1. a) $H(s)=\frac{10}{s+2}$

$$
y_{s s}=\lim _{s \rightarrow 0} H(s)=5 \quad, \tau=1 / 2 \mathrm{sec}
$$

b)

$$
\begin{aligned}
& H(s)=\frac{0.2}{s+0.2} \\
& y_{s s}=1, \tau=1 / 0.2=5 \mathrm{sec} \\
& \frac{1+}{5}
\end{aligned}
$$

2.

First order system (top plot) has general form $\mathrm{H}(\mathrm{s})=\frac{\mathrm{k}}{\mathrm{s}+\mathrm{a}}$. The time-constant is the time that the response is equal to $2\left(1-\mathrm{e}^{-1}\right)=63 \%$ of $2=1.26$, so $\tau \approx 2 \mathrm{sec}$. $\mathrm{a}=1 / \tau=0.5$. The steady-state value (due to a unit step input) is $\mathrm{H}(0)=\mathrm{k} / \mathrm{a}=\mathrm{k} / 0.5$. From the plot $2=\mathrm{k} / 0.5$ so $\mathrm{k}=1$.

Final answer: $\mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}+0.5}$
Second order system (bottom plot) has general form $\mathrm{H}(\mathrm{s})=\frac{\mathrm{k}}{\mathrm{s}^{2}+2 \zeta \omega_{\mathrm{n}} \mathrm{s}+\omega_{\mathrm{n}}{ }^{2}}$ or
$\mathrm{H}(\mathrm{s})=\frac{\mathrm{k}}{\left(\mathrm{s}+\zeta \omega_{\mathrm{n}}\right)^{2}+\omega_{\mathrm{d}}{ }^{2}}$ where the real part of the pole is at $-\zeta \omega_{\mathrm{n}}$ is the real part of the pole (it governs the envelope of decay) and ω_{d} is the imaginary part of the pole (it governs the frequency of the oscillations, $\omega_{\mathrm{d}}=2 \pi / \mathrm{T}$).

From the plot, $\mathrm{T} \approx 12 \mathrm{sec}$, so $\omega_{\mathrm{d}}=2 \pi / 13$. The time constant of the envelope of decay is about $\tau \approx 7 \mathrm{sec}$, so $\zeta \omega_{\mathrm{n}}=1 / 7$. k is found from the steady-state value $1=\mathrm{H}(0)=\frac{\mathrm{k}}{\left(\zeta \omega_{\mathrm{n}}\right)^{2}+\omega_{\mathrm{d}}{ }^{2}}$. Solving fo k yields $\mathrm{k} \approx$ 0.254 .

Final answer: $\mathrm{H}(\mathrm{s})=\frac{0.254}{\mathrm{~s}^{2}+0.286 \mathrm{~s}+0.254}$
c)

$$
H(s)=\frac{k}{\left.s^{2}+2\right\} w_{n} s+w_{n}^{2}}
$$

$$
\omega_{2}=\frac{2 \pi}{T}=9.7
$$

$$
\begin{gathered}
\tau \approx .35 \mathrm{sec} \Rightarrow \frac{1}{j \omega_{n}}=\tau \Rightarrow 3 \omega_{n}=2.9 \\
H(s)=\frac{K}{(s+2.9)^{2}+9.7^{2}}, H(0)=0.2 \Rightarrow K=20.5
\end{gathered}
$$

$H(s)=\frac{20.5}{(s+2.9)^{2}+9.7^{2}}$ from plot. Actual is $H(s)=\frac{22}{(s+3)^{2}+10^{2}}$
3. a) $H(s)=\frac{1}{s+4}$

b) $H(s)=\frac{1}{s+10}$
c) $H(s)=\frac{1}{5-2}$

d)

$$
\begin{array}{ll|l}
H(s)=\frac{1}{s^{2}+4 s+16}=\frac{1}{(s+2)^{2}+12} & \times & 1 m \\
\sqrt{12}=3.46 \\
\omega_{n}^{2}=16 \Rightarrow \omega_{n}=4 & 2 & \\
2 J_{n}=4 \Rightarrow 5=0.5 & \times & \mathrm{Re}
\end{array}
$$

