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SUMMARY 
 
 
The topic of this dissertation is the derivation, development, and evaluation of novel 

turbo equalization techniques that address the colored noise problem on the magnetic 

recording channel.  One new algorithm presented is the noise-predictive BCJR, which is 

a soft-output detection strategy that mitigates colored noise in partial-response equalized 

magnetic recording channels.  This algorithm can be viewed as a combination of the 

traditional BCJR algorithm with the notion of survivors and noise prediction.  

Additionally, an alternative equalization architecture for magnetic recording is 

presented that addresses the shortcomings of the PRML approach, which dominates 

magnetic recording.  Specifically, trellis-based equalizers are abandoned in favor of 

simple equalization strategies based on nonlinear filters whose complexity grows only 

linearly with their length.  This research focuses on the linear-complexity SFE algorithm 

and on investigating the possibility of lowering the SFE filter calculation complexity.  

The results indicate that with using the proposed novel SFE method, it is possible to 

increase the information density on magnetic media without raising the complexity.  The 

most important result presented is that partial-response equalization needs to be 

reconsidered because of the amount of noise enhancement problems that it adds to the 

overall system.  These results are important for the magnetic recording industry, which is 

trying to attain a 1 Tb/cm2 information storage goal. 

 xxi



 

CHAPTER 1 
INTRODUCTION 

1.1 The Problem 

Magnetic recording has a ubiquitous presence in our lives, as it is used for the 

majority of our computer data storage in central computing facilities, personal 

workstations, and portable computers.  Magnetic recording is one approach to 

information storage that offers an advantageous combination of large storage capacity, 

fast data access, small physical size, low cost, and non-volatile storage, which means that 

it provides long-term information storage in the absence of electrical power. 

The storage capacity of the media in magnetic recording can be referred to as the 

areal density, which is commonly measured in gigabits per square inch.  The areal density 

in magnetic recording is increasing faster than Moore’s Law, and it has thus been 

outpacing the semiconductor industry [1].  This increased storage capacity trend is likely 

to continue into the near future as the demand grows for applications in data, voice, 

video, and mobile technologies, especially in regard to growth of the Internet.  The 

increases in areal density have come from increasing performance in all areas of the 

recording process.  This includes higher-performance media, better head design such as 

magneto-resistive (MR) read heads, scaling of mechanical components, and better signal 

processing and error correction codes [1].  With enormous advancements made in 
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semiconductor technology, it has become practical to develop signal-processing 

applications to provide these increases in areal density.  Signal processing and coding 

have had a significant impact in the progress of data storage in magnetic media.  The 

introduction of PRML, which is a combination of partial response and trellis-based 

maximum-likelihood sequence detection, has increased the areal density by 30-40% 

when compared to standard peak detection [2].  While the partial-response (PR) channels 

provide higher recording densities and improved error-rate performance, they are 

considerably more complex than peak detection systems. 

PR equalization is a process that essentially shortens the impulse response of the 

underlying channel.  The receiver front-end includes an analog filter that transforms the 

channel response into a partial-response target that has little memory, so that a trellis-

based equalizer will have a manageable number of states.  This is an effective method to 

produce well controlled but non-zero intersymbol interference (ISI), which can be 

accounted for in the detector.  As a result of the process of PR equalization, the noise 

seen at the receiver is not only colored (i.e., the noise values are correlated), but it is 

enhanced as well.  It is this noise coloration and enhancement problem of PR equalization 

that this research addresses.  With better methods that can correct or circumvent this 

noise problem, these better methods should provide higher performance and increase 

areal density.  Since this research is able to provide such improvements, it will allow hard 

disk drives to increase their storage capacity without increasing the complexity. 
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1.2 Objective 

The primary objective of this research is the development of an alternative 

equalization architecture for magnetic recording.  This field is currently dominated by 

PRML, which has several drawbacks that only grow worse as storage densities increase.  

These drawbacks include severe penalties arising from noise enhancement and 

correlation in the noise as well as problems associated with the inherent hard-output 

nature of current-generation PRML. 

  The method derived in this research addresses all of the shortcomings of the PRML 

approach.  Specifically, the partial response strategy is abandoned altogether, leaving the 

underlying physical impulse response in its natural form; trellis-based equalizers are also 

abandoned in favor of simpler equalization strategies based on nonlinear filters whose 

complexity grows only linearly with their length.  In addition, this new structure is 

integrated into a turbo equalization framework.  

Leaving the channel in its natural form, trellis-based equalizers are impractical 

because of the length of the full impulse response.  To circumvent this complexity 

problem, this research makes uses of a non-trellis-based equalizer called the soft-

feedback equalizer (SFE) that is practical to implement, even for long impulse 

responses [3,4].  The SFE is a low-complexity alternative to the BCJR algorithm that is 

based on filtering and cancellation of residual ISI.  The SFE algorithm is of particular 

interest at this point, as it currently outperforms previous linear-complexity 

alternatives [4].  The research presented in this dissertation has developed a novel, lower-

complexity method in determining updated SFE coefficients by taking advantage of the 

magnetic recording channel statistics and channel knowledge.   
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Also in this dissertation, a novel BCJR-based channel detector is derived that 

incorporates the notion of survivors and noise prediction in a fashion that does not require 

an extension of the trellis size.  Previously reported modifications of the BCJR detector 

that account for colored noise have required an extended trellis [5-7].  They perform well 

but are prohibitively complex.  The new proposed algorithm performs comparably with 

these previously reported techniques, but it is significantly less complex because it does 

not require an extended trellis. 

1.3 Outline 

This dissertation consists of five additional chapters.  In Chapter 2, an analysis of the 

problem and its history is given.  In Chapter 3, a novel noise-predictive BCJR-based 

algorithm is developed which aims to take advantage of the noise correlation.  In 

Chapter 4, the SFE algorithm is studied for its use in magnetic recording channels.  

Chapter 5 examines a new lower-complexity method in determining the filter coefficients 

for the SFE algorithm.  Finally, Chapter 6 includes conclusions from the current research 

and recommendations for further work. 
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CHAPTER 2 
ORIGIN AND HISTORY OF THE PROBLEM 

2.1 Digital Magnetic Recording 

The three basic elements of a magnetic recording system are the write head, the 

magnetic media, and the read head.  The basic physical system comprised of these 

components is illustrated in Figure 2.1.  Storage of information on the magnetic recording 

channel (MRC) is attained by orienting the magnetic particles of the magnetic media in 

particular directions.  A depiction of the magnetized particles in a track is shown in 

Figure 2.2, where each block corresponds to a digital bit magnetized in one of two 

possible directions.  These magnetic particles maintain their orientation in the absence of 

power so that the stored data can be recovered at a future time.  The type of 

magnetization shown in Figure 2.2 is called longitudinal recording, where the 

magnetization lies horizontally in the disc’s plane.  However, future technology may use 

perpendicular recording, where the magnetization is vertical to the plane of the disc.  In 

that system, the bits in the media would be represented by upward or downward 

magnetization. 

The magnetic head is the key component in digital storage for the interface of the 

electronics and the magnetic media.  This head is composed of a highly permeable core 

material with a low coercivity, which makes it easy to demagnetize.  Coercivity, , is cH
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Read/Write
Head

Tracks

Magnetic
media

Figure 2.1.  Physical components of a magnetic recording system 

Track
Magnetization

Transition Transition Transition

Figure 2.2.  Magnetized particles in the media 

defined as the measurement of the level of difficulty to magnetize a material.   

For the writing process, the magnetic write head generates a magnetic field when a 

current generated from the write electronics is applied to a coil, which enables 

magnetization of the media.  Saturation recording is used in digital magnetic recording 

where the magnetic field intensity is enough to magnetize the media in one of two 

possible directions.   

The reading process may use either an inductive head or an MR head.  The inductive 

head, which may be the same head as the one used for writing, responds to the time rate 

change of flux in the media.  The MR head’s operation is based on the magnetoresistive 

effect present in films of certain materials, and thus in the MR head made of these 

substances, the impedance changes with the applied magnetization from the media. 
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2.2 Channel Characteristics 

For the purpose of analysis, the MRC is treated as a linear time-invariant (LTI) 

system and can be viewed as a communications channel in which the signal read back is 

corrupted as a result of impairments in the channel.  The assumption that superposition 

can apply to this channel is an adequate approximation, provided that the recording 

densities are not extreme [8] and that the recording signal is a binary signal with 

saturation recording [9]. 

The read head responds to transitions in the magnetization along the track.  An 

example of these transitions is illustrated in Figure 2.2.  The signal produced in the head 

resulting from a single magnetization change can be modeled as a transition response 

with a Lorentzian pulse, .  An important parameter used to describe this pulse is the 

width of the isolated Lorentzian pulse at half its maximum, .  The Lorentzian pulse 

shape can be expressed as 

( )h t

50PW

2
50

( )
1 (2 / )

oAh t
t PW

=
+

  , (2.1) 

where  is a scaling factor that can be written as oA

50

4 i
o

E
A

PWπ
=  , (2.2) 

2( )iE h t= ∫where  is the amount of energy in an isolated transition pulse, i.e., iE dt .  

In general,  can be set to “1” for amplitude normalization purposes.  For a given head 

and media combination,  is a constant and the recorded bit density, , is 

determined by the recorded bit duration, , by the relation .  The 

oA

50PW cD

50 /c cD PW T=cT
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recorded bit density, or channel bit density, is related to the user density, , via 

 where r  is the code rate.  Figure 2.3 shows the transition response for some 

values of D . 

uD

/c uD D= r

)ka a −

D= ∗ −

c
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Figure  2.3.  Transition response, h t  ( )
 

The encoded input data to the channel model, a , is a binary sequence having 

-spaced discrete elements taking on the values { .  This sequence is written onto 

the magnetic media by the write head using non-return-to-zero (NRZ) modulation that 

creates a two-level transition sequence, c .  This sequence written onto the media 

contains transitions, which alternate in direction, wherever adjacent input elements differ 

from each other ( .  The transition sequence takes on the values {0  and 

can be expressed as c a , where D  is a T -second delay operator.  Since 

 is a response to this transition sequence in the media, the continuous-time overall 

k

1}±cT

k

k ≠ , 2}±1

(1 )k k c

( )h t
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h

impulse response of the MRC, , also referred to as the dibit response, can be 

expressed as 

( )s t

   . (2.3) ( ) ( ) ( )cs t h t h t T= − −

Figure 2.4 depicts the change in shape of  as the value for  changes.  As the 

density increases, the transition responses form closer together and thus cancel each other 

out more, as observed in Figure 2.4.  The frequency-normalized Fourier-transform (FT) 

of the transition response, , equals 

( )s t cD

( cH fT )

( )
50( )    

2
cfT D

cH fT PW e ππ −= ,

)T

)

 (2.4) 

and from equation (2.3) and using FT relations, the frequency-normalized FT of the 

overall impulse response, S f , can then be determined.  Normalized versions of 

 for different values of D  can be seen in Figure 2.5.   

( c

( cS fT c

1
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Figure 2.4.  Overall impulse response, ( )s t  
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1

The read-back signal can now be described as 

  , (2.5) ( ) ( ) ( )k c
k

r t a s t kT n t
∞

=−∞
= − +∑

where the sequence  is the encoded input data symbols and  accounts for the 

presence of additive noise.  The block diagram for the entire MRC as an LTI system is 

depicted in Figure 2.6.  Noise in the MRC comes from many sources in the system, with 

the major components of  being media noise, electronics noise, off-track noise, 

overwrite noise, and transition noise.  In practice, it is common to approximate  as 

white noise, which generally reflects the aggregate noise relatively well [8,10].   

ka ( )n t

( )n t

( )n t

For analysis purposes, it is more useful to work with a discrete-time model of the 

magnetic recording channel.  Using Berman’s model [8], which is equivalent to the 

continuous-time model from an information transfer point of view, the coefficients of the 
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Figure  2.5.  Normalized versions of ( )cS fT  for different values of cD  
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( )h t

( )s t

( )r t

( )n t

{ }kc{ }ka

Figure 2.6.  Magnetic recording channel 

discrete-time transition response, , can be expressed as kg

( )
( )

2
2

2tanh
2 2

2

c

i c c
k

c

D
kE D D

g
D

k

π
π

⎛ ⎞⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜= ⋅ ⎟⎜ ⎟⎟⎜ ⎟⎜ + ⎟⎜ ⎟⎝ ⎠

   . (2.6) 

With this equivalent, it is more convenient, both analytically and numerically, to work 

with the discrete channel compared to the continuous-time channel.  The analytical model 

is now shown in Figure 2.7, where . ( ) (1 ) ( )f D D g D= −

+1 D− ( )g D

( )f D

kr

kn

kcka

 
Figure 2.7.  Discrete-time magnetic recording channel 
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2.3 Optimum Detector 

Viewing the magnetic recording system as a communications channel, an optimum 

detection method can be determined.  Making the assumption that the channel is LTI and 

that it has additive white Gaussian noise (AWGN), then the optimum detector 

corresponds to a sampled matched filter, , with a noise whitening filter and a 

maximum likelihood sequence detector (MLSD) [11].  A diagram of this detector is 

shown in Figure 2.8. 

(- )s t

Figure 2.8.  Optimal Detector 

Channel Matched
Filter

Noise
Whitening

Filter
MLSD+

1

cT

( )s t ( )s t−

( )r t{ }ka { }ky ˆ{ }ka

( )n t

The MLSD, which is known to achieve the best error-probability performance of all 

existing equalizers and detectors, entails making a decision about the received data based 

on all samples of the received sequence.  Given a particular observed sequence, { , the 

MLSD seeks to choose the sequence, , that maximizes the conditional probability 

}ky

ˆ{ }ka

ˆ( k kP y a ) .  However, the high complexity of this brute force method of searching through 

all  possible transmitted sequences for a length L  input sequence to the channel 

generally renders this impractical for any reasonable length data sequence.  Hence, for 

channels with long ISI spans, the full-state MLSD serves only as a benchmark and is 

rarely used. 

