Georgia Institute of Technology School of Electrical and Computer Engineering

ECE6604 Personal & Mobile Communications

Final Exam

Fall 2017

Thursday December 14, 8:00am - 10:50am

- Attempt all questions.
- All questions are of equal value.
- Open book, open notes, exam.

1) Consider a linear time-invariant channel having the impulse response

$$g(t,\tau) = \delta(\tau) + 2\delta(\tau - \tau_1) + \delta(\tau - 2\tau_1) .$$

- a) 4 marks: Derive a closed-form expression for magnitude response of the channel |T(f,t)| and sketch showing all important points.
- **b) 2 marks:** Repeat part a) for the phase response of the channel $\angle T(f, t)$.
- c) 4 marks: What is the mean delay and rms delay spread of the channel.

2) The power delay profile for a WSSUS channel is given by

$$\psi_g(\tau) = A e^{-a\tau} u(\tau) + \frac{A}{2} e^{-a(\tau - \tau_d)} u(\tau - \tau_d) , \quad 0 \le \tau \le \infty$$

- a) 3 marks: Find the channel frequency correlation function.
- **b) 2 marks:** Find the total envelope power Ω_p .
- c) 2 marks: Find the mean delay μ_{τ} .
- d) 3 marks: Find the rms delay spread σ_{τ} .

3) Consider a cellular system that uses a 3-cell hexagonal reuse cluster. The base stations employ 120° wide-beam directional antennas and they all have the same antenna height and transmit with the same power level. The cell radii are assumed to be 5 km.

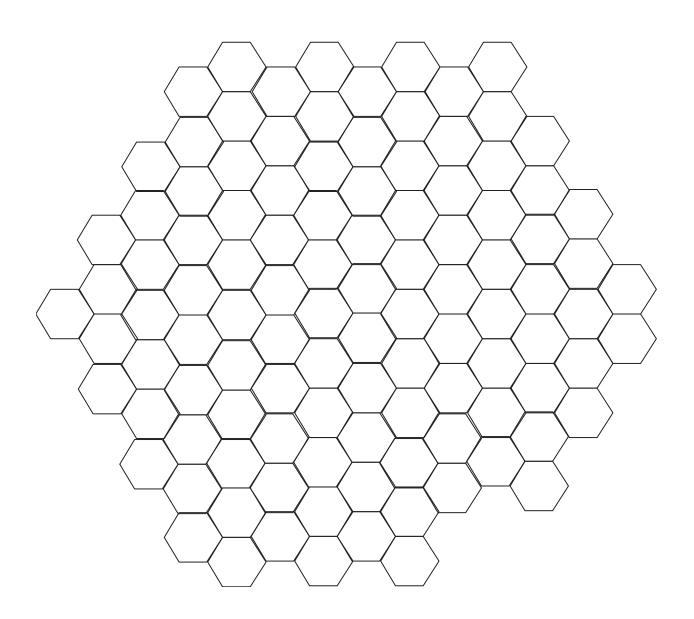
The propagation path loss follows the model

$$\mu_{\Omega_{p (dBm)}}(d) = \mu_{\Omega_{p (dBm)}}(d_{o}) - 10\beta \log_{10}(d/d_{o}) \quad (dBm)$$

where $\beta = 3.5$, and $\mu_{\Omega_p}(d_o) = 1$ microwatt at $d_o = 1$ km. Assume that each link experiences independent log-normal shadowing with a shadow standard deviation $\sigma_{\Omega} = 6$ dB.

Consider the forward (base-to-mobile) channel.

- a) 2 marks: Using the attached hex paper depict the worst-case co-channel interference situation on the forward channel, accounting only for the first tier of co-channel interferers.
- b) 6 marks: Using the Fenton-Wilkinson method, determine the probability density function of the total interfering power in decibel units, $I_{(dBm)}$, again accounting only for the first tier of co-channel interferers.
- c) 2 marks: Using the result in part b), determine the probability density function of the carrier-to-interference ratio in decibel units, $(C/I)_{(dB)}$.



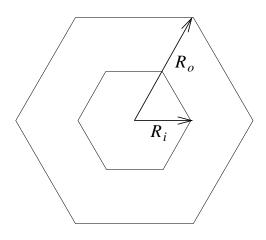
4) Consider coherent BPSK signaling on an AWGN channel where the channel gain, α , has the following probability density function

$$p_{\alpha}(x) = 0.2\delta(x) + 0.5\delta(x-1) + 0.3\delta(x-2)$$
.

