Transfer Functions:

- 1. Find the transfer functions of the following systems:
 - a) $\dot{y} + 4y = 3x$
 - b) $\ddot{y} + 4\dot{y} + 20y = 2\dot{x} x$
 - c) $\ddot{y} 3\ddot{y} + 4\dot{y} + 8y = 4\ddot{x} 2\dot{x} + x$
- 2. Find the transfer function of

Give the result for $C_1=C_2=100\mu f$, $R_1=R_2=2000\Omega$

3. Find the transfer function of the following circuit where $R_1 = R_2 = 1000\Omega$ and $C = 100\mu f$.

a)
$$x(t) \stackrel{+}{\xrightarrow{}} R_1 \stackrel{-}{\xrightarrow{}} C R_2 \stackrel{+}{\underset{-}{\overset{+}}} y(t)$$

4. For the system given below,

$$\ddot{y} + 8\dot{y} + 116y = 116x$$

- a) Find the transfer function.
- b) Give the poles and zeros.
- c) Give the general form of the response y(t) to a step input (do not solve explicitly).
- d) Use MATLAB to plot the step response (put your name in the title of the plot).

5. Repeat Problem 4 for the system given below. In addition, compare the types of poles of this system to those in Problem 4 and use this to explain the resulting behavior seen in the step response plots.

$$\ddot{y} + 8\dot{y} + 12y = 12x$$

6. Simplify the block diagram to find the transfer function

Give the transfer function H(s)=Y(s)/X(s) for H₁(s)=2, H₂(s)=10/s, H₃(s) = $\frac{0.1}{s+20}$, H₄(s) = $\frac{2}{s+4}$ 7. Reduce the block diagram to one block.

8. Find the transfer function of the following circuit in terms of R_1 , R_2 , C, and L. Now, suppose that $R_1=R_2=2000\Omega$, $C=100\mu f$, L=10mH. Determine the poles of the circuit.