2L
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2.4 Partial Response 

In practice, the number of states required in the MLSD for a recording channel and 

matched filter will be prohibitive for complexity reasons.  Consequently, sub-optimal 

receivers such as symbol-by-symbol equalizers are widely used.  When addressing the 

ISI problem, linear equalizers are the simplest to implement and analyze.  Although, 

unlike MLSD, equalization enhances the noise. 

A common practice in magnetic recording systems is to replace the combination of 

the matched filter and whitening filter with a partial response equalizer, which shapes the 

channel to appear to have a response with a shorter span [12].  The response that this PR 

equalizer is attempting to shape the channel to is referred to as a target, which is often 

described by a polynomial in terms of -second delay operators D .  This equalization 

process is deemed “partial response” seeing that it still allows ISI to be present; however, 

this ISI is well defined and can be accounted for in the detection process.  In contrast, a 

“full response” equalizer is a type of equalizer that attempts to remove all the ISI.  With a 

PR equalizer, the amount of ISI is controlled in such a fashion that the target has a short 

enough length such that detection may be performed with a manageable number of states 

for state-based detectors.   

cT

In magnetic recording systems, many targets have been deemed suitable for this PR 

equalization process [13].  The Thapar-Patel class of partial responses consists of targets 

of the polynomial form (1  where n  is to increase with increasing 

recording density.  This class of targets is considered an appropriate choice for the MRC 

)(1 )nD D− +
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as the factor (1  provides a spectral null at DC similar to the frequency response of 

the MRC.  The (1  factor matches the high-frequency attenuation of the channel. 

)D−

)nD+

A common target seen in magnetic recording research is the PR4 response.  Using the 

Thapar-Patel class of partial responses, the PR4 response can be defined as the target 

given by , and thus the response can be written as .  Using 

, the frequency response is calculated as 

2
4( ) 1 -PRH D D=1n =

- 2 cj fTD e π=

  (2.7) 2
4( ) 4 sin( )cos( )    cj fT

PR c c cH fT j fT fT e ππ π −= .

.

) )

At higher recording densities, the extended PR4 target, EPR4, is considered more suitable 

than the PR4 target.  The EPR4 target, , is given by  

and has the frequency response 

2
4( ) (1 - )(1 )EPRH D D D= + 2n =

  (2.8) 2 3
4( ) 8 sin( )cos ( )    cj fT

EPR c c cH fT j fT fT e ππ π −=

Increasing the value of n  to 3 will provide the polynomial for the E2PR4 target.   

The normalized frequency responses of  and  are shown in 

Figure 2.9.  Comparing the shape of these responses with the frequency response of the 

MRC in Figure 2.5, it is evident that while the frequency responses of the PR channels do 

approximate the real channel, they do not match it exactly.  The better the target’s 

response matches the channel response, the greater the reduction in noise enhancement 

attained during equalization.  Thus, the better the target is matched to the channel, the 

better the detection performance.  There has been some work on other appropriate targets 

[14-16]; however, this work focuses on the PR4 and EPR4 targets because of their 

ubiquity in magnetic recording research. 

4(PR cH fT 4(EPR cH fT
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2.5 Channel Detection with PR Equalization 

Channel detection schemes often have complexities that are directly correlated to the 

length of the channel impulse response.  Nevertheless, with PR equalization, the channel 

impulse response length is shortened so that it becomes feasible to use high-complexity 

algorithms on this shortened impulse response.  The total complexity is an important 

issue in applications for magnetic recording channels, as they have constraints since 

power dissipation has become a growing concern [17].  In this section, the Bahl-Cocke-

Jelinek-Raviv (BCJR) algorithm for use in channel detection on the MRC is highlighted; 

however, some background on other schemes is also introduced. 
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Figure 2.9.  Normalized frequency responses of 4( )PR cH fT  and 4( )EPR cH fT  
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2.5.1 Complexity Considerations 

Without PR equalization, the MRC theoretically has infinite length.  With the PR 

equalization, the channel impulse response is shortened to have length m , which creates 

a manageable number of states, , for a trellis-based channel detector.  It is the 

number of states that directly affects the complexity for these detectors.  PR equalization 

gives the PR4 and EPR4 targets four and eight states, respectively.  The full channel 

theoretically has infinite support, but if it is approximated by selecting a finite number of 

taps so that 99.6% of the energy is retained, this approximate impulse response will have 

10 taps at a channel density .  This number of taps will yield 1024 states, which 

is regarded as impractically complex for real implementations.   

12m−

2.5cD =

The number of states for the detector is governed by the channel’s trellis structure.  A 

trellis is an illustration of a finite-state machine’s (FSM) state diagram, but it explicitly 

shows the passage of time.  The states are determined by the memory elements of the 

FSM, with each unique combination of the bits in the memory elements creating a new 

possible state.  For example, a binary FSM with two memory elements can have four 

possible states, each associated with its contents (00), (01), (10), or (11).  The trellis 

structure for this example is displayed in Figure 2.10.  In this diagram, it is assumed that 

the FSM begins at state (00).  Each branch in the trellis denotes a possible movement 

from state s  at time  to state s  at time k .  The detector uses these possible state 

transitions to determine the most probable input bits to the FSM. 

′ 1k −

A certain number of computations are associated with each state in the trellis.  So, as 

the number of states increase, so does the overall complexity.  With each new memory 
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Figure 2.10.  Example trellis diagram for a 4-state finite-state machine 

element in the binary FSM, the trellis size doubles, which leads to a complexity that is 

exponential in relation to the FSM’s memory length. 

Having fewer states for the detector is important if this detector is utilizing an 

algorithm such as the BCJR algorithm, which is a symbol-by-symbol maximum 

a posteriori (MAP) algorithm that is optimal for estimating the states or outputs of a 

Markov process in the presence of white noise [18].  A Markov process is a random 

process whose future probabilities are determined by its most recent values.  The BCJR 

algorithm, which is detailed in the next subsection, has complexity that is exponential in 

the length of the channel since it is a trellis-based algorithm.  With a binary sequence of 

length  as the input to the channel, the BCJR has approximately  real 

additions and  real multiplications [19]; this exponential complexity 

illustrates why m  should be small when using the BCJR algorithm.   

1(10 2 )mL −⋅L

1(6 2 )mL −⋅
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The true MAP algorithm presents technical difficulties because of numerical 

representation problems, nonlinear functions, and a high number of additions and 

multiplications.  By shifting to the logarithmic domain, the Log-MAP algorithm [20] 

does not have the numerical representation problems and changes some multiplications to 

additions, which are inherently less complex in hardware implementation.  The Log-

MAP algorithm is equivalent to the true MAP, but without some of the disadvantages.  

Hence, this work considers only the logarithmic form of the MAP algorithm for 

implementation purposes. 

2.5.2 The BCJR Algorithm 

The algorithm described in this section is the standard Bahl-Cocke-Jelinek-Raviv 

algorithm from [18].  The motivation for describing this algorthim is that it is of interest 

to see the performance of this classic algorithm compared with other types of channel 

detectors on the system that is described in later chapters.  But most important, some of 

the presented work in Chapter 3 looks into modifying this algorithm for noise predition 

purposes on the MRC. 

In demonstrating the BCJR algorithm, the system is assumed to have binary 

transmission of the coded bits  where knowledge of the encoding trellis is known.  For 

a binary trellis, s  is the state of the encoder at time k , and s  is the state at time .  

 is the set of all ordered pairs ( ,  corresponding to all state transitions caused by 

the channel input .  S  is defined in a similar manner for . 

ka

′ 1k −

S+ )s s′

−1ka = + 1ka = −

The main goal of the BCJR algorithm operating as a channel detector is to compute 

a posteriori probabilities (APP) of the coded input  of the channel.  This is done based a
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on knowledge of the trellis, the a priori probabilities of the channel inputs, and the 

channel output .  Let  and .  The 

BCJR algorithm assigns  if , or it assigns 

 otherwise.  More concisely, the decoder’s decision  is identified as 

r 0 1 2[ , , , ... ]La a a a=a 0 1 2 1[ , , , ... ]L mr r r r + −=r

( 1 | ) ( 1 |k kP a P a= + > = −r rˆ 1ka = + )

ˆ 1ka = − k̂a

  , (2.9) ˆ sign( )k ka L=

where  is referred to as the log-likelihood ratio (LLR), defined as kL

( 1 |
log

( 1 |
k

k
k

P a
L

P a
⎛ ⎞= + ⎟⎜≡ ⎟⎜ ⎟⎜⎝ = −

r
r
)
)⎠

  . (2.10) 

From Bayes’ rule, the LLR  can be written as the sum kL

( | 1) ( 1)
log log

( | 1) ( 1)
k k

k
k k

P a P a
L

P a P a
⎛ ⎞ ⎛= + = +⎟ ⎟⎜ ⎜= +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ = − ⎠ ⎝ = −

r
r

⎞
⎠

  , (2.11) 

where the first term corresponds to what is known as the extrinsic information, , and 

the second term corresponds to the a priori LLR, .  Using the trellis,  may be 

written as 

kλ

p
kλ kL

1

1

( , , )
log

( , , )

k k
S

k
k k

S

p s s s s p
L

p s s s s p
+

−

−

−

⎛ ⎞′= = ⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟′= =⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠

∑
∑

r r

r r

( )

( )
  . (2.12) 

Notice that the term  may be cancelled.  The joint probability  can be 

written as the product of three independent probabilities: 

( , , )p s s′ r( )p r

1

( , , ) ( , ) ( , |s ) ( | )

( , ) ( | ) ( | , ) ( | )

    ( )     ( , )          ( )

j k k j k

j k k j k

k k

p s s p s p s r p s

p s P s s p r s s p s

s s sα γ β

< >

< >

−

′ = ′ ⋅ ′ ⋅

= ′ ⋅ ′ ⋅ ′ ⋅

= ′ ⋅ ′ ⋅

r r r

r r���������	��������
 

k s

����	���
 ����	���
   . (2.13) 

Equation (2.12) can then be rewritten as 
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1

1

( ) ( , ) ( )
log

( ) ( , ) ( )

k k k
S

k
k k k

S

s s s s
L

s s s s

α γ β

α γ β
+

−

−

−

⎛ ⎞′ ′ ⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟′ ′⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠

∑
∑

   . (2.14) 

The  can be computed in a forward recursion as ( )k sα

  (2.15) 1( ) ( ) ( , )k k k
s S

s sα α γ−
′∈

′ ′= ∑ s s

0

k s s

0

with initial conditions  and .  These initial conditions express 

that it is expected that the encoder starts in state 0.  The probabilities  are computed 

in a backward recursion as 

0(0) 1a = 0( 0)a s ≠ =

( )k sβ

   , (2.16) 1( ) ( ) ( , )k k
s S

s sβ β γ−
∈

′ ′= ∑

and if it is expected that the encoder ends in state 0 after  input bits (implying 

that appropriate termination bits are selected), the boundary conditions are 

 and . 

1L m+ −

1(0) 1L mβ + − = 1( 0)L m sβ + − ≠ =

In both the forward and backward recursions, the branch transition probabilities 

 are needed, which can be written as ( , )k s sγ ′

   . (2.17) 
1

1 1

( , ) ( , | )

( | , )Pr( | )

k k k k

k k k k k

s s p s s r s s

p r s s s s s s s s

γ −

− −

′ ′= = =

′ ′= = = = =

The second term in equation (2.17) is the a priori probability that the  coded bit, , 

is the input that caused the transition from state s  to state s .  Assuming AWGN with 

variance , the branch transitions may be reduced to 

thk ka

′

2σ

2( , )

1 22

1
( , ) Pr( | ) exp

22

s s
k

k k k

r r
s s s s s sγ

σπσ

′

−

⎡ ⎤−⎢ ⎥′ ′= = = ⋅ −⎢ ⎥
⎢ ⎥
⎣ ⎦

    , (2.18) 
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where the expected noiseless observed output that corresponds to the transition along that 

branch resulting from the channel input bit  is denoted by .  For a BPSK alphabet 

where the a priori information is given in the LLR form , the a priori probability can 

be written as 

( , )s sr ′
ka

p
kλ

/2
( , )

1

( , )

Pr( | ) exp( /2)
1

                exp( /2)

p
k

p
k

ps s
k k k

ps s
k k

e
s s s s r

e

A r

λ

λ λ

λ

−
′

− −

′

⎛ ⎞⎟⎜′ ⎟= = = ⋅⎜ ⎟⎜ ⎟+⎝ ⎠

=

  . (2.19) 

The term  will cancel in (2.12), as it is independent of . kA ka

2.5.3 State-of-the-Art Channel Detection in Magnetic Recording 

As previously mentioned, the magnetic recording channel will appear to the detector 

to have only a few states when using PR equalization, thus making it feasible to use the 

BCJR algorithm.  The output of the detector is then given to a decoder, assuming that the 

system is applying error-correction coding (ECC).  A system with ECC, an interleaver π , 

the MRC, PR equalization, a BCJR channel detector for the PR target, and a deinterleaver 

 is illustrated in Figure 2.11.  A turbo code implementation of this system has been 

studied by other authors [21,22]; however, they execute the BCJR channel detection 

assuming the noise in the detector to be white after PR equalization, which is not the 

most accurate representation for this case.  There is a performance loss by disregarding 

the correlation in the noise. 

1π−

There has been some work on using algorithms for the channel detector that account 

for the noise correlation resulting from the PR equalization process.  This previous work 

has focused on modifying the BCJR algorithm with an extended trellis for correlated 
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noise [5-7].  Although gains of about 1 dB may be observed with this approach, the added 

complexity is considerable because of the extended trellis.  To account for correlated 

noise by using additional memory with a length 2, the trellis size is quadrupled, thus 

quadrupling the complexity. 