$$
\text { e) } H(s)=\frac{1}{s^{2}+4 s+3}=\frac{1}{(s+1)(s+3)}
$$

$$
f) H(s)=\frac{1}{s^{2}+4 s+2}=\frac{1}{(s+3.41)(s+0.586)}
$$

$$
\begin{aligned}
\text { g) } H(s) & =\frac{1}{s^{2}-4 s+16}, & \begin{array}{ll}
& w_{n}=4 \\
& =\frac{1}{(s-2)^{2}+12}
\end{array} & 50 f=-0.5
\end{aligned}
$$

4.a)

$$
y(t)=k_{1}+k_{2} e^{-4 t}, t \geq 0
$$

(note, k, is found from steady-state $=H(0)=\frac{1}{4}$)
b) $y(t)=k_{1}+k_{2} e^{-10 t}, t \geqslant 0$
c) $y(t)=k_{1}+k_{2} e^{2 t}, t \geq 0$
d) $y(t)=k_{1}+k_{2} e^{-2 t} \cos (\sqrt{12} t+\theta), t \geq 0$
e) $y(t)=k_{1}+k_{2} e^{-t}-k_{3} e^{-3 t}, t \geq 0$
f) $y(t)=k_{1}+k_{2} e^{-3.4 t}+k_{3} e^{-0.586 t}, t \geq 0$
$g) y(t)=k_{1}+k_{2} e^{2 t} \cos (\sqrt{12} t+\theta), t \geq 0$
in all cases, $k_{1}=H(0)$

5

$$
\begin{aligned}
& A \cos (\omega t+\theta) u(t)+y_{t}(t)+y_{s s}(t) \\
& \text { let } x(t)=2 \cos \left(4 t-20^{\circ}\right) u(t)
\end{aligned}
$$

a) $H(s)=\frac{1}{s+y}$ so $H(\omega)=\frac{1}{j \omega+4}$

$$
\begin{aligned}
& H(4)=\frac{1}{4 y+4}=0.176 e^{-45^{\circ} j} \\
& \begin{aligned}
y_{s s}(t) & =0.352 \cos \left(4 t-20^{\circ}-45^{\circ}\right) \\
& =0.352 \cos \left(4 t-65^{\circ}\right)
\end{aligned} \\
& \begin{aligned}
H(s) & =\frac{1}{s^{2}+4 s+16}, H(\omega)=\frac{1}{\left(16-\omega^{2}\right)+4 / j \omega} \\
H(4)= & \frac{1}{16 j}=0.0625 e^{-j 90^{\circ}}
\end{aligned} \\
& y_{s s}(t)=0.125 \cos \left(4 t-110^{\circ}\right)
\end{aligned}
$$

f)

$$
\begin{aligned}
& H(s)=\frac{1}{s^{2}+4 s+2}, H(\omega)=\frac{1}{\left(2-\omega^{2}\right)+4 j \omega} \\
& H(4)=\frac{1}{-14+16 j}=0.047 e^{-13 i^{\circ}} \\
& y_{s s}(t)=0.094 \cos \left(4 t-151^{\circ}\right)
\end{aligned}
$$

a) $\omega_{n}=10,2 J \omega_{n}=10 \rightarrow y=0.5$

$$
P_{1}, P_{2}=-5 \pm 8.66 j
$$

b) $\tau=\frac{1}{f \omega_{n}}=\frac{1}{5}, \quad T=\frac{2 \pi}{\omega_{d}}=0.726$

$$
y_{s s}=H(0)=0,1
$$

c)

$$
\begin{gathered}
H(10)=\frac{10}{(j 10)^{2}+10 j \omega+100}=\frac{10}{100 j}=0 \cdot 1 e^{-i \pi / 2} \\
y_{s s}(t)=0.1 \cos (10 t-\pi / 2)
\end{gathered}
$$