Suppose that two-branch antenna diversity is used with *selective combining*. Assume that the diversity branches experience independent fading.

- a) 5 marks: Derive an expression for the probability density function of the bitenergy-to-noise ratio at the output of the selective combiner, $\gamma_s^{\rm b}$.
- b) 2 marks: Express the probability density function obtained in part a) as a function of the average received bit energy-to-noise ratio per diversity branch, $\bar{\gamma}_c$.
- c) 2 marks: Derive the probability of bit error a function of the average received bit energy-to-noise ratio per diversity branch $\bar{\gamma}_c$.
- d) 1 marks: What value does the probability of bit error approach as $\bar{\gamma}_c$ tends to infinity?

5) One method for improving the capacity of a cellular system is to employ a *two-channel bandwidth* scheme, where each hexagonal cell is divided into two concentric hexagons as shown below. The inner hexagon is serviced by half-rate channels, while the outer hexagon is serviced by full-rate channels. When a mobile station crosses the boundary between the inner and outer portions of a cell a handoff occurs.



It is known that the full-rate channels require C/I = 7 dB to maintain an acceptable radio link quality, while the half-rate channels require C/I = 10 dB. Assume a $\beta = 4$ path loss exponent and suppose that the effects of envelope fading and shadowing can be ignored. Consider the reverse link and suppose that there are 6 co-channel interferers at distance D from the serving base station. It follows that the received C/I when a mobile station is located at distance d from its serving base station is $C/I = (D/d)^4/6$.

- a) 2 marks: Find the required value of D/R_o so that the worst case C/I = 7 dB in the outer cell, where R_o is the radii of the outer cell.
- b) 2 marks: Find the required value of D/R_i so that the worst case C/I = 10 dB in the inner cell, where R_i is the radii of the inner cell.
- c) 3 marks: Use the values of D/R_i and D/R_o to determine the ratio of the inner and outer cell areas, A_i/A_o . Use the exact area of a hexagon in terms of its radius.
- d) 3 marks: Let N_i and N_o be the number of channels that are allocated to the inner and outer areas of each cell, and assume that the channels are assigned such that $N_i/N_o = A_i/A_o$. Determine the increase in cell capacity (as measured in channels per cell) over a conventional *one-channel bandwidth* system that uses only full-rate channels.

Fourier-transform pairs	Fourier Transform	$T \operatorname{sinc}(fT)$	$\frac{1}{2W} \operatorname{rect}\left(\frac{f}{2W}\right)$	$rac{1}{lpha+j2\pi f}$	$\frac{2a}{a^2+(2\pi f)^2}$	$\exp(-\pi f^{-})$ T $\operatorname{sinc}^2(fT)$	1	$\delta(f) = \exp(-j2\pi ft_0)$	$\delta(f-f_c) = \frac{1}{2} [\delta(f-f_c)+\delta(f_c+f_c)]$	$rac{1}{2j}\left[\delta(f-f_c)-\delta(f+f_c) ight]$	$\frac{1}{j\pi f}$	$-j \operatorname{sgn}(f)$.	$\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$	$rac{1}{T_0}\sum_{n=-\infty}^\infty\deltaigg(f-rac{n}{T_0}igg)$	
TABLE A6.3 Fourier	Time Function	$\operatorname{rect}\!\left(rac{t}{T} ight)$	\sqrt{t} sinc(2 Wt)	$\exp(-at)u(t), \qquad a > 0$	$\exp(-a t), a > 0$	$\left\{ \begin{aligned} \exp(-\pi t^{2}) \\ \left\{ 1 - \frac{ t }{T}, t < T \end{aligned} \right. \end{aligned}$	$\begin{cases} 0, & t \ge T\\ \delta(t) & \end{cases}$	$rac{1}{\delta(t-t_0)}$	$\exp(j2\pi f_c t)$ $\cos(2\pi f_c t)$	$\sin(2\pi f_c t)$	$\operatorname{sgn}(t)$	1 一 和	u(t)	$\sum_{i=-\infty}^{\infty} \delta(t-iT_0)$	Notes: $u(t) = unit step function$ $\delta(t) = delta function, or unit impulse rect(t) = rectangular function of unit duration centered on the origin sgn(t) = signum functionsinc(t) = sinc function$

