fading statistics (K = 4.45). Clearly, the

robust allocation performs very well, whose SNR penalty is less than 0.2 dB. �

Example 7.10 shows that a search set with three candidates is sufficient to cover

Ricean fading from K = 0 to K = 6.46. Generally, a search set with three or four

candidates shows consistent performance for various R and M . Thus, the mismatch

problem can be solved with a slight sacrifice in complexity.

7.4 Simple Allocation Algorithms for DMT

Before we move to MIMO-OFDM, we briefly review allocation algorithms for the dis-

crete multitone (DMT) in the DSL applications.5 In DMT, the full-search allocation

5DMT is a multicarrier system, similar to OFDM, developed for the DSL technology [19].
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performance of a robust allocation on a 4× 4 Ricean fading channel with K = 4.45.

is nearly impossible since the number of tones is usually large. To replace the full-

search allocation, many practical algorithms have been proposed [14, 17, 19]. Among

those, we describe the algorithm in [14].

When {s(m)
n } are given, the goal is to find {r(m)

n } with a finite step size β so as to

satisfy 1
N

∑N
n=1

∑M
m=1 r

(m)
n = R. A good starting point for {r(m)

n } is in the form of

r(m)
n =

[
blog2(g(m)

n )cβ + i
]Bmax

0
, (242)

where i ∈ {. . . ,−2β,−β, 0, β, 2β . . .}, and bxcβ = βbx/βc. We initialize by setting

i = 0 where g
(m)
n = s

(m)
n /(ΓN0) and [x]ba = min(a,max(x, b)) when a < b. Depending

on Γ, N0, or s
(m)
n , 1

N

∑N
n=1

∑M
m=1 r

(m)
n can be larger or smaller than R. We decrease

or increase i, respectively, until we find iB such that

iB = max

{
i :

1

N

N∑
n=1

M∑
m=1

[
blog2(g(m)

n )cβ + i
]Bmax

0

}
. (243)

In fact, an efficient way to initialize i by grouping log2(g
(m)
n ) is proposed in [14].
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Once iB is found, we need to increment r
(m)
n until 1

N

∑N
n=1

∑M
m=1 r

(m)
n = R holds.

We define energy increase for the (m,n) channel as

∆e(m)
n = e(m)

n (r(m)
n + β)− e(m)

n (r(m)
n ), (244)

where r
(m)
n is the current rate. We calculate ∆e

(m)
n for all (m,n) with r

(m)
n + β <

Bmax and pick up (m,n) that has the smallest ∆e
(m)
n . Repeat this process until

1
N

∑N
n=1

∑M
m=1 r

(m)
n = R is satisfied.

7.5 Bit Allocation for MIMO-OFDM

In Section 7.2, Binary Search and Fixed Allocation strategies are proposed for MIMO

flat-fading channels. Now, we consider the bit allocation for MIMO-OFDM in (8).

A distinct difference from the flat-fading case is that the number of scalar channels

(MN) is usually much larger than M scalar channels for flat fading. Thus, it is

MIMO-OFDM where the complexity reduction is really necessary.

Clearly, a full search would be practically impossible since the size of full-search

set is immense. Unlike flat fading, we cannot simply apply Binary Search or Fixed

Allocation strategies to MIMO-OFDM since scalar channels across frequency do not

have the properties we have used for the spatial channels of MIMO flat-fading channel.

Even if MIMO-OFDM had such properties, the optimal choice for Binary Search and

Fixed Allocation would be too high in complexity.

For each tone, however, it has the same statistics as MIMO flat fading. Hence,

Binary Search and Fixed Allocation are readily applicable to each tone with an in-

dependent rate constraint, namely the FUSE constraint in Section 6.2. We already

examined this case without granularity constraint in Proposition 6.1. Near optimality

of the FUSE constraint in Section 6.4 and Section 6.5.1 guarantees good performance

of Binary Search and Fixed Allocation for MIMO-OFDM. Actually, C
0,FUSE

and C
0,FIX

serve as upper bounds for Binary Search and Fixed Allocation, respectively.
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Example 7.11. Figure 48 illustrates the performance of the Binary Search and Fixed