In addition to the work with the BCJR with an extended trellis, there has been 

research that has focused on noise-predictive maximum-likelihood (NPML) detectors 

[23-25].  These detectors embed a noise prediction/whitening process into the branch 

metric computations of the Viterbi algorithm [26].  NPML provides performance gains 

over PRML detectors and is considered the current state-of-the-art in magnetic recording.  

2.6 Turbo Equalization 

In the system demonstrated in Figure 2.11, the channel detector is implemented only 

once for each sector.  Yet, if the decoder provides soft information about the bits to the 

detector in an iterative process, also referred to as turbo equalization, a significant 

amount of coding gain may be attained, though at the added expense of complexity.  By 

applying turbo equalization methods to this system on the MRC, there are better 

performance benefits that can be attained [21, 27, 28]. 

Figure 2.11.  System diagram with encoder, MRC, PR equalizer, BCJR channel 
detector, and decoder 

Outer
Code MRC Decoder

{ }ka { }kr ˆ{ }ka{ }kx
π

ˆ{ }kx1π−
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Turbo equalization is an iterative joint equalization and decoding process first 

introduced in a general way in [29], and it was shown to almost completely mitigate the 

ISI effects in certain circumstances.  The goal of equalization is to minimize the ISI 

distortion at the receiving filter output and reduce the system’s bit error rate (BER).  

Turbo equalization is a solution to this ISI distortion problem that considers the channel 

memory effect and uses it as a type of time diversity.  In this approach, the discrete-time 

channel model can be seen as a convolution encoder with rate 1 and therefore can be 

interpreted as a Markov chain with its behavior being represented by a trellis 

diagram [30].  Fundamentally, turbo equalization treats the ISI trellis as an inner 

constituent encoder in serial concatenation with the outer code, such as a convolutional 

code or turbo code.  From this viewpoint of considering the channel as an encoder, the 

turbo equalizer attempts to “decode” the received signal. 

2.6.1 The APP Module 

Before continuing at this point, an APP module should first be defined.  This needs 

be done because an APP module is the core building block of a successful iterative 

receiver.  An APP module, as shown in Figure 2.12, is a soft-input soft-output (SISO) 

block that calculates a posteriori probabilities of the information bits and parity bits.  The 

inputs to this module include the systematic bits, the coded bits, and any a priori LLR 

information from the previous block or iteration.  The APP module then outputs the LLR 

information about the input data as well as the LLR information about the parity data.  

For the case of channel detection, not all of these inputs and outputs are used.  When 

ISI is present, there are no systematic bits available to the receiver.  In addition, the 
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Figure  2.12.  APP module 
 

calculation of LLR information about the coded data is not needed; however, this type of 

calculation is required in other types of APP blocks, such as those in turbo decoders. 

The APP module serves mostly as a conceptual block.  The exact evaluation of the 

LLRs is computationally complex and can be performed with the BCJR algorithm.  There 

have been a number of suboptimal algorithms proposed such as the M-BCJR, T-BCJR 

[31], and the soft-output Viterbi algorithm (SOVA) [32].  These algorithms have lower 

complexity costs, yet they approximate the LLR, which results in having a performance 

loss. 

2.6.2 Iterative Equalization with APP Modules 

The goal of a receiver is to attempt to find Pr(  for each information bit , 

which is computationally difficult.  A turbo equalizer offers a low-complexity 

approximate solution for this problem.  The receiver system implementing a turbo 

equalizer scheme consists of a SISO equalizer, an interleaver , a deinterleaver , and 

a SISO ECC decoder, as seen in Figure 2.13.  The interleaver not only protects against 

burst errors during transmission across a channel, but it also maintains near independence 

between the equalizer and decoder structures, which is an important assumption when 

partitioning these two components.  An increase in the interleaver size will help reduce 

| )kx r kx

1π−π
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the correlations between the coded bits, which results in the system performance having a 

dependency on the interleaver size. 

Using APP modules, the SISO equalizer block uses the received signal from the 

channel and the a priori information given to it from the decoder for its inputs.  For the 

first iteration, there is generally no a priori information available.  Since the equalizer is 

working over a channel with ISI, the received symbols serve as parity information only, 

as there is no systematic data accessible to the receiver.  The equalizer calculates the LLR 

of the coded channel bits  with only the knowledge of the channel.  At this stage, ECC 

is ignored.  From the viewpoint of the APP module, the input is only information 

symbols, as it does not contain redundancy.  Therefore, the channel detector does not 

compute any parity LLR.  The extrinsic part of the LLR information data is then 

deinterleaved and is transferred to the decoder.   

ka

Figure 2.13.  The turbo equalization process as an iterative loop 
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Decoder
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The decoder then takes this LLR information and uses it as the systematic and parity 

inputs to its APP module.  Again, for the first iteration, there is generally no a priori 

information available for the decoder.  The decoder ignores the ISI and assumes that the 

equalizer has removed all of its effects.  Finally, the decoder exploits the knowledge of 

the code structure and computes new LLRs of each coded symbol.  The extrinsic part of 

this LLR data is then interleaved and given to the equalizer as a priori information for the 

next iteration.   

It is important that only the extrinsic part of the APP information be fed to the next 

channel detector.  The other part of the APP data is the a priori information, which is 

already known to the detector, as it was the module that gave the decoder that 

information.  The equalizer assumes that the a priori data it is given from the decoder is 

extra information about the channel bits gleaned only from exploiting the code structure.  

So, subtracting the a priori information from the full LLR information will prevent 

positive feedback of information back to the equalizer.  

The performance of the turbo equalizer is directly related to the number of 

iterations [29].  Turbo equalization also experiences a trigger point followed by a 

breakdown effect, that is, the performance gets better for each iteration if the probability 

of error of the first iteration is lower than the trigger point [33].  This iteration 

performance underscores the motivation for turbo equalization.  At low SNR, the BER is 

dominated by the convergence of the iterative equalization and decoding process.  For 

this reason, codes designed to improve the convergence can outperform those codes that 

are designed to optimize the asymptotic performance with ML decoding [34]. 
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2.6.3 Turbo Equalization for the MRC 

To illustrate turbo equalization applied to the MRC, Figure 2.14 shows a turbo 

equalization system with ECC, the MRC, PR equalization, and a BCJR channel detector.  

This is similar to Figure 2.11, but now the decoder sends soft information about the 

transmitted bits back to the channel detector for the next iteration.  However, using the 

BCJR channel detector with PR equalization introduces the noise enhancement problems 

that can affect performance of a system that acts on the MRC.  It can assume either that 

the noise is white and face a performance penalty, or it can use noise-predictive methods, 

which can drastically add to the complexity. 

Figure 2.14.  System diagram with encoder, MRC, PR equalizer, BCJR channel 
detector, and decoder employing turbo equalization 
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For the ECC part of the turbo equalizer, a code that can provide both a very low BER, 

near 10-14, and a practical APP decoder is desirable.  To achieve this low BER required 

for the MRC, an ECC other than a turbo code should be used, as turbo codes tend to have 

a noise floor above the desired BER.  Low-density parity-check (LDPC) codes [35] are 

well suited for use in turbo equalization for magnetic recording channels, as they can 

achieve the extremely low BER required as well as offering a practical APP decoder.  

Additionally, LDPC decoders can be considerably less complex than a turbo decoder.  

The approximate amount of complexity in the decoder per iteration is about 6  L t⋅
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LDPCHmultiplications and 5  additions.  Here t  is the column weight of L t⋅ , the parity 

check matrix of the code.  LDPC codes, first introduced in 1962, were largely forgotten 

until a recent paper by MacKay demonstrated that their performance is almost as close to 

the Shannon limit as turbo codes [36]. 
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CHAPTER 3 
THE NOISE-PREDICTIVE BCJR ALGORITHM 

3.1 Introduction 

The standard approach to equalization in magnetic recording is the PRML strategy, 

where the front-end filter transforms the underlying channel to a target partial response, 

which has little memory.  With this strategy, the length of the impulse response is 

shortened so that trellis-based channel detection may be performed with a manageable 

number of states.  Unfortunately, the front-end filter introduces significant performance 

penalty because of noise enhancement and correlation. 

Much of the previous work on the magnetic recording channel has implemented 

detectors over the ideal PR channel with the assumption that the noise is not correlated.  

Instead, those detectors use the Euclidian distance metric, which is optimal only for the 

white Gaussian noise case.  Appling such detectors over the more realistic channel with 

the colored noise will definitely impair performance [22,37]. 

There have been a few different approaches on how to manage the colored noise seen 

at the detector.  Some work has focused on modifying the BCJR algorithm with an 

extended trellis to incorporate the correlated noise [5-7], where the calculation of the 

branch metrics is based on the assumption that the noise is either a Gaussian-Markov or 

Gaussian random process.  With this approach of extending the trellis for the correlated 
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noise, gains can be observed, but there is added complexity because the larger sized 

trellis.  In order to account for noise with a memory of length 2, the trellis size is 

quadrupled, thus quadrupling the complexity.  Further research has focused on NPML 

detectors [23-25].  These detectors embed a noise prediction/whitening process into the 

branch metric computations of the Viterbi algorithm and provide performance gains over 

the PRML detectors. 

In this chapter, a new soft-output detection strategy is presented that mitigates colored 

noise in partial-response (PR) equalized magnetic recording channels.  The algorithm can 

be viewed as a marriage of the traditional BCJR algorithm with the notion of survivors 

and noise prediction.  This new algorithm performs comparably with previously reported 

BCJR-based techniques, but is significantly less complex because it does not require an 

extended trellis. 

3.2 Noise Correlation 

As it is well known, the process of partial-response equalization causes the noise seen 

at the detector to be correlated [13].  Let  be the D -transform input to the MRC as 

seen in Figure 3.1, and let  be the target response.  The output of the PR filter, 

, is given by 

( )a D

( )PRg D

( )y D

  . (3.1) ( ) ( ) ( ) ( )PRy D a D g D w D= +

Here  represents the total distortion, which is the colored noise plus any residual 

interference. 

( )w D
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The zero-forcing (ZF) finite impulse response equalizer, , which shapes the 

channel to the desired target response is given by 

( )c D

 ( )
( )

( )
PR

f

g D
c D

R D
=  , (3.2) 

where  is the -transform of the discrete-time channel autocorrelation 

coefficients.  In a zero-forcing formulation, the noise sequence  seen at the channel 

detector is a filtered version of the AWGN .  The autocorrelation function of this 

colored noise sequence is 

( )fR D D

( )w D

( )n D

 
1( ) ( )

( )
( )

PR PR
w o

g D g D
R D N

−
=

fR D
 . (3.3) 

0N  is the power spectral density of the AWGN.  The power spectral density (PSD) of the 

filtered noise sequence is simply the Fourier transform of . ( )wR D

For the minimum mean square-error (MMSE) case, the infinitely long PR equalizer is 

given by [38] 

 
2

2
( )

( )
( )
a PR

a f o

g D
c D

R D N
σ

σ
=

+
 (3.4) 

+( )f D
( )r D

( )n D

( )a D
1( )f D− ( )c D

( )y D

Figure  3.1.  The MRC with the discrete-time model, the matched filter, 
1( )f D− , and the PR equalizer, ( )c D  
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where  is the average symbol energy of the sequence .  In this formulation,  

represents the filtered noise sequence as well as a residual interference component.  The 

autocorrelation function for the total distortion in this MMSE formulation is given by 

2
aσ ( )a D ( )w D

2 1

2
( ) ( )

( )
( )

a PR PR
w o

a f o

g D g D
R D N

R D N
σ
σ

−
=

+
  . (3.5) 

To demonstrate these formulations, two plots are presented for the case of a PR4 

target, , and .  Figure 3.2 displays the frequency response of the PR 

equalizers for the ZF and MMSE formulations from 

2.0cD = 0.08oN =

(3.2) and (3.4) respectively.  Note 

that in these equations,  does not include the matched filter .  It should be 

noted that since the matched filter has a zero at DC, the concatenation of these two filters 

1(f D−( )c D )

will negate what appears to be infinite gain at DC for the ZF equalizer.  Figure 3.3 

Figure  3.2.  The frequency response of the PR equalizers for the ZF and 
MMSE formulations with 2.0cD = , 0.08oN = , and using the PR4 target 
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Figure  3.3.  The PSD of the total distortion, ( )w D , for the ZF and MMSE 
formulations with 2.0cD = , 0.08oN = , and using the PR4 target 

 

displays the PSD of the total distortion ( )w D  after the PR equalizers for the ZF and 

MMSE instances.  To reduce the distortion, it is best to use the MMSE formulation.  

However, there is still significant distortion present, and so assuming that the detector 

sees only AWGN is not a close approximation. 

ng that the detector 

sees only AWGN is not a close approximation. 

3.3 Conventional BCJR with colored noise 

3.3.1 Noise Memory in Branch Transition Probabilities 

ntional BCJR-

bas

3.3 Conventional BCJR with colored noise 

3.3.1 Noise Memory in Branch Transition Probabilities 

ntional BCJR-

bas

In order to motivate the new algorithm, first consider how a conveIn order to motivate the new algorithm, first consider how a conve

ed channel detector can account for memory in the noise, which has been addressed 

in [5-7].  To briefly review what has already been shown in section 2.5.2, the BCJR 

ed channel detector can account for memory in the noise, which has been addressed 

in [5-7].  To briefly review what has already been shown in section 2.5.2, the BCJR 
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algorithm can described by the forward and backward recursions through a given trellis 

structure.  Each branch in the trellis is associated with its own transition probability.  

