System Response:

1. Sketch the response of each of the systems below to a step input.
a) $\mathrm{H}(\mathrm{s})=\frac{10}{\mathrm{~s}+2}$
b) $\mathrm{H}(\mathrm{s})=\frac{0.2}{\mathrm{~s}+0.2}$
2. Given, the two step responses shown below, the first one is a first order system and the second one is a second order system. Determine the transfer functions for both systems.

3. Plot the pole positions for each of the following systems, determine the values for ζ and ω_{n} for the stable second order systems with complex poles.
a) $\mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}+4}$
e) $H(s)=\frac{1}{s^{2}+4 s+3}$
b) $\mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}+10}$
f) $\mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}^{2}+4 \mathrm{~s}+2}$
c) $\mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}-2}$
g) $\mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}^{2}-4 \mathrm{~s}+16}$
d) $\mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}^{2}+4 \mathrm{~s}+16}$
4. Give the general form of the response of the systems in Problem 3 to a step input.
5. Determine the steady-state response of the systems in Problem 3 a), d), and f) to an input of $\mathrm{x}(\mathrm{t})=2 \cos \left(4 \mathrm{t}-20^{\circ}\right) \mathrm{u}(\mathrm{t})$.
6. Given the following system:

$$
\mathrm{H}(\mathrm{~s})=\frac{10}{\mathrm{~s}^{2}+10 \mathrm{~s}+100}
$$

a) Plot the poles. Identify the values of ω_{n} and ζ.
b) Sketch the step response.
c) What is the steady-state response of the system to the following input?

$$
x(t)=\cos (10 t) u(t)
$$