Allocation strategies with the FUSE constraint on a M ×M spatially uncorrelated

MIMO channel with L = 4, N = 64, and M ∈ {2, 4, 6}. We use (230) with Γ to

calculate SNR required by Binary Search and Fixed Allocation. The Binary Search

strategy with the FUSE constraint (marked as squares) incurs an SNR penalty of

between 0.4 dB and 0.9 dB when M = 2 compared to the iterative algorithm by

Campello (marked as circles), described in the previous section, whereas the penalty

is negligible for M = 4 and M = 6. The Fixed Allocation strategy with the FUSE

constraint (marked as triangles) is also nearly optimal for M = 4 and M = 6, while

its penalty can be large for M = 2. As shown in Figure 48, the iterative algorithm

of [14] is tightly bounded by C
0,OPT

, while Binary Search and Fixed Allocation are

bounded by C
0,FUSE

and C
0,FIX

, respectively. Thus, the infinite-precision water-filling

is a good indicator for the performance of practical bit-allocation strategies. �

This section showed that Binary Search and Fixed Allocation strategies combined

with the FUSE constraint in Section 6.2 perform very well in MIMO-OFDM, but the

complexity required by them is remarkably small.

7.6 Derivation of (240)

The joint PDF of s1 and s2 is fs(x1, x2) = (x1 − x2)2e−x1e−x2 for x1 ≥ x2. Then, the

SNR requirement in (230) is

ρ = Γ

∫ ∞
0

∫ x

0

(
2r

(1) − 1

x
+

2r
(2) − 1

y

)
(x− y)2e−xe−ydydx

= Γ

∫ ∞
0

∫ Kx

0

(
2b

(1)
1 − 1

x

)
(x− y)2e−xe−ydydx︸ ︷︷ ︸

I1,1

+ Γ

∫ ∞
0

∫ Kx

0

(
2b

(2)
1 − 1

y

)
(x− y)2e−xe−ydydx︸ ︷︷ ︸

I1,2
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+ Γ

∫ ∞
0

∫ x

Kx

(
2b

(1)
2 −1

x

)
(x− y)2e−xe−ydydx︸ ︷︷ ︸

I2,1

+ Γ

∫ ∞
0

∫ x

Kx

(
2b

(2)
2 −1

y

)
(x− y)2e−xe−ydydx︸ ︷︷ ︸

I2,2

. (245)

However I1,2 = 0 unless b
(2)
1 = 0 since∫ Kx

0

e−y

y
dy →∞ (246)

if K > 0. Therefore, we always set b
(2)
1 = 0 on a 2×2 Rayleigh-fading channel. Other

integrals can be evaluated as follows

I1,1 = (b
(1)
1 − 1)

{
2 log(K + 1)−

(
2K

K + 1

)2
}
, (247)

I2,1 = (b
(1)
2 − 1)

{(
K − 1

K + 1

)2

+ 2

(
K − 1

K + 1

)
+ 2 log

(
2

K + 1

)}
, (248)

and

I2,2 = (b
(2)
2 − 1)

{
1 +

K − 3

(K + 1)2
− 1

K + 1
+ 2 log

(
K + 1

2K

)}
, (249)

where we use ∫ ∞
0

e−x

x
dx−

∫ ∞
0

e−ax

x
= log(a) (250)

and∫ ∞
0

x2e−x
(∫ x

Kx

e−t

t
dt

)
︸ ︷︷ ︸

u

dx =
5

4
− 1

(K + 1)2
− 2

K + 1
+ 2 log

(
K + 1

2K

)
, (251)

where

du

dx
=
e−x − e−Kx

x
. (252)
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CHAPTER 8

BIT-ERROR RATE PERFORMANCE

So far, we have examined the information-theoretical aspects of MIMO fading chan-

nels with an emphasis on the case where the transmitter knows CSI (a closed-loop

system). In this chapter, we turn our attention to a realistic communication system

with discrete and finite constellations and practical channel codes. We use the Bi-

nary Search and Fixed Allocation strategies, proposed in Chapter 7, to distribute rate

and power to measure the performance of a closed-loop system in terms of bit-error

rate (BER). Recall that there are two types of energy constraint: the short-term

constraint in (51) and the long-term constraint in (50). First, we begin with the

short-term constraint, for which we compare the BER performance with and with-

out CSI at the transmitter. Then, we move to the long-term constraint to see the

advantage of controlling power at the transmitter with the long-term constraint.