Under the assumption of AWGN, the branch transition probabilities, or branch metrics, 

( , )k s sγ ′  can be defined as 1( , ) ( , | )k k k ks s p s s r s sγ −′ ′= = = .  Assuming AWGN with 

 2σ , the branch probabilities can be reduced to variance

(
 

)2( , )

22
( , ) exp ( )

22

s s
k

k k

r
s s P aγ

σπσ

′
1 kr

⎡ ⎤
′ ′ = − ⋅⎢ ⎥

⎢ ⎥

−⎢ ⎥

⎢ ⎥⎣ ⎦

 (3.6) 

where  is the a priori probability for the k-th message bit, , which is the input bit 

by .  

For channels with correlated noise, it is necessary to modify the branch transition 

pro

( )kP a ka

that causes the transition.  The expected noiseless observed output that corresponds to the 

transition along that branch, from state s′  to state s , due to that k-th input bit is denoted 

( , )s s′
kr

babilities in (3.6) to take advantage of the noise correlation, but the forward and 

backward recursions remain fundamentally the same.  With the noise being correlated, 

the branch transition probabilities have a memory dependence not only on the state 

transition as in the standard BCJR algorithm, but also on its own past up to a memory of 

length Lm .  These transition probabilities can now be defined as  

 1 1( , ) ( , | , k mk k k k )Lk  . (3.7) 

With this, it can be seen that the observed process has a memory dep ence not on

s s p s s r s s rγ −
− −′ ′= = =

end ly on 

the state transition as in the standard BCJR algorithm, but also on its own past up to a 

memory of length Lm .  Some of the previous approaches on how to modify the branch 
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metrics to combat the colored noise differed on their assumptions that either the noise is 

based on a Gaussian-Markov random process or a Gaussian random process [5-7].  Yet, 

each of these modified BCJR algorithms makes use of an extended trellis.  Given that the 

channel impulse response has a length m , the trellis is extended from 12m−  states to 

12 Lm m− +  states.  The value used for Lm ay be chosen to be a smaller value than the 

gth of the noise memory in order to maintain a reasonable number of states in 

the trellis.  By the use of a smaller value for Lm , there is a tradeoff between performance 

and complexity. 

 m

actual len

3.3.2 Linear Prediction 

 th  correlated is to use linear prediction, whereby a 

line

 PR-equa el output is kr r w′ , where 

pre

 
)

L

k k k k k i i
i

m
s s s s

k k i ik k i
i

e w

r r r r p

−
=

′ ′
− −

=
= − − −∑

 . (3.8) 

One idea to mitigate distortion at is

ar combination of past noise distortion samples are used to predict the next noise 

sample.  Motivated by a similar linear prediction approach found in the derivation for 

NPML, this section describes a method that uses a whitening filter in its noise prediction 

for a BCJR-based algorithm.   

Let it be assumed that the ( , )s s
k k= +lized chann

kw  represents the total distortion.  The power of this distortion can be reduced by linear 

diction [39].  Let 1
1( ) ( ... )L

L

m
mp D p D p D= + +  be the transfer polynomial of an 

Lm -tap MMSE predic r operating on the noise sequence 

 produce the estimate ˆkw .  The prediction error sequence is then given by 

Lm

w w w p= − = −∑

tor of kw .  The linear predicto

will

1

( , ) ( , )

1

ˆ

( ) (

 35



This prediction error is equivalent to the whitened distortion component of the PR-

equalized sample .  The optimum predictor that minimizes the mean-square error 

} is given by [23] 

 

kr

2| |keEε = {

0

( )q D
q

⎛ ⎞
⎜ ⎟⎝ ⎠

(  the minimum phas

( ) 1p D ⎟⎜= − − ⎟  , (3.9) 

where is e causal factor of .  

From the noise prediction viewpoint, the branch metric can be modified to 

)q D  1/ ( )wR D

( )2( , )

2 
2

( , ) exp
2

k s sγ
πσ

ˆ1
( )

2

s s
k kk

k

r r w
P a

σ

′⎡ ⎤− −⎢ ⎥′ ⋅
⎥

= −⎢ ⎥
⎢
⎢ ⎥⎣ ⎦

 . (3.10) 

Not  predicted 

value  would be zero.  Thus, (3.10) would reduce back to (3.6).  Assum

is equalizing to the PR4 target, the expected noiseless observed output is writte

k kk − k−

etric

ˆ ( ) ( ) ( )
m

s s
k k k k k k i k i k i ikr r w r a a s r a s a s p′

− − − − −′ ′− − = − + − − +∑  .  (3.11) 

c determined by (3.11) is not suitable for high-speed 

implementation [24].  This is because of its requiring several multiplications rather than 

additions and random-access memory (RAM) lookup.  Fortunately, this structure can be 

k k k k k i ik
i

−
=

ice that if the distortion w  is AWGN, it would not be correlated and thek

ing that ( )c D  ˆkw

n as 

( , ) ( )s sr a a s′ ′= − , where the bit ( )a s′  is determined by the hypothetical state that 

the transition originated from.  Given the original PR4-based trellis, the branch m  

can now by revised by using 

1

L

i=

′

However, the branch metri

22

( )( , )
2 2

made suited for RAM based implementation by rearranging (3.11) as 

 
2

( , )
Lm

s sr r w v a a s b
+

′ ′− − = − + ∑  , (3.12) 
1

ˆ ( )
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where 
1
Lm

k k k i ii
v r r p−=

= −∑  is the output of the prediction error filter [1 ( )]p D− .  The 

coefficients  are determined by the polynomial ib

[ ]

1
1 2

2

( ) (1 )

(1 ) 1 ( )

L
L

m
mb D b D b D

D p D

+
+= − − −

= − −

"
 

2

 . (3.13) 

It should be noted that with this method, the effective ISI memory for the PR4-based 

o r than 2 for the original PR4 trellis with 

the AWGN assumption.  A less complex algorithm is desired for any practical 

application. 

3.4 Noise-Predictive BCJR 

R extended trellis approach to the noise correlation does work well and 

provides performance gains over the standard BCJR algorithm that operates on the 

AW s otivated to find a sub-optimal method to 

combat the noise correlation without extending the trellis.  The idea is to marry the idea 

of n

trellis with n ise prediction is now 2+ , ratheLm

The BCJ

GN a sumption, but this research is m

oise prediction with the notion of survivors.  In the algorithm presented here, not all 

noise samples are directly available to the algorithm, but it is a simple matter to introduce 

a survivor path for each node of the trellis, and to use the symbols in the survivor history 

to help predict the noise.  This new noise-predictive BCJR (NP-BCJR) algorithm 

performs comparably with previously reported BCJR-based techniques, but is 

significantly less complex because it does not require an extended trellis. 

 In order to demonstrate this new method, the calculation in (3.10) will be 

reexamined.  Recall that the transition information ( , )s sr ′  is determined from a linear k
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combination of the values 1 2, , ,k k ka a a− − … depending on the target response; e.g., for a 

PR4 response, ( , )
2( )s s

k kr a a s′
− ′= − .  To ascertain the past information ( , )s s

k ir
′

− , 0i > , k

the past values  are generally not accessible to the original PR4 

trellis at time k since the four states mation on  and .  To 

determine the value of the pas ssage bits not available to the original trellis, these bits 

are estimated based on llis transitions.  Thus, the branch transition 

now wr s 

 2 2
1

ˆ ˆ ˆ( ) ( ) ( )k k k k k k i k i ik
i

r r w v a a s a s a s p− − − −
=

− − = − + + −∑  , (3.14) 

where the a s′ , , represent the estimated past message bits.  Rather than increase 

ation, as in the previous section, 

this noise-predictive algorithm looks back through the trellis and finds the most likely 

past states based on current state calculations.  In other words, in addition to the forward 

ard m trics o

 backwards through the trellis that provides the most likely past 

stat  prem

( )k ia s− ′  and 2( )k ia s− − ′

only give infor 1( )ka s− ′ 2( )ka s− ′

t me

 past likely tre

probabilities are itten a

( , )
Lm

s s′ ′ ′ ′

l

the size of the trellis to determine this past state inform

( )

l m>ˆ ( )

and backw e f the original BCJR algorithm, the NP-BCJR maintains a set of 

survivor paths for each node in the trellis in order to perform the linear prediction of the 

total distortion.   

So that the ˆ ( )la s′  can be estimated, the trellis has the same structure as in the general 

PR4 case, but with survivor history information stored at each state as the NP-BCJR 

algorithm moves forward through the trellis.  This extra information will be a survivor 

path memory looking

es given the ise that this path must end at state s  at time k .  The estimated past 
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state information ˆ ( )la s ′  can then be obtained from the state transitions given by this path 

history. 

To update the survivor path memory at state s  at tim  k , the m st likely path coming 

into the state is ch similarly as to the Viterbi path decisions.  The survivor path into 

state s  i

e o

s the path with the best partial path m tric, .  At time , the metrics 

asso

( , )k k s s− ′

th m

the othe   The backward recursion components  are not 

included for this partial path metric since this metric must be computed for the use

through

egin in the zero state.  Because 

of 

th memory for state  at time .  

osen 

e ( , )M s s′ k

ciated with these paths entering state s  are calculated by use of the branch metrics 

( , )k s sγ ′  and the forward recursion ( )k sα  as 

 ( , ) ( )M s s a s γ′ ′= ⋅  . (3.15) 

The path that provides the largest partial pa etric will pass on its path memory, while 

r competing paths will die.

1

( )k sβ

 of the 

( , )k s sγ ′  calculation during the forward pass through the trellis.  The ( )k sβ  are not 

calculated until after the forward pass is first completed. 

The illustration in Figure 3.4 shows an example of hypothetical path memories 

 the beginning section of a NP-BCJR trellis with a PR4 target.  This trellis was 

constructed with the assumption that the algorithm will b

competing paths, some of these path memories die partway through as seen in the 

figure.  Though notice that at each time k , the survivor path history at each state can 

always be traced back to the beginning of the trellis. 

 To better illuminate the inner workings of the NP-BCJR algorithm with respect to the 

survivor path histories, Figure 3.5 shows a hypothetical section of the PR4 trellis using 

the NP-BCJR algorithm attempting to update the pa  kbs
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Figure  3.4.  Hypothetical survivor path memories in a section of the trellis 
using the NP-BJCR with a PR4 target 

 

Bef

m

e

c bM s s′

ore the path memory can be updated, all the transition probabilities ( , )k s sγ ′  are 

calculated.  The transition probability ( , )k a bs sγ ′  is calculated with the knowledge of 

 as well as the estimated value  based on the survivor path memory at 

state ′  at time 1k − .  More estimated values of ˆ ( )′  may be used, depending on what 

value of  is chosen to be implemented.  A si ilar process is completed to compute 

.  To determine which path will  its memory to state , the branch that 

has th  largest al path metric will survive; i.e., the NP-BCJR will compare 

1( , ) ( ) ( , )a b k a k a bM s s s s sα γ−′ ′ ′⋅  to the value received by the calculation 

1( ) ( , )k c k c bs s sα γ− ′ ′= ⋅ .  The algorithm will update all survivor histories ending 

at time k  before continuing to the next trellis section. 

2( )k aa s− ′ 3ˆ ( )k aa s− ′

as l aa s

Lm

( , )k c bs sγ ′  pass on bs

parti

=

( , )
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Figure  3.5.  Hypothetical state transitions in a section of the trellis using 

the NP-BJCR with a PR4 target 
 

The NP-BCJR algorithm can

  accordingly 
initialize the survivor path memory  

calculate  for all valid transitions using 
.14) 

.15) 
 for all valid transitions as in 

 by means 

end 
traverse backwards to calculate the ’s using (2.16) 
deter

 

The res hm i o 

e com n  vers .  Recall from the previous section 

 be described by the following pseudocode: 

initialize 0( )sα  and ( )L sβ  for all s

for k=1:L, 
( , )k s sγ ′

(3
calculate ( )k sα  for all s  using (2

( , )kM s s′compute 
(3.15) 

update the survivor histories at each 
of comparing the ( , )M s s′   

s

k

( )k sβ
mine the LLR kL  with (2.14) 

ulting added complexity over the classic BCJR algorit s minimal compared t

th plexity required by the exte ded trellis ion
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that as Lm  increases, so does the number of states in the trellis for the BCJR with trellis 

extension for colored noise.  In contrast, the NP-BCJR algorithm uses an Lm -length 

survivor history that does not require the trellis size to increase.  There is the extra 

storage requirement for the survivor paths through the trellis.  For every valid transition, 

there is one multiply for computing the partial path metric, and there are 12m−  

comparisons at each stage.  Recall that the extra computation required to find ˆkw  for 

( , )k s sγ ′  can be implemented by RAM lookup.  These complexity calculations show that 

the NP-BCJR algorithm is efficient in terms of extra computations required.  The BER 

ance of this new algorithm is illustrated in the next section. 

3.5 Results 

perform

re nel with AWGN equalized to a PR target with colored noise is 

considered.  The data is protected by a rate-8/9 (4095,3640) regular LDPC code with 

colu

 compa rf

ualization iterations.  In Figure 3.7, the BER performances of the respective 

algorithms are given, and the algorithms implementing the whitening filter are run with 

A Lo ntzian chan

mn weight 3, and it is decoded using message passing and turbo equalization.  The 

SNR that is referred to in this section is defined as /i oE N  where iE  is the amount of 

energy in an isolated transition pulse as defined in section  2.2.  The system model is 

shown in Figure 3.6, and was used in experiments to re the pe ormance between 

the classic BCJR, the extended trellis BCJR, and the NP-BCJR algorithms as the channel 

detectors.    

