Georgia Institute of Technology School of Electrical and Computer Engineering

ECE6604 Personal \& Mobile Communications

Final Exam

Fall 2017

Thursday December 14, 8:00am - 10:50am

- Attempt all questions.
- All questions are of equal value.
- Open book, open notes, exam.

1) Consider a linear time-invariant channel having the impulse response

$$
g(t, \tau)=\delta(\tau)+2 \delta\left(\tau-\tau_{1}\right)+\delta\left(\tau-2 \tau_{1}\right)
$$

a) 4 marks: Derive a closed-form expression for magnitude response of the channel $|T(f, t)|$ and sketch showing all important points.
b) 2 marks: Repeat part a) for the phase response of the channel $\angle T(f, t)$.
c) 4 marks: What is the mean delay and rms delay spread of the channel.

Extra sheet

Extra sheet
2) The power delay profile for a WSSUS channel is given by

$$
\psi_{g}(\tau)=A e^{-a \tau} u(\tau)+\frac{A}{2} e^{-a\left(\tau-\tau_{d}\right)} u\left(\tau-\tau_{d}\right), \quad 0 \leq \tau \leq \infty
$$

a) $\mathbf{3}$ marks: Find the channel frequency correlation function.
b) 2 marks: Find the total envelope power Ω_{p}.
c) 2 marks: Find the mean delay μ_{τ}.
d) $\mathbf{3}$ marks: Find the rms delay spread σ_{τ}.

Extra sheet

Extra sheet
3) Consider a cellular system that uses a 3 -cell hexagonal reuse cluster. The base stations employ 120° wide-beam directional antennas and they all have the same antenna height and transmit with the same power level. The cell radii are assumed to be 5 km .
The propagation path loss follows the model

$$
\mu_{\Omega_{p(\mathrm{dBm})}}(d)=\mu_{\Omega_{p}(\mathrm{dBm})}\left(d_{o}\right)-10 \beta \log _{10}\left(d / d_{o}\right) \quad(\mathrm{dBm})
$$

where $\beta=3.5$, and $\mu_{\Omega_{p}}\left(d_{o}\right)=1$ microwatt at $d_{o}=1 \mathrm{~km}$. Assume that each link experiences independent log-normal shadowing with a shadow standard deviation $\sigma_{\Omega}=6 \mathrm{~dB}$.

Consider the forward (base-to-mobile) channel.
a) 2 marks: Using the attached hex paper depict the worst-case co-channel interference situation on the forward channel, accounting only for the first tier of co-channel interferers.
b) 6 marks: Using the Fenton-Wilkinson method, determine the probability density function of the total interfering power in decibel units, $I_{(\mathrm{dBm})}$, again accounting only for the first tier of co-channel interferers.
c) 2 marks: Using the result in part b), determine the probability density function of the carrier-to-interference ratio in decibel units, $(C / I)_{(\mathrm{dB})}$.

Extra sheet

Extra sheet
4) Consider coherent BPSK signaling on an AWGN channel where the channel gain, α, has the following probability density function

$$
p_{\alpha}(x)=0.2 \delta(x)+0.5 \delta(x-1)+0.3 \delta(x-2) .
$$

Suppose that two-branch antenna diversity is used with selective combining. Assume that the diversity branches experience independent fading.
a) 5 marks: Derive an expression for the probability density function of the bit-energy-to-noise ratio at the output of the selective combiner, γ_{s}^{b}.
b) $\mathbf{2}$ marks: Express the probability density function obtained in part a) as a function of the average received bit energy-to-noise ratio per diversity branch, $\bar{\gamma}_{c}$.
c) $\mathbf{2}$ marks: Derive the probability of bit error a function of the average received bit energy-to-noise ratio per diversity branch $\bar{\gamma}_{c}$.
d) 1 marks: What value does the probability of bit error approach as $\bar{\gamma}_{c}$ tends to infinity?

Extra sheet

Extra sheet
5) One method for improving the capacity of a cellular system is to employ a twochannel bandwidth scheme, where each hexagonal cell is divided into two concentric hexagons as shown below. The inner hexagon is serviced by half-rate channels, while the outer hexagon is serviced by full-rate channels. When a mobile station crosses the boundary between the inner and outer portions of a cell a handoff occurs.

It is known that the full-rate channels require $C / I=7 \mathrm{~dB}$ to maintain an acceptable radio link quality, while the half-rate channels require $C / I=10 \mathrm{~dB}$.
Assume a $\beta=4$ path loss exponent and suppose that the effects of envelope fading and shadowing can be ignored. Consider the reverse link and suppose that there are 6 co-channel interferers at distance D from the serving base station. It follows that the received C / I when a mobile station is located at distance d from its serving base station is $C / I=(D / d)^{4} / 6$.
a) 2 marks: Find the required value of D / R_{o} so that the worst case $C / I=$ 7 dB in the outer cell, where R_{o} is the radii of the outer cell.
b) 2 marks: Find the required value of D / R_{i} so that the worst case $C / I=$ 10 dB in the inner cell, where R_{i} is the radii of the inner cell.
c) 3 marks: Use the values of D / R_{i} and D / R_{o} to determine the ratio of the inner and outer cell areas, A_{i} / A_{o}. Use the exact area of a hexagon in terms of its radius.
d) 3 marks: Let N_{i} and N_{o} be the number of channels that are allocated to the inner and outer areas of each cell, and assume that the channels are assigned such that $N_{i} / N_{o}=A_{i} / A_{o}$. Determine the increase in cell capacity (as measured in channels per cell) over a conventional one-channel bandwidth system that uses only full-rate channels.