8.1 Short-Term Energy Constraint

With the short-term constraint, zero outage probability is unattainable even when

the transmitter has CSI. Thus, the performance is limited by the outage probability.

8.1.1 Uncoded Performance of Flat-Fading MIMO

This section investigates the BER performance on a flat-fading MIMO channel with-

out an outer code. With CSI known at the transmitter, recall that eigenbeamforming

creates a bank of M scalar channels:

z(1) =
√
s(1)a(1) + w(1)

...
...

z(M) =
√
s(M)a(M) + w(M)

. (253)
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Figure 49: Block diagram for flat-fading MIMO.

Let e(m) = E
[
|a(m)|2

∣∣∣{s(m)
n }

]
denote the energy for the mth scalar channel. Then, by

the short-term constraint,
∑M

m=1 e
(m) = Ē is always satisfied. If N0 is the variance of

w(m), SNR can be written as ρ = Ē/N0. From Chapter 4 and Chapter 5, the diversity

and spatial multiplexing orders of (253) are MTMR and M , respectively.

The block diagram for the uncoded-modulation system is illustrated in Figure 49.

At the transmitter, the bit-allocation block takes R message bits as an input and

divides them into a partition {r(1), r(2), . . . , r(M)} satisfying
∑M

m=1 r
(m) = R, where

r(m) is the rate for the mth scalar channel. We use uncoded QAM constellations,

so that r(m) must be chosen from {0, 2, . . . , 6}, that is, B
MAX

= 6 and β = 1.1 In

this experiment, we use Full-Search Allocation in Definition 7.2 and Fixed Allocation

in Section 7.2 to determine {r(m)}. For each m, r(m) bits are mapped into a(m)

from QAM constellations. The energy for each a(m) is initially determined by e(m) =

(2r
(m)−1)/s(m). Then, we normalize {e(m)} such that

∑M
m=1 e

(m) = Ē is satisfied [17].

In Figure 49, the detection of {z(m)} is straightforward since eigenbeamforming

removes the spatial interference of a MIMO channel. Since {r(m)} and {e(m)} are

known, the receiver independently detects a(m) from z(m) in the maximum-likelihood

sense. The detection complexity is linearly proportional to M .

To compare with the case where the transmitter is ignorant of CSI, we consider

1When r(m) = 3, hexagonal constellation instead of 8-QAM is used for better performance. Also
we avoid BPSK (r(m) = 1) since QPSK (4-QAM) conveys more information while exhibits the same
performance at a given SNR per bit.
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orthogonal STBC [57]. We mean by orthogonal that symbols in a code can be de-

tected independently, so that the detection complexity linearly increases with M .

Equivalently, the input/output relation can be written as

z =
||H||F√
M

a+ w, (254)

where H is the channel matrix, a is the transmitted symbol, and w is additive white

Gaussian noise with variance N0. From (254), we know that (1) the maximum diver-

sity order (MTMR) is achieved; (2) the spatial multiplexing order is unity, less than

M of the maximum order. According to [57], an orthogonal STBC with the spatial

multiplexing order of unity exists only for MT = 2, known as Alamouti’s code [1]. For

MT > 2, the spatial multiplexing order must be sacrificed to maintain orthogonality.

However, for simplicity, we assume that (254) holds for any MT .

We investigate the BER performance of eigenbeamforming in (253) with Full-

Search Allocation based on the full-search set in Definition 7.2 for M ×M Rayleigh

fading. We also examine the performance of orthogonal STBC in (254) as a bench-

mark. For spectral efficiencies in the range R ∈ {2, 3, 4, 5, 6}, Figure 50 and Figure 51

show BER results for M = 2 and M = 4, respectively. For both M = 2 and M = 4,

we can confirm that both eigenbeamforming and STBC have the same diversity order

(the slope of BER curves). However, for a given BER, eigenbeamforming requires

less SNR per bit than STBC. This advantage is more conspicuous at higher R and/or

larger M due to the difference in spatial multiplexing orders.