TABLE A6.2 Summary of properties of the Fourier transform

the contradict of contraction and the second	
Property	Mathematical Description
1. Linearity	$ag_1(t) + bg_2(t) \rightleftharpoons aG_1(f) + bG_2(f)$ where a and b are constants
2. Time scaling	$g(at) \rightleftharpoons \frac{1}{ a } G\left(\frac{f}{a}\right)$ where a is a constant
3. Duality	If $g(t) \rightleftharpoons G(f)$, then $G(t) \rightleftharpoons g(-f)$
 Time shifting Frequency shifting 	$g(t - t_0) \rightleftharpoons G(f) \exp(-j2\pi f t_0)$ $\exp(j2\pi f_c t)g(t) \rightleftharpoons G(f - f_c)$
6. Area under g(t)	$\int_{-\infty}^{\infty} g(t) dt = G(0)$
7. Area under $G(f)$	$g(0) = \int_{-\infty}^{\infty} G(f) df$
8. Differentiation in the time domain	$\frac{d}{dt}g(t) \rightleftharpoons j2\pi fG(f)$
9. Integration in the time domain	$\int_{-\infty}^{t} g(\tau) \ d\tau \rightleftharpoons \frac{1}{j2\pi f} \ G(f) + \frac{G(0)}{2} \ \delta(f)$
10. Conjugate functions	If $g(t) \rightleftharpoons G(f)$, then $g^*(t) \rightleftharpoons G^*(-f)$
11. Multiplication in the time domain	$g_1(t)g_2(t) \rightleftharpoons \int_{-\infty}^{\infty} G_1(\lambda)G_2(f-\lambda) d\lambda$
12. Convolution in the time domain	$\int_{-\infty}^{\infty} g_1(\tau) g_2(t-\tau) \ d\tau \rightleftharpoons G_1(f) G_2(f)$

~
-
-
F
2
× .
2
0
00
1
-
-
-
0
5
5
~
2
0
-
5
a
<u>a</u>
ula
mula
rmula
ormula
ormula
Formula

Pythagorean relations

 $1 + \cot^2 \alpha = \csc^2 \alpha$ $1 + \tan^2 \alpha = \sec^2 \alpha$, $\sin^2 \alpha + \cos^2 \alpha = 1,$

Angle-sum and angle-difference relations

 $\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta = \cos^2 \beta - \sin^2 \alpha$ $\sin(\alpha + \beta)\sin(\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta = \cos^2 \beta - \cos^2 \alpha$ $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ $\tan \left(\alpha + \beta \right) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $1 + \tan \alpha \tan \beta$ $\cot(\alpha - \beta) = \frac{1}{\cot\beta - \cot\alpha}$ $\cot(\alpha + \beta) = \frac{\cos \beta}{\cot \beta + \cot \alpha}$ $\tan \alpha - \tan \beta$ U $\tan(\alpha - \beta)$

Double-angle relations

 $1 - \tan^2 \alpha$ $1 + \tan^2 \alpha$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha = 0$ $\cot 2\alpha = \frac{\cot^2 \alpha}{2} - 1$ $2 \cot \alpha$ $1 + \tan^2 \alpha$ $2 \tan \alpha$ $\sin 2\alpha = 2 \sin \alpha \cos \alpha = 1 - \tan^2 \alpha$ $2 \tan \alpha$ $\tan 2\alpha = -$

Multiple-angle relations

 $\sin 6\alpha = 32^{\circ}\cos^{5}\alpha \sin \alpha - 32\cos^{3}\alpha \sin \alpha + 6\cos \alpha \sin \alpha$ $\cos n\alpha = 2\cos(n-1)\alpha\cos\alpha - \cos(n-2)\alpha$ $\cos 6\alpha = 32 \cos^6 \alpha - 48 \cos^4 \alpha + 18 \cos^2 \alpha \sin n\alpha = 2\sin(n-1)\alpha\cos\alpha - \sin(n-2)\alpha$ $\cos 5\alpha = 16\cos^5\alpha - 20\cos^3\alpha + 5\cos\alpha$ $\sin 5\alpha = 5\sin \alpha - 20\sin^3 \alpha + 16\sin^5 \alpha$ $\sin 4\alpha = 4\sin\alpha\cos\alpha - 8\sin^3\alpha\cos\alpha$ $1 - \tan(n - 1) \alpha \tan \alpha$ $\cos 4\alpha = 8\cos^4 \alpha - 8\cos^2 \alpha + 1$ $\tan(n-1)\alpha + \tan \alpha$ $1 - 6 \tan^2 \alpha + \tan^4 \alpha$ $4 \tan \alpha - 4 \tan^3 \alpha$ $\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$ $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$ $3 \tan \alpha - \tan^3 \alpha$ $1 - 3 \tan^2 \alpha$ $\tan 3\alpha =$ $\tan n\alpha =$ $\tan 4\alpha =$