Extra sheet

Extra sheet
TABLE A6. 2 Summary of properties of the Fourier transform

Property	Mathematical Description
1. Linearity	$a g_{1}(t)+b g_{2}(t) \rightleftharpoons a G_{1}(f)+b G_{2}(f)$ where a and b are constants
2. Time scaling	$g(a t) \rightleftharpoons \frac{1}{\|a\|} G\left(\frac{f}{a}\right)$ where a is a constant
3. Duality	$\begin{array}{ll} \text { If } & g(t) \rightleftharpoons G(f), \\ \text { then } & G(t) \rightleftharpoons g(-f) \end{array}$
4. Time shifting	$g\left(t-t_{0}\right) \rightleftharpoons G(f) \exp \left(-j 2 \pi f t_{0}\right)$
5. Frequency shifting	$\exp \left(j 2 \pi f_{c} t\right) g(t) \rightleftharpoons G\left(f-f_{c}\right)$
6. Area under $g(t)$	$\int_{-\infty}^{\infty} g(t) d t=G(0)$
7. Area under $G(f)$	$g(0)=\int_{-\infty}^{\infty} G(f) d f$
8. Differentiation in the time domain	$\frac{d}{d t} g(t) \rightleftharpoons j 2 \pi f G(f)$
9. Integration in the time domain	$\int_{-\infty}^{t} g(\tau) d \tau \rightleftharpoons \frac{1}{j 2 \pi f} G(f)+\frac{G(0)}{2} \delta(f)$
10. Conjugate functions	$\begin{array}{ll} \text { If } & g(t) \rightleftharpoons G(f), \\ \text { then } & g^{*}(t) \rightleftharpoons G^{*}(-f) \end{array}$
11. Multiplication in the time domain	$g_{1}(t) g_{2}(t) \rightleftharpoons \int_{-\infty}^{\infty} G_{1}(\lambda) G_{2}(f-\lambda) d \lambda$
12. Convolution in the time domain	$\int_{-\infty}^{\infty} g_{1}(\tau) g_{2}(t-\tau) d \tau \rightleftharpoons G_{1}(f) G_{2}(f)$

Table A6.3 Fourier-transform pairs

Pythagorean relations
$1+\cot ^{2} \alpha=\csc ^{2} \alpha$
$1+\tan ^{2} \alpha=\sec ^{2} \alpha$, Angle-sum and angle-difference relations $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$ $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$ $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$ $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$ $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan }$ $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$
 $\cot (\alpha-\beta)=\frac{\cot \beta+\cot \alpha}{\cot \beta \cot \alpha+1}$ $\cot (\alpha-\beta)=\frac{\cot \beta-\cot \alpha}{\cos }$
$\sin (\alpha+\beta) \sin (\alpha-\beta)=\sin ^{2} \alpha-\sin ^{2} \beta=\cos ^{2} \beta-\cos ^{2} \alpha$

Double-angle relations

$\sin 2 \alpha=2 \sin \alpha \cos \alpha=\frac{2 \tan \alpha}{1+\tan ^{2} \alpha}$

Multiple-angle relations
$\sin 3 \alpha=3 \sin \alpha-4 \sin ^{3} \alpha$
$\sin 4 \alpha=4 \sin \alpha \cos \alpha-8 \sin ^{3} \alpha \cos \alpha$
$\cos 4 \alpha=8 \cos ^{4} \alpha-8 \cos ^{2} \alpha+1$
$\sin 5 \alpha=5 \sin \alpha-20 \sin \alpha+16 \sin \alpha$
$\sin 6 \alpha=32 \cos ^{5} \alpha \sin \alpha-32 \cos ^{3} \alpha \sin \alpha+6$
$=32 \cos ^{6} \alpha-48 \cos ^{4} \alpha+18 \cos ^{2} \alpha$
$\sin n \alpha=2 \sin (n-1) \alpha \cos \alpha-\cos (n-2) \alpha$
$\cos n \alpha=2 \cos (n-1) \alpha \cos$
$\tan 3 \alpha=\frac{3 \tan \alpha-\tan ^{3} \alpha}{1-3 \tan ^{2} \alpha}$
$\tan 4 \alpha=\frac{4 \tan \alpha-4 \tan ^{3} \alpha}{1-6 \tan \alpha+\tan ^{4}}$
$\begin{aligned} & 1-6 \tan ^{2} \alpha+\tan ^{4} \alpha \\ \tan n \alpha= & \frac{\tan (n-1) \alpha+\tan \alpha}{1-\tan (n-1) \alpha \tan \alpha}\end{aligned}$
$\tan n \alpha=\frac{1-\tan (n-1) \alpha \tan \alpha}{1-1}$