To emphasize the SNR advantage of eigenbeamforming, we estimate an SNR per

bit requirement, which we define as ρ/R, so as to achieve a BER of 10−4. The

results are summarized in Figure 52 for M = 2 and M = 4. We also plot the

SNR per bit requirement for eigenbeamforming with Fixed Allocation in Section 7.2

with {[2, 0], [3, 0], [4, 0], [5, 0], [6, 0]} for M = 2 and {[2, 0, 0, 0], [3, 0, 0, 0], [2, 2, 0, 0],

[3, 2, 0, 0], [4, 2, 0, 0]} for M = 4.
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Figure 50: Uncoded BER performance of eigenbeamforming and orthogonal STBC
on 2× 2 Rayleigh fading.

For M = 2, eigenbeamforming with Fixed Allocation has an advantage of ap-

proximately 2.1 dB over STBC. Note that this advantage is uniform for all R. This

is because Fixed Allocation uses the first scalar channel only and thus it has the

same diversity order (MTMR) and the spatial multiplexing order (unity) as STBC.

When Full-Search Allocation is used, which achieves a spatial multiplexing order of

M , the advantage of eigenbeamforming becomes larger than STBC. In this case, the

advantage grows with R, from 2.2 dB at R = 2 to 3.6 dB at R = 6.

For M = 4, the advantage of eigenbeamforming is more obvious. The SNR (verti-

cal) gap between eigenbeamforming and STBC apparently increases with R, as much

as 8.4 dB at R = 6. An interesting point in Figure 52 is that Fixed Allocation per-

forms very closely to Full-Search Allocation when M = 4, while their difference is

more obvious when M = 2, as expected from Figure 46, where Fixed Allocation is

nearly optimal when M is four or more.
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Figure 51: Uncoded BER performance of eigenbeamforming and orthogonal STBC
on 4× 4 Rayleigh fading.
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8.1.2 MIMO-OFDM with an Outer Code

We extend the flat-fading study in the previous section to MIMO-OFDM with a low-

density parity-check (LDPC) code [6]. Here, we consider more realistic situations.

Channel generation follows the indoor channel model [61], where six uncorrelated

Rayleigh faded taps are obtained form the modified Jakes simulator at a Doppler

frequency of 48.33 Hz [53], which generates a continuous-time baseband 2×2 channel

with memory. The 2×2 channel with memory is transformed into a set of memoryless

2× 2 channels by OFDM, as described in Figure 1.

The block diagrams for the transmitter and receiver are illustrated in Figure 53

and Figure 54, respectively, for a closed-loop 2× 2 MIMO system. We also consider

Alamouti’s code, for which the bit-allocation block is replaced by serial-to-parallel

(S/P) converter, and Alamouti’s encoders are used instead of the transmit filter bank

{Vn} in the transmitter. At the receiver, Alamouti’s combiners replace the receive

filter banks {U∗n}. Note that Alamouti’s code requires two OFDM blocks for encoding

and combining.

An OFDM block consists of N = 1024 tones with 64 intervals for cyclic prefix.

Two training blocks are sent for every 10 data blocks for channel estimation [40]. We

use regular LDPC codes, whose length covers an OFDM block, which are applied

across space and frequency to provide coding gain as well as frequency diversity.
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For eigenbeamforming, Fixed Allocation ({[1, 0], [4, 0], [6, 0]}) is used for BPSK,

16-QAM, 64-QAM constellations. BER results are shown in Figure 55 for code rates

of 1/2, 3/4, and 7/8 [31]. For each code rate, the advantage of eigenbeamforming

(Fixed Allocation) is clear over STBC (Alamouti’s code).

8.2 Long-Term Energy Constraint

This section examines the BER performance of eigenbeamforming with the long-term

energy constraint in (50). We use the discrete-time baseband model in Figure 1 with

the uniform power profile. Each Hn is transformed into a bank of scalar channels in

Figure 3 by the transmit and receive filter banks {Vn} and {U∗n}, respectively.

The overall diagram is illustrated in Figure 56. The LDPC block takes 768 message

bits and produce 1024 coded bits (β = 3/4 rate). Bit-allocation block determines

{r(m)
n } satisfying

∑N
n=1

∑M
m=1 r

(m)
n = 768. We only use square QAM constellations

(4-QAM, 16-QAM, and 64-QAM), so that r
(m)
n must be chosen from {0, 2β, 4β, 6β}.

