

5

ol

t

First order system (top plot) has general form $H(s) = \frac{k}{s+a}$. The time-constant is the time that the response is equal to $2(1-e^{-1}) = 63\%$ of 2 = 1.26, so $\tau \approx 2$ sec. $a=1/\tau = 0.5$. The steady-state value (due to a unit step input) is H(0) = k/a = k/0.5. From the plot 2 = k/0.5 so k = 1.

Final answer: $H(s) = \frac{1}{s + 0.5}$

Second order system (bottom plot) has general form $H(s) = \frac{k}{s^2 + 2\zeta \omega_n s + \omega_n^2}$ or

 $H(s) = \frac{k}{(s + \zeta \omega_n)^2 + {\omega_d}^2}$ where the real part of the pole is at $-\zeta \omega_n$ is the real part of the pole (it governs the envelope of decay) and ω_d is the imaginary part of the pole (it governs the frequency of the oscillations, $\omega_d = 2\pi/T$).

From the plot, $T \approx 12$ sec, so $\omega_d = 2\pi/13$. The time constant of the envelope of decay is about $\tau \approx 7$ sec, so $\zeta \omega_n = 1/7$. k is found from the steady-state value $1 = H(0) = \frac{k}{(\zeta \omega_n)^2 + \omega_d^2}$. Solving fo k yields $k \approx 0.254$.

Final answer: $H(s) = \frac{0.254}{s^2 + 0.286s + 0.254}$

c)

4. a)

$$y(t) = k_1 + k_2 e^{-4t}$$
, $t \ge 0$
(note, k, is found from strady-state = $H(0) = \frac{1}{4}$)
b) $y(t) = k_1 + k_2 e^{-10t}$, $t \ge 0$
c) $y(t) = k_1 + k_2 e^{2t}$, $t \ge 0$
d) $y(t) = k_1 + k_2 e^{-2t} \cos(5\pi t + \theta)$, $t \ge 0$
e) $y(t) = k_1 + k_2 e^{-3t} \cos(5\pi t + \theta)$, $t \ge 0$
f) $y(t) = k_1 + k_2 e^{-3t} + k_3 e^{-3t}$, $t \ge 0$
g) $y(t) = k_1 + k_2 e^{-3t} \cos(5\pi t + \theta)$, $t \ge 0$

in all cases, $k_1 = H(0)$

.

5.

$$A\cos(\omega t + \theta)u(t) \longrightarrow y_{t}(t) + y_{ss}(t)$$

$$(t) = y_{t}(t) + y_{ss}(t)$$

$$(t) = y_{t}(t) = y_{ss}(t)$$

$$(t) = y_{t}(t) = y_{ss}(t) = y_{ss}(t)$$

$$(t) = y_{t}(t) = y_{t}(t) = y_{t}(t)$$

$$H(t) =$$