Formulas for Use in Trigonometry

 $= \cot \frac{1}{2}(\beta - \alpha)$ $\cot \alpha - \cot \beta = \frac{\sin(\beta - \alpha)}{\cdot}$ $\sin(\alpha - \beta)$ $\cos \alpha \cos \beta$ $\tan \alpha - \tan \beta =$ $\cos \alpha - \cos \beta$ $\sin \alpha + \sin \beta$ $\cos \alpha - \cos \beta = -2 \sin \frac{1}{2} (\alpha + \beta) \sin \frac{1}{2} (\alpha - \beta)$ $\cos \alpha + \cos \beta = 2\cos \frac{1}{2}(\alpha + \beta)\cos \frac{1}{2}(\alpha - \beta)$ $\sin \alpha - \sin \beta = 2\cos \frac{1}{2}(\alpha + \beta)\sin \frac{1}{2}(\alpha - \beta)$ $\sin \alpha + \sin \beta = 2 \sin \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta)$ $\sin \alpha \sin \beta = \frac{1}{2} \cos(\alpha - \beta) - \frac{1}{2} \cos(\alpha + \beta)$ $\cos \alpha \cos \beta = \frac{1}{2} \cos(\alpha - \beta) + \frac{1}{2} \cos(\alpha + \beta)$ $\sin \alpha \cos \beta = \frac{1}{2} \sin(\alpha + \beta) + \frac{1}{2} \sin(\alpha - \beta)$ $\cos \alpha \sin \beta = \frac{1}{2} \sin(\alpha + \beta) - \frac{1}{2} \sin(\alpha - \beta)$ Function-sum and function-difference relations $\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta},$ $\tan \frac{1}{2}(\alpha - \beta)$ $\tan \frac{1}{2}(\alpha + \beta)$ $\sin(\alpha + \beta)$ $\cot \alpha + \cot \beta = \frac{1}{\sin \alpha \sin \beta}$ Function-product relations H $\sin \alpha + \sin \beta$ $\sin \alpha - \sin \beta$

Half-angle relations

 $\frac{1}{\cos\alpha + \cos\beta} = \tan\frac{1}{2}(\alpha - \beta)$

 $\sin \alpha - \sin \beta$

 $\frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = \tan \frac{1}{2}(\alpha + \beta),$

$+$ $\sqrt{1 + \cos \alpha}$	-V 2 sin.α	$1 + \cos \alpha$	sin a	$1 - \cos \alpha$	1	
cos — =	2 :05 0	sin a	$\frac{1 + \cos \alpha}{2} =$	sin a		
$\sqrt{1-\cos\alpha}$	$\sqrt{1-\cos\alpha}$	$\sqrt{1 + \cos \alpha}$	$\sqrt{1 + \cos \alpha} =$	$\sqrt{1-\cos \alpha}$		
י # שי	α 	2 1	- = 	2	7	
sin	tan	Iall	cot			

Power relations

 $\cos^3 \alpha = \frac{1}{4}(3\cos \alpha + \cos 3\alpha)$ $\sin^3 \alpha = \frac{1}{4} (3 \sin \alpha - \sin 3\alpha)$ $1 + \cos 2\alpha$ $-\cos 2\alpha$ $\cot^2 \alpha = \sin^4 \alpha = \frac{1}{8}(3 - 4\cos 2\alpha + \cos 4\alpha)$ $\cos^4 \alpha = \frac{1}{8}(3 + 4\cos 2\alpha + \cos 4\alpha)$ $\cos^2 \alpha = \frac{1}{2}(1 + \cos 2\alpha),$ $\sin^2 \alpha = \frac{1}{2}(1 - \cos 2\alpha),$ $\frac{1-\cos 2\alpha}{1+\cos 2\alpha},$ $\tan^2 \alpha = \frac{1}{2}$

Exponential relations (α in radians), Euler's equation

 $\cos \alpha = \frac{e^{l\alpha}}{l\alpha} + e^{-l\alpha}$ $e^{i\alpha} = \cos \alpha + i \sin \alpha, \quad i = \sqrt{-1}$ $e^{i\alpha} - e^{-i\alpha}$ $\sin \alpha =$ $\tan \alpha =$