For each m and n, r
(m)
n /β coded bits are mapped into a complex symbol a

(m)
n , chosen

from corresponding constellation. The energy for each symbol is given by

e(m)
n = E

[
|a(m)
n |2

∣∣∣{s(m)
n }

]
= Γ

2r
(m)
n − 1

s
(m)
n /N0

. (255)
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MIMO-OFDM with LDPC codes

Then, SNR is

ρ = ΓE

[
1

N

N∑
n=1

M∑
m=1

2r
(m)
n − 1

s
(m)
n

]
, (256)

where Γ is the SNR gap defined in Section 7.1. If the channel code is ideal, Γ = 1

achieves zero BER. In practice, the transmitter can control SNR via Γ.

At the receiver, the log-likelihood ratio (LLR) is calculated from a collection of

z
(m)
n , where z

(m)
n =

√
s

(m)
n a

(m)
n + w

(m)
n from (39), and is fed into LDPC decoder.

Example 8.1. Consider 4 × 4 N = 128 MIMO-OFDM with the long-term energy

constraint in (50) at R = 6 bits per signaling interval. We generate 100, 000 in-

dependent {s(m)
n } to obtain BER results of eigenbeamforming with (1) Campello bit

allocation [14] over MN scalar channels; (2) Binary-Search Allocation with the FUSE

constraint (FUSE-BINARY); (3) Fixed Allocation with the FUSE constraint (FUSE-

FIXED). From Chapter 6, we expect that the performance of Campello is limited by

C0 , corresponding to water-filling over MN scalar channels. Also, FUSE-BINARY
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and FUSE-FIXED have C
0,FUSE

and C
0,FIX

as their limits.

Figure 57 illustrates BER results when channel has L = 0 memory (flat fading). As

a benchmark, Figure 57 also shows BER results when the short-term energy constraint

in (51) is used. The difference between long-term and short-term energy constraint

is obvious. At a BER of 10−4, the advantage of long-term constraint is more than 2.6

dB in SNR. We remark that the diversity order for long-term constraint is infinite

since it achieves zero outage probability as discussed in Chapter 4. Thus, the slope

of BER curve is governed only by LDPC codes. If we use a longer code, we expect a

sharper drop in BER curves. On the other hand, the slope for short-term constraint

is limited by the diversity order, which is 16 on a 4× 4 spatially uncorrelated MIMO

channel with L = 0 memory.

Among three bit-allocation strategies, there is little difference between Campello

and FUSE-BINARY since C
0,FUSE

= C
0,OPT

when L = 0. The 0.1 dB difference be-

tween Campello and FUSE-BINARY comes from the fact Binary-Search Allocation

uses two candidates, while Campello allocation considers all candidates. Theoreti-

cally, to achieve 6 bits per signaling interval (C
0,OPT

= C
0,FUSE

= C
0,FIX

= 6), the

SNR requirements for C
0,OPT

, C
0,FUSE

, and C
0,FIX

are ρ
0,OPT

= 3.65 dB, ρ
0,FUSE

= 3.75

dB, and ρ
0,FUSE

= 4.1 dB. Approximately, in Figure 57, the gap between Campello

147



and FUSE-BINARY matches ρ
0,OPT

− ρ
0,FUSE

= 0.1 dB and the gap between FUSE-

BINARY and FUSE-FIXED matches ρ
0,FUSE

− ρ
0,FIX

= 0.35 dB, which match the

separations of BER curves in Figure 57. �

Example 8.2. In Figure 58, we consider the same environment as in the previous

example excepts that the channel has L = 4 memory. A distinct difference from

Figure 57 is that the performance gap between long-term and short-term constraints

is reduced. At a BER of 10−4, the SNR gap is approximately 0.9 dB. Another

distinct change is the slope of BER curves (diversity order) for short-term constraint.

Owing to L = 4 memory, the frequency diversity helps improve the diversity order

significantly.

Another observation from Figure 58 is that the BER curve of Campello allo-

cation is shifted to the left, while the BER curves of FUSE-BINARY and FUSE-

FIXED remain unmoved compared to Figure 57. The performance improvement of

Campello allocation is also from the increase in channel memory. Thus, the gap be-

tween Campello and FUSE-BINARY increases from 0.1 dB to 0.38 dB according to

the analysis in Chapter 6, which also match the separation in Figure 58 while the gap

between FUSE-BINARY and FUSE-FIXED remains the same. �

The implications of the above two examples are

• The proposed bit-allocation strategies perform so well. With the long-term

constraint, we can approach the zero-outage capacities C
0,OPT

, C
0,FUSE

, and C
0,FIX

within about 3 dB at a BER of 10−4 with a powerful outer channel code.

