Transfer Functions:

1. Find the transfer functions of the following systems:
a) $\dot{y}+4 y=3 x$
b) $\ddot{y}+4 \dot{y}+20 y=2 \dot{x}-x$
c) $\dddot{y}-3 \ddot{y}+4 \dot{y}+8 y=4 \ddot{x}-2 \dot{x}+x$
2. Find the transfer function of

Give the result for $\mathrm{C}_{1}=\mathrm{C}_{2}=100 \mu \mathrm{f}, \mathrm{R}_{1}=\mathrm{R}_{2}=2000 \Omega$
3. Find the transfer function of the following circuit where $\mathrm{R}_{1}=\mathrm{R}_{2}=1000 \Omega$ and $\mathrm{C}=100 \mu \mathrm{f}$.
a)

4. For the system given below,

$$
\ddot{y}+8 \dot{y}+116 y=116 x
$$

a) Find the transfer function.
b) Give the poles and zeros.
c) Give the general form of the response $y(t)$ to a step input (do not solve explicitly).
d) Use MATLAB to plot the step response (put your name in the title of the plot).
5. Repeat Problem 4 for the system given below. In addition, compare the types of poles of this system to those in Problem 4 and use this to explain the resulting behavior seen in the step response plots.

$$
\ddot{y}+8 \dot{y}+12 y=12 x
$$

6. Simplify the block diagram to find the transfer function

Give the transfer function $H(s)=Y(s) / X(s)$ for $H_{1}(s)=2, H_{2}(s)=10 / \mathrm{s}, H_{3}(\mathrm{~s})=\frac{0.1}{\mathrm{~s}+20}, H_{4}(\mathrm{~s})=\frac{2}{\mathrm{~s}+4}$
7. Reduce the block diagram to one block.

8. Find the transfer function of the following circuit in terms of R_{1}, R_{2}, C, and L. Now, suppose that $\mathrm{R}_{1}=\mathrm{R}_{2}=2000 \Omega, \mathrm{C}=100 \mu \mathrm{f}, \mathrm{L}=10 \mathrm{mH}$. Determine the poles of the circuit.