The first set of results was attained with a channel density of 2.0, a PR4 target, and 

five turbo eq
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either  or .  The results show that the NP-BCJR algorithm for 

has a 1 dB gain over the BCJR algorithm that ignores the noise coloration and a loss of 

only 0.4 dB loss over the algorithm that extends the trellis; however, as mentioned 

n.   

 

the BER 

performance of the respective BCJR algorithms discussed previously.  In this setup, the 

Figure 3.6.  System model with turbo equalization over the magnetic 
recording channel 

 1Lm = 2Lm = 2Lm =  

before, the NP-BCJR does require less complexity than the extended trellis versio

The complexity tradeoff given by the NP-BCJR is displayed in Figure 3.8, which 

plots complexity (as measured by the number of operations per bit) versus the SNR 

required to achieve a BER of 10-5.  Each curve has five points, one for each of five

iterations of the turbo equalizer.  In all curves, as the number of iterations increase, the 

required amount of SNR will decrease, but in decreasing amount of performance gain.  

There is a favorable performance-complexity trade-off for the NP-BCJR from Figure 3.8.  

If only one iteration of the extended-trellis algorithm is considered, a turbo equalizer 

based on the NP-BCJR algorithm can perform three iterations and require the same 

amount of complexity, while simultaneously achieving an SNR gain of 0.3 dB. 

The next set of results is from simulations with the same system model but with 

channel density 2.5 and using the EPR4 target.  Again, five turbo equalization iterations 

are assumed.  Only results for 2Lm =  are plotted.  Figure 3.9 shows 

+ 1( )f D−( )f D

( )n D

ˆ{ }ka{ }ka
Encoder Decoder( )c D Channel

Detector
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Figure 3.7.  BER performance of the classic BCJR, extended trellis 
BCJR, and the NP-BCJR for channel density 2.0, PR4 

NP

the 

-BCJR algorithm has a 1.4 dB gain over the classic BCJR algorithm that ignores the 

noise correlation, but it has a loss of 0.3 dB from the algorithm with the extended trellis.   

The value of the NP-BCJR is vividly illustrated in Figure 3.10, which plots the 

complexity versus required SNR to attain a BER of 10-5 for each turbo equalization 

iteration.   Here it can be seen that the NP-BCJR has a favorable performance-complexity 

trade-off.  While each iteration of the NP-BCJR algorithm performs slightly worse than 

extended-trellis algorithm, its low complexity allows for a larger number of turbo 

equalization iterations.  For example, consider two iterations of a turbo equalizer based 

on the extended-trellis algorithm.  From Figure 3.10, a turbo equalizer based on the 

NP-BCJR algorithm could perform three iterations and still be 15% less complex, while 

simultaneously achieving an SNR gain of 0.3 dB.   
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Figure 3.8.  Complexity comparison of the classic BCJR, extended trellis 
BCJR, and the NP-BCJR for channel density 2.0, PR4, BER=10-5 

As mentioned before, the NP-BCJR is a sub-optimal APP algorithm for addressing 

the colored noise problem on the magnetic recording channel.  However, owing to the 

complexity savings it offers as seen in these results, the NP-BCJR algorithm

attractive alternative to BCJR algorithms that extend the trellis size.  Compared to the 

 is an 

classic BCJR algorithm ignoring the noise correlation, the NP-BCJR has shown to have a 

marked improvement with minimal additional complexity. 
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Figure 3.9.  BER performance comparison of the classic BCJR, extended 
trellis BCJR, and the NP-BCJR for channel density 2.5, EPR4 

Figure 3.10.  Complexity comparison of the classic BCJR, extended trellis 
BCJR, and the NP-BCJR for channel density 2.5, EPR4, BER=10-5 
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CHAPTER 4 
BEYOND PRML: LINEAR-COMPLEXITY TURBO 
EQUALIZATION USING THE SOFT-FEEDBACK 

EQUALIZER 

4.1 Introduction 

PRML, the combination of partial response and trellis-based maximum-likelihood 

sequence detection, currently dominates the magnetic recording industry.  The receiver 

front-end includes an analog filter whose essential role is to shorten the impulse response 

of the underlying channel.  There are several drawbacks of the PRML approach that only 

grow worse as areal densities increase.  First, since the length of the underlying channel 

response is directly proportional to the areal density, high-density recording channels are 

not well-approximated by a short partial-response target. To compensate, a PRML system 

must either increase the length of the target, thus incurring a complexity penalty that 

grows exponentially with the target length, or it must suffer the significant performance 

penalty that arises from the resulting noise enhancement.  Second, beyond the problem of 

noise enhancement is the fact that the PR equalizer introduces correlation in the noise that 

makes the standard Viterbi algorithm suboptimal.  A third drawback of current-

generation PRML is its inherent hard-output nature, which precludes the possibility of 

soft error-control decoding as well as any form of turbo equalization. 
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This research presents an alternative equalization architecture for magnetic recording 

that addresses the main shortcomings of the PRML approach.  Specifically, this research 

proposes to abandon the PR strategy altogether, leaving the underlying physical impulse 

response in its natural form.  Trellis-based equalizers are abandoned in favor of simple 

equalization strategies based on nonlinear filters whose complexity grows only linearly in 

their length; and this research proposes an integration of this new structure into a turbo 

equalization framework. 

The main problem with the PRML approach is that, in an attempt to improve 

performance through the use of an optimal trellis-based equalizer, it relies on a grossly 

suboptimal PR equalizer at the front end, which ultimately undermines any performance 

gains that might arise from the trellis-based equalizer. In contrast, by leaving the channel 

in its natural form, the noise enhancement and noise coloring penalties of the PR 

equalizer can be avoided. 

To get around the complexity problem of working on the long, natural channel, this 

research proposes to use a non-trellis-based equalizer called the soft-feedback 

equalizer (SFE) [3,4] that is easy to implement, even for long impulse responses.  The 

SFE is a low-complexity alternative to the BCJR algorithm that is based on filtering and 

cancellation of residual ISI.  The SFE algorithm is of particular interest at this point as it 

currently outperforms previous linear-complexity alternatives [4].  Using this new 

method will provide improved performance and increase areal density while also keeping 

the complexity in check.   

The goal of this chapter is to demonstrate that as the technologies of linear-

complexity channel detectors have improved, it may prove more fruitful to forgo partial-
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response equalization to such methods as the SFE that outperforms PRML without noise 

enhancement.  The next section investigates the SFE algorithm and its use as a detector 

for magnetic recording.  Then a section on the new architecture’s performance results on 

the magnetic recording channel is given. 

4.2 The SFE Algorithm Alternative to Partial-Response 

Equalization 

The main motivation for this research is to investigate the possibility of linear-

complexity algorithms outperforming partial-response-based systems on the MRC.  There 

has been research done by others in studying the use of a multi-level decision-feedback 

equalizer (MDFE) as the channel detector as an alternative technique to PRML in an 

attempt to address some of its shortcomings [40,41].  This method is linear in complexity 

in regards to the channel length and may be a useful approach to the ISI problem as its 

BER performance is comparable to PRML at high recording densities [41].  However, in 

contrast to PRML, it is a known problem that the MDFE, like the general decision-

feedback equalizer (DFE), suffers from error propagation. 

The SFE does not tend to have the error propagation problem that the MDFE suffers 

from.  Because of this property and the SFE algorithm’s superior performance compared 

to other current linear-complexity alternatives, the SFE approach will be highlighted in 

this research.  Since the objective in this section is to analyze the performance of a linear-

complexity algorithm on the MRC compared with partial-response systems, only the 

necessary steps of the algorithm are outlined here.  The complete derivation of Lopes’ 

SFE algorithm can be located in [3].  
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4.2.1 The SFE Algorithm 

The SFE scheme is similar to several of the more commonly known interference-

cancellation (IC) schemes as seen in [42-46].  One important difference between the SFE 

and these previously reported interference cancellers is that the SFE combines the 

equalizer outputs and a priori information to form more reliable estimates of the residual 

postcursor ISI.  This is in contrast to the DFE strategy proposed in [43], which uses hard 

decisions on the equalizer output to estimate the postcursor ISI, and which does not 

combine the a priori information with the equalizer output before a decision is made.  A 

soft feedback system was also proposed in [46]; however, it does not use the a priori 

information to cancel precursor ISI. 

 An IC scheme using a priori information has the structure as shown in Figure 4.1.  

However, the SFE algorithm has two substantial differences from the IC scheme.  The 

first substantial difference is based on the fact that when computing  at time k , the 

previous equalizer outputs are known for time .  With this knowledge, the 

full LLR, , may be calculated, which provides a better estimate of  than the 

estimate  received from using the a priori information, , alone.  Thus, these better 

estimates of , 

kz

,k j j− > 0

k jL − ja

p
jλja�

ja ja , are used to cancel interference.  The second substantial difference 

deals with the calculation of the SFE filters themselves.  As in [43-46], Lopes’ SFE does 

not rely solely on trying to cancel all the interference as the filter coefficients are 

computed to minimize the MSE 2E k kz a⎡ ⎤−⎣ ⎦ .  However, using a Gaussian 

approximation for  yields complexity that is proportional to the number of coefficients p
jλ
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Figure 4.1.  Interference canceller with a priori information 

in the filters rather than the quadratic complexity that the MMSE structures produce in 

[43-46]. 

After these two changes, the resulting SFE structure is shown in Figure 4.2.  The 

previous filter g 1g 2g is now split into the two filters  and , which are strictly anti-causal 

and strictly causal respectively.  The thick line displayed in the feedback loop signifies 

the only actual structural change from Figure 4.1. 

1g 2g fIn calculating the filters , , and , first let the variables , , and  

represent the length of the filters respectively, where  and  is the 

length of the discrete channel, .  Now write the  channel convolution 

matrix, 

2N μ+1N N

1 2 1N N N= + + μ

(N N μ× +kh )

H , as 

1 0

1 0

1 0

  ...   0  0 ... 0

 0    ...  0 ... 0

 ... ...  ... ...   ...  ... ... ...

 0  ...  ... ...  ... 

h h h

h h h

h h h

μ μ

μ μ

μ μ

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H  . (4.1) 

The vector is the 0-th column of 0h H , where the columns of this matrix are enumerated 

by .  Additionally, let [
1 2
, ... , N N μ−=H h h ]+ −[ ]

11 1, ... , N−=H h h  and 
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Figure 4.2.  SFE equalizer structure 

[ ]
22 1, ... , N μ+=H h h .  With these vector and matrix definitions, the filters derived by 

Lopes [3] may now be written as 

12 2
1 2* * * 2

1 1 2 2 0
1 2E E

α α
σ

−⎛ ⎞⎟⎜= − − + ⎟⎜ ⎟⎜⎝ ⎠
f HH H H H H I h  (4.2) 

1 *
1

1E
α

= 1g H f  (4.3) 

2 *
2 2

2E
α

=g H f  . (4.4) 

The variables , , , and  can be expressed as , , 

, and , where 

1α 2α 1 1( )pα γ= Ψ 2 2( )pE γ= Ψ1E 2E

2 1( p eα γ= Ψ + )γ )2 2( p eE γ γ= Ψ + ( )[ ]1( ) E tanh /2uγΨ = , 

, and ( )[ ]2
2( ) E tanh /2uγΨ =( , 2 )u N γ γ∼ , .  Note that the  and  

are different from the  in 

( , 2 )u N γ γ∼ 1α 2α

(2.15)kα .  The scalar values  and  are proportional to the 

SNR of the equivalent channels that generate  and  respectively.  Unfortunately, 

there are no closed-form solutions for the functions  and .  However, these 

functions are well behaved and can be tabulated or computed by the equations 

eγpγ

kλp
kλ

1( )γΨ 2( )γΨ
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( )
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2

1
( ) tanh
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e d

γ
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πγ
− −

Ψ = t∫  . (4.6) 

The value for  can be assumed to be , where the equivalent variance 

of the AWGN on this channel is  [3].  The ML estimate of  is  

22/pγ =pγ wσ

2
wσ pγ

1
2

0

1
ˆ 1 1

L
p

p k
kL

γ λ
−

=
= + −∑  . (4.7) 

Similarly, the value for  can be assumed to be , where 22 /e vAγ = *
0A = f heγ σ  and 

the equivalent variance of the AWGN on this channel is , which can be found with the 

relation  [3].  The equation for  can now be rewritten to show 

2
vσ

2 (1 )v A Aσ = − eγ

0 02 /(1T T
eγ = − )f h f h  . (4.8) 

It should be pointed out that between equations (4.2) and (4.8),  is needed to 

compute 

eγ

f f, but  is needed to compute .  To find both simultaneously, these two 

equations should be calculated iteratively given an initial value for .  After a few inner 

iterations, generally around three, the value for  will converge so that . 

eγ

eγ

1i i
e eγ γ +=eγ

4.2.2 The SFE Algorithm and Turbo Equalization 

Recalling the turbo equalizer structure in Figure 2.13, an SFE-based turbo equalizer, 

which uses the SFE algorithm for the APP equalizer in this system, can be depicted in 

Figure 4.3.  For a quick review of a turbo equalizer structure, the equalizer calculates the 

LLR of the transmitted symbols, , based on the received sequence  and the a priori 

information, .  The extrinsic information passed to the equalizer from the APP ECC 

kL kr

p
kλ
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Figure 4.3.  Turbo equalizer using an SFE channel detector 

p
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decoder is treated by the equalizer as a priori information on the transmitted symbols.  

Passing this soft information to the equalizer allows this APP equalizer to benefit 

indirectly from ECC. 

When employing the SFE algorithm for use in a turbo equalizer, there are four 

important points to be noted.  First, the SFE filter coefficients depend on the quality of 

the a priori information and the LLR information.  Note that with each turbo iteration, 

the quality of this information changes.  Thus, the coefficients must be recalculated at 

each turbo equalization iteration. 