• The SNR differences in the theoretical results of Figure 44 well match the SNR

differences of BER curves in Figure 57 and Figure 58.

• As the diversity order grows from 16 in Figure 57 to 64 in Figure 58, the

performance with the short-term constraint approaches the performance with
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the long-term constraint. In the end, we guess that the performance advantage

of the long-term constraint vanishes as the diversity order with the short-term

constraint tends to infinity.
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CHAPTER 9

CONCLUSIONS

9.1 Summary

In this thesis, we analyzed power allocation with simplifying constraints and pro-

posed simple bit-allocation strategies for a closed-loop MIMO-OFDM system. The

conclusion is that the transmitter need not perform adaptive allocation in order to

approach the capacity in MIMO-OFDM with eigenbeamforming. Instead, a combi-

nation of eigenbeamforming and fixed allocation is sufficient. We proved that fixed

allocation is asymptotically optimal as the number of antennas tends to infinity. The

convergence is fast, and a nonadaptive MIMO-OFDM system performs well for a

moderate number of antennas.

Main contributions include

• First, we examine asymptotic behaviors of outage and ergodic capacity at high

SNR in Chapter in terms of geometric means of eigenvalues 4. From the asymp-

totic results, we confirmed that knowing CSI has little impact on average ca-

pacity from Proposition 5.6 and Proposition 5.6. If MT ≤ MR, the advantage

completely disappears at high SNR. We also saw that zero-outage capacity

grows with the number of channel memory (L) up to the average capacity at

high SNR in Proposition 5.7.

• In Chapter 4, we introduce the Outage-Region Capacity, which outperforms the

zero-outage capacity by introducing an outage region when the channel is bad.

Procedures for the optimal choice of outage region were presented in Section 4.4.
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From simulations, we saw that the advantage of Outage-Region Capacity be-

comes less dominant as M grows. However, the outage-region capacity still

shows better peak-power performance.

• Chapter 6 introduced FUSE and Fixed constraints. We proved that the penalty

by each constraint converges to zero when compared to the optimal allocation

of Theorem 4.4 in Proposition 6.2 and Proposition 6.4, respectively. We also

showed that the penalties are small at a finite number of antennas by investi-

gating asymptotic behaviors at high SNR in Corollary 6.2 and Proposition 6.5.

• Based on the theoretical results in Chapter 6, we proposed simple bit-allocation

strategies: Binary-Search and Fixed allocation in Section 7.2. The proposed

schemes are very low in complexity, but approaches the optimal performance of

Full-Search allocation in Section 7.1. We extended both strategies to MIMO-

OFDM combined with FUSE constraint in Chapter 6. Proposition 6.4 guaran-

tees that a nonadaptive allocation based on Fixed allocation and FUSE con-

straint performs near optimally.

We also list relatively minor contributions:

• We discussed the diversity order of frequency-selective channels when CSI is

unknown to the transmitter. Proposition 5.1 showed that the diversity order

of a MIMO channel with memory L is bounded by MTMR(L + 1). Numerical

results in Chapter 8 showed that the bound is actually achieved.

• We developed adaptive methods for updating the receive filter of eigenbeam-

forming in Section 3.3. Both blind and data-aided methods are discussed.

• We proved that eigenbeamforming with the short-term energy constraint in (51)

achieves full diversity and spatial multiplexing orders in Proposition 5.2. We

152



also showed the advantage of knowing CSI at the transmitter with the short-

term constraint over CSI-ignorant transmitter.

9.2 Directions for Future Research

One of the underlying assumptions in this work is that the MIMO channel taps {Gl}

are uncorrelated with each other. This assumption results in Lemma 2.1, namely

memoryless MIMO channels {Hn} at each OFDM tone is statistically identical to

each other, which is important in the analysis of the FUSE allocation in Chapter 6

and the proposed bit-allocation strategies in Chapter 7. In reality, this assumption

might not always hold, as considered in [50]. The correlation between channel taps

would result in a larger penalty than we expect for uncorrelated taps when we use

the FUSE allocation. Moreover, it might be necessary to introduce a new strategy

that considers the correlation. Also, we can analytically investigate the performance

in the presence of the correlation, as in [50].

In the development of robust bit allocation in Section 7.3, we only consider the

change in the line-of-sight (LOS) component. Another factor that affects the per-

formance of the proposed bit allocation is the spatial correlation. When the spatial

correlation becomes high, the deficiency in the channel matrix rank limits the number

of available spatial channels. Thus, a change in spatial correlation leads to a severe

performance degradation. As in the robust strategy for the LOS change, we expect

that a few additions in the search set would be sufficient to cover the wide range of

correlation changes. Also, a clever choice will compensate for the change in both LOS

and spatial correlation.

We briefly mention the adaptive implementation of eigenbeamforming filter in

Section 3.3. In practice, especially in a TDD system, the adaptive eigenbeamforming

would be critical in a closed-loop system. Eventually, we develop more efficient adap-

tive algorithms and combine them with the proposed bit-allocation strategies and
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outer channel codes to obtain BER results. BER results will be valuable for practical

implementation of closed-loop MIMO systems.

For some minor future work, we will do the following:

• We will prove or disprove that the uniform power profile minimizes the outage

probability when L is given.

• We will analytically show that the CDF of arithmetic mean of eigenvalues in

(146) converges to a step function as L→∞, as conjectured in Section 5.2.1.2.

• We will compare the peak-power performance between the zero-outage capacity

C0 and the Outage-Region Capacity C
OR

, which will show the advantage of

using outage region in terms of peak-power probability.
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[53] Stüber, G. L., Principles of Mobile Communication. Kluwer Academic Pub-
lishers, 1996.

[54] Sung, J. H. and Barry, J. R., “Space-time processing with channel knowl-
edge at the transmitter,” in Proceedings of EUROCON’01, (Bratislave, Slovakia),
pp. 26–29, 2001.

[55] Sung, J. H. and Barry, J. R., “Bit-Allocation Strategies for Closed-Loop
MIMO OFDM,” in Proceedings of Vehic. Tech. Conf. VTC 2003, (Orlando, FL,
USA), 2003.

[56] Tarokh, V., Jafarkhani, H., and Calderbank, A. R., “Space-time block
codes for wireless communications: performance results,” IEEE J. Select. Areas
Commun., vol. 17, pp. 451–460, March 1999.

[57] Tarokh, V., Jafarkhani, H., and Calderbank, A. R., “Space-time block
codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456–
1467, July 1999.

[58] Tarokh, V., Naguib, A., Seshadri, N., and Calderbank, A. R., “Space-
time codes for high data rate wireless communication: performance criteria in
the presence of channel estimation errors, mobility, and multiple paths,” IEEE
Trans. Commun., vol. 47, pp. 199–207, February 1999.

[59] Tarokh, V., Seshadri, N., and Calderbank, A. R., “Space-time codes
for high data rate wireless communication: performance criterion and code con-
struction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, March 1998.

[60] Telatar, I. E., “Capacity of multi-antenna Gaussian channels,” European
Trans. Telecommun., vol. 10, pp. 585–595, November/December 1999.

[61] Valenzuela, A. S. R., “A Statistical Model for Indoor Multipath Propaga-
tion,” IEEE JSAC, vol. 5, pp. 128–137, February 1987.

[62] Varadarajan, B. and Barry, J. R., “The rate-diversity trade-off for lin-
ear space-time codes,” in Proc. of IEEE Vehicular Technology Conference 2002,
(Vancouver, Canada), 2002.

[63] Varadarajan, B. and Barry, J. R., “Optimization of full-rate full-diveristy
linear space-time codes using the union bound,” in Proc. of 2003 Information
Theory Workshop, (Paris, France), pp. 210–213, 2003.

159



[64] Viterbi, A. J., “Very low rate convolution codes for maximum theoretical
performance of spread-spectrum multiple-access channels,” IEEE JSAC, vol. 8,
pp. 641–649, May 1990.

[65] Wennström, M., “On MIMO systems and adaptive arrays for wireless commu-
nication: analysis and practical issues,” Ph.D. Dissertation, Uppsala University,
Sweden, 2002.

[66] Wennström, M., Helin, M., Rydberg, A., and Öberg, T., “On the opti-
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