Secondly, it has been observed that when applying the SFE algorithm in a turbo 

equalization scheme, there are simplifications of the coefficient calculations that can be 

made without any loss in performance [3].  The iteration between equations (4.2) and 

(4.8) may be only necessary in the first turbo iteration.  In later iterations, the filter 
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+

_
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coefficient calculations may be computed by using the value of  from the previous 

iteration.  An updated value for  can then be calculated to pass on to the next iteration. 

eγ

eγ

Thirdly, in the first turbo equalization iteration using the general SFE algorithm, the 

variable  will have a value of , which will produce the values .  This 

will in turn yield an indeterminate  in equations 

1 1 0Eα = =pγ 0

(4.2) and (4.3)1 /Eα 1 .  To avoid this 

indeterminate form, the variables  and  may be artificially set as  and 

 for the initial iteration. 

1α 1 0α =1E

1 1E =

In the final important point in applying Lopes’ SFE in a turbo equalizer, it was 

remarked in [3] that the turbo equalizer may benefit by having values of  and  that 

are more pessimistic than those obtained from 

eγ pγ

(4.7) and (4.8).  It was suggested that 

performance may be improved if the values of  and  are estimated by using the 

SEM (simplified expectation-maximization) scalar channel estimator from [3]. 

eγ pγ

A feature of the SFE in a turbo equalizer structure is that it reduces in special cases to 

an MMSE linear equalizer (LE), an MMSE-DFE, or a matched filter (MF) with IC, 

depending on the quality of the a priori and extrinsic information.  Since there is no 

a priori information available to the equalizer in the first iteration of the turbo equalizer, 

the SFE is initially somewhere between an LE and a DFE, depending on the SNR and the 

severity of the ISI.  As iterations progress, the a priori information improves, and the 

SFE lies somewhere between the LE, DFE, and IC.  Eventually, after the a priori 

information has become very reliable, the SFE reduces to the IC scheme.  It is this 

adaptive nature of the SFE that has lent the algorithm its performance capabilities. 
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4.2.3 Alternative Equalizer Structure for the MRC 

This research presents an alternative equalization architecture for magnetic recording 

that addresses many of the shortcomings of the PRML approach. Specifically, this 

research proposes to abandon the PR strategy altogether, leaving the underlying physical 

impulse response in its natural form.  The noise enhancement and noise coloring penalties 

of the PR equalizer can thus be avoided.  Trellis-based equalizers are discarded in favor 

of the SFE algorithm.  In addition, this research proposes an integration of this new 

structure into a turbo equalization framework.  This new structure is given in Figure 4.4. 

Figure 4.4.  The turbo equalization SFE structure for the magnetic recording 
channel 
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4.3 Simulations 

In this section, results and analyses will be given on the merits of using a linear-

complexity equalization algorithm in place of the partial-response filter and trellis-based 

channel detector for a turbo equalization system on the magnetic recording channel.  The 

results attained are quite promising for the SFE system and can prove to be beneficial for 

advancement in the field of magnetic recording research.  Comparison results are given in 

terms of BER performance; however, these error-rate versus SNR curves do not illustrate 

the entire differences between the two systems.   Complexity is an important issue that is 

included in this discussion by means of figures showing complexity versus required SNR 

given a set error-rate. 

Simulations have been performed where the encoder is either a turbo code or an 

LDPC code.  When used in conjunction with either turbo codes or LDPC codes, the SFE 

system can give up to 20% increase to the areal density of the magnetic recording media 

given the same 10-5 BER requirement and SNR as the PR4-based system.  When 

incorporating the complexity factor in the performance results, the SFE system requires 

up to 2 dB less than the PR4-based system if the BER requirement and complexity are 

kept constant. 

4.3.1 System Model Comparisons 

The two main systems that are compared in this section will be referred to as the SFE 

system and the partial-response system.  Both of these systems employ turbo equalization 

with ECC that must have a decoder capable of using soft inputs and providing soft 

outputs.  The only differences between these two systems are the partial-response 
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equalization filter and the algorithm used in the channel detector.  In the partial-response 

system, it has the additional filter to shorten the channel impulse response seen by the 

detector; the channel detector for this system model can employ high-complexity 

methods such as the BCJR algorithm or SOVA.  The SFE system, depicted in Figure 4.4, 

does not have this partial-response equalization filter, and thus the channel impulse 

response appears longer for this channel detector. 

4.3.2 Turbo Code Results 

A Lorentzian channel with AWGN is considered.  The data is protected by a rate-8/9 

parallel-concatenated convolutional code with generator polynomial (23,31) with a sector 

length of 4096, and it is decoded using the BCJR algorithm.  The system structure 

implements a turbo equalization scheme.  The SNR that is referred to in this section is 

defined as  where  is the amount of energy in an isolated transition pulse as 

defined in section 

/iE N iEo

 2.2. 

Performance comparisons have been completed between the SFE system and the 

partial-response system.  In the case of the partial-response system, the channel is 

equalized to a PR target; both the PR4 and EPR4 targets are looked at.  The channel 

detector utilizes the BCJR algorithm in the PR-system.   

The first set of results is BER performance curves given in Figure 4.5 for these 

systems with channel density 3.0.  Five turbo equalization iterations are assumed.  The 

SFE system outperformed the partial-response system for both targets in this simulation 

setup.  At this high density, the EPR4 target outperforms the PR4 target, but the SFE 

turbo equalized system still outperforms the EPR4 turbo equalized system by more than 

2.0 dB. 
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Figure 4.5.  BER performance comparison of the PR system and SFE system 
with a rate-8/9 (23,31) turbo code, cD =3.0 

The plot in Figure 4.6 compares the performance of the two systems as the value of 

 varies.  Each point represents the required SNR to attain a BER of 10-5 at that 

particular density value.  These results show that for a system operating at around 

 = 10.25 dB and requiring the performance to be at BER=10-5, the SFE system 

will provide approximately 12.5% more space for data on a hard disk drive than the 

system using partial-response equalization.  Moreover, not only will the SFE system 

provide a larger hard disk drive given the same system parameters of a partial-response 

turbo-equalized system with a turbo code, but it attains this gain without increasing the 

complexity. 

cD

0/iE N

While these results are interesting and quite promising for the SFE system, the rest of 

this research work does not focus on this setup with a turbo code.  As mentioned 

previously, current turbo codes have a noise floor well above the target BER that is 
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Figure 4.6.  Comparison of the PR system and SFE system with a rate-8/9 
(23,31) turbo code with fixed BER=10-5 over a range of cD  

desired for the magnetic recording industry.  In addition, turbo decoders require a much 

higher complexity and thus higher power requirements than what the industry wants to 

tolerate.  For these reasons, the remainder of the work will operate with LDPC codes in 

its place. 

4.3.3 LDPC Results 

When working with the message-passing algorithm for LDPC decoding [35], one 

variable to set for this algorithm is the maximum number of inner iterations allowed for 

the decoder.  The activity of setting the number of inner iterations for the APP ECC 

decoder per outer turbo equalization iteration is referred to as scheduling.  Often for a 

turbo code used in turbo equalization, the scheduling sets the decoder at one inner 

iteration per outer turbo equalization iteration.  However, with LDPC decoders, it is more 

common to set the inner iterations for the decoder to be higher than one [47].  For the 
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purpose of this work, this section of research will have a schedule where , the 

maximum number of inner iterations per outer turbo iteration, is set to 5 for both systems.  

In general, the decoder may not need all 5 inner iterations for every turbo equalization 

iteration when it quickly converges to a correct codeword.  Typically, in the operating 

region where the BER is low, the total number of inner LDPC iterations for all turbo 

equalization iterations will not reach 10 on average. 

iN

The first set of results of the performance comparisons of the systems implementing 

an LDPC decoder is given in Figure 4.7 in the form of BER and SER comparisons.  In 

the setup for this experiment, the channel density  is fixed at 2.0 and five turbo 

equalization iterations is assumed.  As with the case with the turbo code, the SFE system 

cD

outperforms the PR system by about 2.0 dB.   

Figure 4.7.  BER and SER comparison of PR system and SFE system with a 
rate-8/9 (4095,3640) regular LDPC code, cD =2.0 
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The data in Figure 4.8 compares the performance of these systems as the value of 

var

same BER performance. 

c

Figure 4.8.  Comparison of PR system and SFE system with a rate-8/9 
(4095,3640) regular LDPC code with fixed BER=10-5 over a range of cD  

cD  

ies.  Each point represents the required SNR to attain a BER of 10-5 at that particular 

density value.  These results show that at 14 dB, the SFE can operate on a channel with 

about a 20% higher density than the EPR4-equalized channel while still providing the 

The figures given so far do show the performance gains of the SFE turbo equalized 

system over using partial-response; however, those figures do not demonstrate the 

omplexity costs of these systems.  To this aim, Figure 4.9 plots the complexity versus 

the amount of SNR required to attain a BER of 10-5 at channel density 2.5.  Each curve 

has five points, one for each of five iterations of the turbo equalizer.  Here it can be seen 

that the SFE has a gain of about 2 dB over the PR4-equalized channel without a large 
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Turbo equalization 
iteration 

Figure 4.9.  Complexity-performance comparison of the SFE system and 
the PR4-equalized system with a rate-8/9 (4095,3640) regular LDPC code 

with fixed BER=10-5 at channel density 2.5 

difference in complexity.  In this plot, complexity is defined as operations per 

information bit, where an operation is a multiply or an addition.  However, since most of 

the complexity for the SFE system is used in its filtering process, most of the operations 

for the SFE method can be efficiently computed with one-clock-cycle multiply-

accumulate (MAC) operations in DSP processors rather than straight-forward multiplies 

and adds.  In MAC operations, the multiplies are computed at the same time as the adds, 

thus some operations may seem hidden from an execution time perspective.  In [48], one 

MAC operation was implemented as efficiently as an instruction in a RISC CPU 

architecture.  Because an SFE architecture may gain more benefits of using MAC 

operations than a trellis-based architectures can, the SFE may require less actual power 

and operations than a BCJR system may.  
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4.3.4 Comparison with NPML 

State-of-the-art detectors in industry are implementing NPML.  For this reason, this 

sec FE in magnetic recording in comparison to 

NP

of the SFE 

is t

me

4.3.5 Results 

This research has proposed to forgo the use of partial-response equalization to a 

method such as the SFE that does not enhance the noise and can outperform PRML as an 

iter

 

tion looks at the performance of the S

ML.  NPML has an inherent hard-output nature, and so it is often paired with a Reed-

Solomon code [49].  This hard-output precludes any use of turbo equalization. 

A Lorentzian channel with AWGN is considered.  The data is protected by a Reed-

Solomon (255,239,17) code with 8-bit symbols.  For this setup, the soft output 

ransformed into hard decisions for the Reed-Solomon (RS) decoder.  Figure 4.10 

demonstrates the BER performance of the NPML algorithm with the length of the 

predictor filter, Lm , set at 4 against the SFE system, which uses no partial-response 

equalization, at channel density 2.0.  In these results, it is interesting to see that the SFE 

has nearly the sa  BER performance as the NPML algorithm for this setup, especially 

given that the RS code is not exploiting any soft information that the SFE can provide.    

ative detector.  In fact, the SFE algorithm can provide up to 20% more capacity than 

partial-response equalized detectors while maintaining low complexity costs.  From these 

results, it can be seen that the use of a linear-complexity algorithm is a promising 

alternative to partial-response for magnetic recording.   

 64



Figure 4.10.  BER Performance Comparison for data with RS 
(255,239,17) code at channel density 2.0 
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CHAPTER 5 
NOVEL SFE CALCULATIONS FOR THE MRC 

5.1 Introduction 

Areal density in magnetic recording has been increasing faster than Moore’s Law, in 

which the number of transistors per square inch on integrated circuits has doubled about 

every year [1].  This increased storage capacity trend is likely to continue into the near 

future.  These increases come from enhanced performance in all areas of the recording 

process.  As it becomes more difficult to increase densities through improvements in the 

media and heads, more consideration is given to advancements with signal processing 

[50].  To this end, the use of iterative detectors for the magnetic recording channel was 

introduced in [51].  Although these offer large performance gains over the conventional 

PRML systems, they have not been adopted for commercial use, possibly because of the 

performance versus complex tradeoff costs [50].  Power dissipation in hard disk drives is 

a large concern because of the problems faced by electrical costs, system cooling, system 

design, and reliability [17].  With these problems, the industry is challenged to find the 

optimal algorithm and system architecture that provides high performance with 

acceptable power requirements.   

For this goal of finding a system architecture that allows for superior performance 

with reasonable complexity costs, this research looks to the iterative SFE detector.  In the 
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previous chapter, recall that this system has an improved performance curve over the 

conventional PR-equalized system in a turbo equalization framework and has comparable 

complexity.  The complexity that was computed counted the instructions for the filtering 

processes as adds and multiplies operations, and not as more efficient MAC operations.  

With advances in low-power DSP chips and parallel processing, the SFE system becomes 

a viable candidate for real application to the magnetic recording channel.   

After scaling down the computation costs of the filtering processes by taking 

advantage of the repetitive operations, a fixed overhead cost associated with the SFE 

filter calculations becomes apparent.  It is this overhead that the research in this chapter is 

concerned with.  To this aim, this chapter will discuss the development of a novel, lower 

complexity method in determining updated SFE coefficients.  Channel detectors 

operating on the MRC are in an advantageous situation by the fact that the entire channel 

itself and all channel statistics are fully known at the receiver.  Because of these reasons, 

a large portion of the SFE algorithm can be performed offline and stored, thus reducing 

its complexity for this application even more.  An obvious benefit of reduced complexity 

is to allow for greater complexity in other parts of the system, perhaps in more turbo 

equalization iterations thus increasing the system performance.  It is also the hope of this 

research that this work will lead to a practical iterative detector that will prove useful to 

real applications in industry. 

5.2 The computation of  and  eγ pγ

In Lopes’ original SFE algorithm [3], if the channel impulse response and channel 

SNR is known,  and  respectively, then the filters can be completely determined by 0h 2σ
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the values  and  as demonstrated by equations (4.2)-(4.4)eγ pγ .  This section is concerned 

with lowering the computational costs of finding these two values, as they are a large part 

of the SFE algorithm.  A new method will be outlined that reduces complexity while it 

also prevents any degradation in performance to a significant degree. 

Since the SFE in this setting has the magnetic recording channel characteristics 

available, a complexity reduction can be obtained in the initial iteration.  Recall that 

during the first turbo iteration, the a priori information is generally not known, and 

therefore ; it is only the value of  that must be calculated at this stage.  During 

this initial phase, the SFE iterates about 3 times between 

eγ0pγ =

(4.2) and (4.8) to jointly 

determine the filter f  and the scalar value .  Each of these internal iterations involves 

a matrix inverse, which is a highly complex operation on the order of O( ), where N  

is the filter length.  As the ISI increases, generally the length of the filters should 

increase; so for channels with large amounts of ISI, such as a high capacity channel, three 

matrix inverses in the first turbo iteration may prove to be quite costly. 

eγ

3N

A quick observation can remove the need for these three matrix inverses for the first 

turbo iteration.  With the assumption that the channel characteristics are fully known and 

fixed, then the first turbo iteration of the SFE will always converge to the same value for 

, and thus it will always find the same filter f 1f, which will be designated eγ .  This 

vector can be calculated offline and stored for use in all initial turbo equalization 

iterations.  Similarly, the vectors 1g 2g and  may also be determined offline and stored.  

This method replaces 3 O( ) operations with simply the storage of one vector.   3N

Now the attention is turned to look at acquiring complexity savings after the initial 

turbo iteration.  In these stages, it was suggested in [3] to use its SEM estimator to 
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determine the values of  and .  However, the SEM estimator requires many 

operations per channel bit, and this research seeks a reduction in this overhead.  To 

calculate , which is  at turbo iteration i , the SEM estimator requires 3 

operations/bit to find  and 4 operations/bit to find , and then it will compute 

.  To calculate , the value of  at turbo iteration i , the SFE requires 

3 operations/bit to find  and 4 operations/bit to find , and then it will compute 

.  In all, this SEM estimator needs approximately 14 operations/bit 

every turbo iteration, other than the initial iteration, to find these two values.  After 

several turbo equalization iterations, the necessary complexity in these calculations can 

become costly. 

eγ pγ

,e iγ eγ

2
,v iσiA

2
, 2 /e i i v iAγ = ,p iγ pγ,σ

,σ

2
,p iσ,p iA

2
, ,2 /p i p i p iAγ =

Complexity costs can be reduced by forgoing the SEM scalar channel estimator in the 

computation of  and replacing it with the original estimates given by the general SFE 

in 

,p iγ

(4.7).  With an extensive performance review of the SFE on magnetic recording 

channel with turbo equalization, it has been observed that the SFE usually does not suffer 

significant amounts of performance loss by changing this step.  By eliminating the one 

SEM estimator, the algorithm now requires approximately two operations/bit every turbo 

iteration rather than seven for the calculation of this value.   

An interesting aspect about the value of  is that if the system is operating at an 

adequate SNR to provide a low BER, the calculated estimates of  do not vary by a 

large degree between sectors for any fixed iteration i .  To demonstrate this trait, Figure 

5.1 shows scatter plots of the  values versus the  values for turbo iterations two to 

five for a system where the channel density is 2.0 and the SNR is 8.5 dB.  The range for 

eγ

,e iγ

,e iγ ,p iγ
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Iteration 2 Iteration 3

Iteration 4 Iteration 5

Figure 5.1.  Scatter plots of eγ  versus pγ  for turbo iterations 2 through 5, cD =2.0, 
SNR = 8.5 dB 

,p iγ  is large, and the mean value for  does tend to increase as the number of turbo 

iterations increase, which is expected.  This is true for both methods of estimating the 

value for .  However, the range for  is much more limited in comparison, and this 

range tends to remain small even as the number of turbo iterations increase.  This 

phenomenon suggests that the value of  tends to be strongly dominated by the channel 

characteristics rather than by performance gain, which is the case for the large range of

,p iγ

pγ ,e iγ

eγ
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 values for .  This leads to the assumption that it may be reasonable to forgo any 

calculations for  and simply use a fixed value with the possibility of only a small 

performance loss. 

pγ

eγ

In the interest of reducing complexity, the value for  will remain a single fixed 

quantity  for all turbo equalization iterations.  This step is taken in the assumption 

that the SFE algorithm is sufficiently robust so that it would not be greatly affected by 

small variations in .  One method in determining this fixed value is to look at the mean 

of .  Figure 5.2 plots the average value of  for each turbo iteration i  for a range of 

channel densities.  The value of  appears anomalous compared to the other iterations 

and is perhaps too optimistic.  For this reason,  for a specific channel density and 

SNR could be determined by 

eγ

fixed
eγ

eγ

eγ ,e iγ

,1eγ

fixed
eγ

[ ,
2

1
1

P
fixed
e

i
E E
P

γ
=

]e iγ
⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎣ ⎦

∑  (5.1) 

where  is the total number of turbo equalization iterations.  However, it is simpler to 

use the  found from a few offline iterations between 

P

(4.2) and (4.8),1eγ  for the value 

.  In this method, no offline simulations are necessary to determine the mean SNR 

of the extrinsic information as needed for the method in 

fixed
eγ

(5.1).  It has been observed that 

there is not a significant performance difference between these two approximation 

methods for determining the fixed value for .   eγ

The result of all of these observations on  and  have given complexity 

reductions for the SFE.  Three matrix inverses in the initial turbo iteration have been 

replaced with a few offline calculations.  The filter 

eγ pγ

f  is now only a function of the 

 71



i

Figure 5.2.  Average ,e iγ  across sectors for each turbo iteration i  for varying 
channel densities at an SNR that gives BER=10-5 at the fifth turbo iteration 

variable  as the SFE will now be using the approximation .  Finally, all SEM 

calculations have been eliminated.   

fixed
eγpγ

5.3 The Matrix Inverse 

In the previous section, it was demonstrated not only how to reduce the calculations 

previously required for the  and  computations, but it furthermore established how 

to circumvent three matrix inverses in the first turbo equalization iteration.  However, 

there still remains one large matrix inversion for every iteration starting with the second 

turbo iteration.  This section outlines a strategy to calculate the filter 

eγ pγ

f  without the need 

for any matrix inversions as opposed to the original algorithm as evidenced in (4.2). 
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Recall that with the assumption that the values of  and  are set, the feed-forward 

filter 

0h 2σ

f  is solely a function of  and .  A brute force method to avoid the matrix 

inverse is to build a lookup table with pre-calculated values of 

eγ pγ

f  for a range of  and 

 values.  Unfortunately, this will lead to a substantial amount of storage required.  The 

size of this lookup table can be considerably decreased given the results of the previous 

section in that the value for  generally does not significantly vary between iterations or 

between sectors for the magnetic recording channel.  Given an initial channel setup, all 

possible vectors for 

eγ

pγ

eγ

f  are determined by only a very limited range of values for .  

Even with the use of , the brute force method may still be implausible because of 

the large range for all the possible  values.  The following sections present methods 

that may be more economical in terms of storage and computational tradeoff costs. 

eγ

fixed
eγ

pγ

5.3.1 Conjugate Gradient Method 

A popular iterative method in solving linear matrix equations is the conjugate 

gradient (CG) method [52].  This can be applied to solving for f  from (4.2), but by a 

less complex means than using a matrix inversion explicitly by Gaussian elimination.  

With a few iterations, some complexity savings may be gained with the CG method, but 

at a cost of approximating the resulting filter coefficients. 

0=Bf hThe CG method utilizes the fact that solving  is equivalent to minimizing 

the function 

0
1

( )
2
T TΩ = −f f Bf f h  . (5.2) 
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2 2
1 2* * *

1 1 2 2
1 2E E

α α
σ= − − +B HH H H H H 2IHere the matrix  is defined as such for 

convenience.  Because 1
0

−=f B h0( )∇Ω = −f Bf h , the unique minimizer of  is Ω .  

Starting with 0̂f f ( )Ω f, an initial guess for , the estimate for the minimum of  is 

improved by iterative steps.  The minimum is guaranteed to exist in general only if  is 

positive definite and symmetric.  In searching for this minimum, residuals  are used, 

which are computed by .  If the residual is nonzero, then there exists a 

positive number  such that 

B

kq

0
ˆ

k = −q h B kf

ˆ( )kˆ( )k kρΩ + < Ωf qρ f

k

.  At each CG iteration, the estimates 

are updated by a scalar multiple  of the search direction vector  as kpkρ

1
ˆ ˆ
k k kρ−= +f f p .  Iteration stops when the residual reaches zero, or if it reaches some 

other stop criterion since attempting to attain zero residual is unrealistic [52].  Based on 

the method presented in [53], the CG algorithm is demonstrated by the following 

pseudocode: 

0 0 0

0 0

1 1 1 1

1 1

1 1

1 1

1

0

 0

1

( , )/( ,

ˆ ˆ

( , )/( , )

ˆ ˆ
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k k k k k

k k k k

k k k k

k k k k k
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ρ
ρ

− − − −

− −

− −

− −

−

=
= −
=

≠
= +

=

= +
= −

=
= +

=

while

end

q h Bf
p q

q

q q p Bp

f f p
q q Bp

q q q q
p q p

f f

)
 (5.3) 
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where  denotes a dot product.  The CG algorithm requires only one O( ) matrix-

vector multiply per iteration.  If only a few iterations are used to estimate the filter, then 

this process will have a lower complex than the explicit method requiring an O( ) 

inverse.  

2N(, )⋅ ⋅

3N

0̂f One free parameter that must be chosen prior to execution is the initial guess for .  

One guess could perhaps be MFf , which is the MF in the traditional ISI canceller that the 

SFE algorithm reduces to when  [3].  However, when the actual value for  is 

small, this may not be an accurate guess and more CG iterations would be necessary.  For 

small  values, a better guess may be 

pγ → ∞ pγ

00,( fixed
p c

inv γ γ=B )h 1f, which is the filter pγ  from 

the initial turbo iteration that is calculated offline. 

The question now arises as to how many CG iterations should be allowed in this 

method.  The residuals are mutually orthogonal, thus there can be at most N  iterations 

until convergence.  For the application in this research, full convergence is not required, 

particularly since that may lead to a method that has an O( ) complexity just as in the 

explicit matrix inverse, and thus no computational savings are acquired.  However, it is 

desired to have a close approximation of the feed-forward filter, so more than one 

iteration may be necessary.  It has been observed that about 3 CG iterations is generally 

sufficient for the purposes of this research work, and this gives us a method with an 

O( ) complexity. 

3N

23N

To demonstrate the merit of the approximation, a few experiments were performed to 

compare the estimated filter from the CG method to the original SFE filter with all the 

full calculations.  The results of these experiments are shown in Table 5.1.  The SNR was 
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Table 5.1.  Comparison results of the CG-method filter f̂  to the original  
SFE filter f  

Density SNR pγ Error, iter. 1 Error, iter. 2 Error, iter. 3 
1.0 4.5 dB 0 2.17% 0.47% 0.14% 
1.0 4.5 dB 10 0.04% ≈ 0 ≈ 0 
2.5 11.5 dB 0 13.01% 4.49% 1.63% 
2.5 11.5 dB 10 0.61% 0.02% ≈ 0 

set to provide a BER of at least 10-5 using the original filter f .  Two different channel 

densities were surveyed, and at each density, a low value and a high value for  was 

investigated.  For three iterations of the CG algorithm, the approximated filter is 

compared to the original filter.  The approximation error is calculated as 

pγ

2

2
error % 100 SFE CG

SFE

−
= ⋅

f f
f

  . (5.4) 

0̂fMFfThe filter was used for the initial guess for .  As expected, the resulting error % is 

higher in cases with the low  value because of the poor initial guess. pγ

With the CG method, finding an approximated SFE feed-forward filter is a lower 

complexity operation than the original explicit inverse.  To find the filters 1g 2g and , the 

original method in equations (4.3) and (4.4) can remain.  While the CG method may be a 

viable option, the next section outlines a method that requires less computation than the 

CG algorithm. 

5.3.2 Incomplete Basis Method 

In the previous section, a method using the CG algorithm was implemented to 

approximate the feed-forward filter of the SFE.  This reduced the amount of overhead 
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required for the SFE.  In this section, a new method utilizing basis functions will be 

implemented, which will lead to an O( ) algorithm for finding the feed-forward filter. N

fIn this new method implemented in this research, the filter  is determined with 

basis functions instead of a matrix inverse and may be written as 

  . (5.5) 1 1 2 2 M Mν ν ν= + + +f φ φ φ"

Here the basis functions are denoted by , , , and the basis 

coefficients are composed of the .  Let F  be the set of all possible vectors for 

mφ 1,...m M= M N≤

fmν  

given a specific channel setup and the use of .   is a subset of  the vector space 

; however, it generally does not compose a subspace of  as it is not closed under 

vector addition and scalar multiplication.  In the context of vector spaces, the definition 

of a basis is a set of linearly independent vectors that span a vector space.  Consequently, 

basis functions of  cannot be discussed in the same manner as in vector space basis 

sets.  However, in general the term basis implies the ability to generate an object in an 

appropriate manner.  For the purposes here, the basis set for F  will be defined as a set of 

linearly independent vectors that can generate any vector in the subset F  under vector 

addition and scalar multiplication.   

fixed
eγ F

N\ N\

F

fAn important question for this basis method for finding  is how to determine the 

basis functions and how many must there be.  Revisiting the general CG algorithm, if the 

search directions  are linearly independent and k̂fkp  solves the problem 

0 1{ ,..., }
min ( )

kspan∈ +
Ω

f f p p
f  (5.6) 
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ffor , this leads to the conclusion that  in (5.5)1,2,...k =  may require up to  basis 

functions.  The underlying principle for this is that the vector 

N

N̂f  minimizes Ω  over  

and thus satisfies 

N\

0N̂ =Bf h . 

fIn place of using a full set of basis functions to precisely determine the filter , this 

research advocates an incomplete basis set that employs only a small number of 

functions.  While it is reasonable to assume that without a complete basis set that there 

will be an error between the original vector and the approximated vector, it has been 

observed that a small error in the feed-forward filter does not significantly affect the SFE 

performance.  Using only a handful of functions in the basis set is analogous to 

performing only a few steps of the CG algorithm.  The initial guess for 0̂f  from the CG 

method can be the first entry into the basis set.  However, in this case, the orthogonal 

search directions are predetermined.  This is a sensible method given that in magnetic 

recording the vector subset F  is known, stable, and can be determined offline. 

The immediate task is to determine which functions should be placed in this 

incomplete basis set while attempting to maintain a low error % between the original 

vector f  and the filters formed from this incomplete basis.  It would stand to reason that 

since the feed-forward filter f  is solely a function of , one source to be considered for 

these basis functions is the group of filters resulting from the extreme values of this 

variable.  As the number of turbo iteration increases, the value for  increases from 0 

to ∞ .  With this information, two of the vectors to be placed in the incomplete basis set 

can be derived from the extreme values for , namely 

pγ

pγ

1f MFf and pγ .  However, these 

two vectors in general are not orthogonal to each other, so the former vector’s projection 
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onto the latter vector can be subtracted off.  The orthonormal set of vectors for this 

incomplete basis with these two functions can now be written as 

1
1

1 2

1 1
2

1 1 2

( , )
( , )

MF MF

MF MF

=

−
=

−

fφ
f
f φ f φφ
f φ f φ

  . (5.7) 

The optimal values for the basis coefficients  are simply the scalar projections of 

the desired 

mν

f  onto each .  These can be calculated as mφ

  (5.8) 
1

2 2

( , )

( , )

ν

ν

=

=

f φ

f φ
1

2

However, this requires knowledge of the feed-forward filter, which is precisely the filter 

that this method is trying to approximate.  What can be done is that these basis 

coefficients, which are ultimately functions of , can be calculated offline for a range of 

 and stored with a relatively small lookup table.   

pγ

pγ

With the feed-forward filter determined in this manner, the calculations for the 

feedback filters can be rearranged to require fewer multiplications.  The feed-forward 

filter is written as  

  . (5.9) 1 1 2( ) ( )p pν γ ν γ= +f φ φ

The feedback filters may now be reorganized as 

( )1 *
1 1 1 1 2 2

1

1 1* *
1 1 1 2 1 2

1 1

E

E E

α
ν ν

α α
ν ν

= +

= +

g H φ φ

H φ H φ
   (5.10) 

( )2 *
2 2 1 1 2 2

2

2 2* *
1 2 1 2 2 2

2 2

E

E E

α
ν ν

α α
ν ν

= +

= +

g H φ φ

H φ H φ
  . (5.11) 

 79



With this arrangement, each of the original O( ) matrix-vector multiplies are replaced 

with a formulation that contains two matrix-vector multiplies, but these may now be 

computed offline and the only real-time calculations necessary are the scalar 

multiplications and vector additions which give this method an O( ) 

complexity. 

2N

1 23 3(N N μ+ + )

To better illuminate this incomplete basis method for finding the SFE feed-forward 

filter, Figure 5.3 shows the entire subset  for a specific channel setup with the channel 

density at 2.5 and SNR = 11.5 dB.  The x-axis is the index number of the filter 

coefficients, the y-axis is the value for , and the z-axis is the value of the filter 

coefficient.  At around = 20, the filter has converged to 

F

pγ

MFfpγ , so this value serves as 

the upper limit for the range of  required in a lookup table.  Using only the two basis 

functions from 

pγ

(5.7), the resulting lookup table found for the basis coefficients is 

displayed as a plot in Figure 5.4. 

fIn this method of determining the feed-forward filter  with imperfect basis vectors, 

the computational costs are greatly reduced by having the matrix inverse completely 

removed from every turbo equalization iteration.  This method is also less complex than 

the CG method in the previous section.  To demonstrate the merit of this approximation, 

a few experiments were performed to compare the estimated filter from the incomplete 

basis method to the original SFE filter.  The results of these experiments are shown in 

Table 5.2.  The SNR was set to provide a BER of at least 10-5.  Two different densities 

were surveyed, and at each density, a low value and a high value for  were 

investigated.  The approximation error is calculated as in equation 

pγ

(5.4).  Compare these 

results to those obtained in Table 5.1 for the CG method.  That method may require a few 
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O( ) iterations before the approximated filter attains a similarly low error as in this 

incomplete basis method, which is simply O( ). 

2N

N

It is possible that with a given channel setup, the error % in the filters encountered 

with this method may be larger than desired.  To compensate for this, extra basis 

functions may be added to the incomplete basis set.  It is best to choose a function that 

 

Table 5.2.  Comparison results of the incomplete basis method to the original  
SFE filter f  

 

Density SNR pγ  Error 
1.0 4.5 0 0 
1.0 4.5 10 0.02% 
2.5 11.5 0 0 
2.5 11.5 10 0.29% 
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 Coefficient Index of Filter f  

pγ  

Figure 5.3.  3-D plot of all possible feed-forward filters at the given 
channel setup with channel density 2.5 and SNR=11.5 dB 
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Figure 5.4.  Basis coefficient values as pγ  changes for channel density 
2.5 and SNR=11.5 dB 

pγ

1

2

ν
ν

 

reduces the % error the most, so for this objective,  should be the  generated 

from the value of  that produces  

3′φ F∈f

pγ
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B h φ φ

B h

)

22N N+

  . (5.12) 

The function  is then determined from  by subtracting off the projections of the 

other basis functions and normalizing as seen in 

3′φ3φ

(5.7).  The basis coefficient ν  is 

calculated in the same manner as in 

3

(5.8). 

With the complexity reductions taken from this entire chapter, the overhead of the 

SFE algorithm has fallen drastically.  In the first turbo iteration, the overhead has 

decreased from O(3 ) to essentially zero since the three SFE filters are found 

offline and are stored vectors.  For all subsequent iterations, the overhead has decreased 

3
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from O( ) to O( ).  This new SFE method 

can be summarize by the following pseudocode: 

3 22 14N N+ + 1 23( ) 2N N N Lμ+ + + +L

Offline: 
calculate and store f ,  &  used for the first 

turbo iteration 
1g 2g

calculate  from fixed
eγ (5.1) 

determine  and  based on 1φ 2φ (5.7) 
generate the lookup tables for the  as in (5.8)  mν

First SFE turbo iteration: 
fload the stored value for ,  &  1g 2g

All subsequent turbo iterations: 
calculate  from (4.7) pγ

fcalculate  from (5.9) 
calculate the feedback filters from (5.10) and (5.11) 

  

5.4 Results 

The previous sections have given rise to a lower complexity SFE method on the 

magnetic recording channel.  Though the merits of these complexity savings must still be 

demonstrated in their BER performance capabilities compared to the original SFE 

method.  Results will be given in this section to highlight this aspect. 

A Lorentzian channel with AWGN is considered.  The data is protected by a rate-8/9 

(4095,3640) regular LDPC code with column weight 3, and it is decoded using message 

passing and turbo equalization.  Figure 5.5 plots the BER and SER performance curves 

for the original SFE system and the SFE with basis functions at channel density 2.0, 

where channel density is in terms of .  Using the basis functions for filter 

approximations, the new system incurs a 0.03 dB performance loss. 

50 / cPW T
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Figure 5.5.  BER and SER performance curves for the original SFE and the 
SFE with basis functions at cD =2.0 

In Figure 5.6, the filter calculation overhead complexity versus required SNR to 

achieve BER=10-5 is plotted between the original SFE and the SFE implementing the 

basis functions at channel density 2.0.  Each curve has five points, one for each of five 

iterations of the turbo equalizer.  The overhead costs counted in this graph are the 

required filter calculations that are necessary before any of the equalizer’s filtering 

processes can begin.  This overhead lag needs to be kept at a minimum as it is a factor in 

runtime, silicon, and power requirements.  With this novel method of implementing an 

imperfect basis set for filter approximations, the overhead complexity has been 

drastically reduced with only a minor performance penalty.  These results should help 

open the door to that practical, iterative detector being sought in magnetic recording. 
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Figure 5.6.  Overhead complexity versus performance comparison of the 
original SFE system and the SFE with basis functions at cD =2.0 
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CHAPTER 6 
CONCLUSIONS 

6.1 Summary of the Contributions 

This dissertation has discussed the derivation, development, and evaluation of novel 

turbo equalization techniques that address the colored noise problem on the magnetic 

recording channel.  One contribution presented is the NP-BCJR, a soft-output detection 

strategy that mitigates colored noise in partial-response equalized channels.  This 

algorithm can be viewed as a combination of the traditional BCJR algorithm with the 

notion of survivors and noise prediction.  The NP-BCJR is a sub-optimal APP method to 

combat noise correlation without the need for extending the trellis size.  It also has an 

added advantage over current-generation NPML, which has an inherent hard-output 

nature, which precludes the possibility of soft error-control decoding as well as any form 

of turbo equalization; conversely, NP-BCJR is readily applicable to SISO purposes and 

iterative receivers.  Owing to the complexity savings it offers, the NP-BCJR algorithm is 

an attractive alternative to BCJR algorithms that extend the trellis size.  Compared to the 

classic BCJR algorithm ignoring the noise correlation, the NP-BCJR has shown to have a 

marked improvement with minimal additional complexity. 
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Another major contribution of this dissertation work is the presentation of an 

alternative equalization architecture for magnetic recording that addresses the 

shortcomings of the PRML approach, which dominates magnetic recording.  Specifically, 

trellis-based equalizers are abandoned, leaving the underlying physical impulse response 

in its natural form.  These trellis-based equalizers are replaced by simpler equalization 

strategies based on nonlinear filters whose complexity grows only linearly in their length.  

For this aim, this research has focused on the linear-complexity SFE.  In fact, it has been 

shown that the SFE algorithm can provide up to 20% more capacity than EPR4-equalized 

detectors while maintaining low complexity costs and maintaining a 10-5 BER 

performance.  From these results, it can be seen that the use of a linear-complexity 

algorithm is a promising alternative to partial-response for magnetic recording and may 

help push densities and hard disk drive capacities higher. 

This work has also shown how to reduce the SFE complexity specifically for a fixed 

and stable channel, such as in magnetic recording.  The original Lopes SFE had a certain 

amount of overhead cost in determining its filter coefficients.  This overhead lag needs to 

be kept at a minimum as it is a factor in runtime, silicon, and power requirements.   The 

research in this dissertation presented a novel method of implementing an imperfect basis 

set for the filter approximations.  With this novel method, the overhead complexity has 

been drastically reduced with only a minor performance penalty.  The original Lopes SFE 

required approximately O( ) and O( ) computations for the first and subsequent 

turbo iterations respectively.  In contrast, implementing the new method requires only 0 

and O( ) computations respectively.   

3N 2N

N
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The results of this work indicate that with using the new SFE method, it is possible to 

increase the information density on magnetic media without raising the complexity 

compared to trellis-based detectors.  The most important result of the research is the 

demonstration that partial-response equalization needs to be reconsidered because of the 

amount of noise enhancement problems it adds to the overall system, especially since it 

has been shown that the SFE system architecture outperforms the partial-response 

equalized system.  These results are important for practical application in the magnetic 

recording industry, which is seeking a practical, iterative detector and pushing towards a 

1 Tb/cm2 information storage goal. 

6.2 Proposed Future Work 

The channel model used throughout this research was based on longitudinal 

recording.  Yet, there is also another type of media magnetization known as 

perpendicular recording, which has become important to the recording industry as it 

expected to facilitate higher recording densities and thus progress in overall data storage 

capacity.  Since the growth in areal density for longitudinal recording is expected to lose 

pace as the superparamagnetic limit is approached, research has begun focusing on the 

perpendicular recording model. 

The ultimate goal of this dissertation is to lead to a fully realized novel architecture 

that will be found in a final product in a user’s personal computer.  So for the continued 

work for the practical application of this research for industry, many aspects of the read 

head’s digital and analog electronics must be considered.  One assumption made in this 

research was that there is perfect timing recovery.  The question remains open on how 
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robust the given algorithms are toward timing jitter problems.  Exploring this issue may 

lead to new algorithms to work conjunctively with the SFE filters to mitigate any timing 

problems.  

Another practical aspect of this future work is to extend the channel model to include 

nonlinear noise effects.  Sources of this noise include position jitter, width variation, 

transition noise, and electronics noise.  Studying these effects on the performance of the 

proposed system should result in an even more realistic detector that would be of interest 

to the recording industry. 

In previous chapters, complexity is an issue that has been brought up a number of 

times.  Complexity was spoken in terms of the number of required adds and multiplies.  

Yet not all operations are equivalent since the adds and multiplies in a MAC operation 

are more efficiently computed than those done in an arithmetic logic unit.  Complexity of 

operations in different modules of a processor are not comparable because of differing 

amounts of silicon required for the modules, various power requirements, and a different 

amount of required clock cycles to complete the operation.  Complexity is a very serious 

issue in computing; and for this end, silicon and power requirement comparisons should 

be certainly addressed. 
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