

2. a)
$$X(t) = cos(4+) + 2sin(8+)$$

$$T_{i} = \frac{2\pi}{4} \qquad T_{i} = \frac{2\pi}{8}$$

$$T_{i} = \frac{\pi}{4} = \frac{2}{7} \implies \text{periodic with}$$

$$T_{i} = \frac{\pi}{4} = \frac{2}{7} \implies \text{periodic with}$$

$$period \quad T_{i} = \frac{\pi}{2} \quad \text{sec}$$

b)
$$x(t) = 3\cos(4t) + \sin(\pi t)$$

 $T_1 = 2\pi$ $T_2 = 2\pi$ $= 2$
 $T_1 = \frac{T_2}{4} = \frac{T_1}{2} = \frac{2}{4} \neq \frac{9}{4}$ so not periodic
 $T_2 = \frac{T_2}{2} = \frac{7}{4} \neq \frac{9}{4}$ so not periodic
c) $x(t) = \cos(3\pi t) + 2\cos(4\pi t)$
 $T_1 = 2\pi$ $= \frac{2}{3}$ $T_2 = \frac{2\pi}{4\pi} = \frac{1}{2}$

T₁ =
$$\frac{23}{12} = \frac{43}{3} \Rightarrow periodic
with period T=2 sec.$$

3. Give an expression for x(t).

offset is -2 amplitude is 8/2 = 4frequency is $2\pi / 2 = \pi rad / sec$ shift is 0.35 sec to the left

 $x(t) = -2 + 4\cos(\pi(t+0.35)) = -2 + 4\cos(\pi t+0.35\pi)$

a) Give an expression for x(t).b) Plot dx/dt.

a) from plot,
$$\chi(t) = 2u(t) + sin(wt)$$
 (phase = 0)
 $w = \frac{2\pi}{T} = \frac{3rud}{sec}$
 $\chi(t) = 2u(t) + sin(3t)$

5 a) not periodic since ult shifts ros up
for
$$\pm z_0$$

b) $\Omega = 0.5T = 2\pi g$, works for $g=1, r=4$
 \Rightarrow periodic (period is N=4)
c) $T_1 = 2\pi = \frac{2}{3\pi}$, $T_2 = 2\pi = \frac{4}{3\pi}$
 $T_1 = \frac{2}{3\pi} = \frac{2}{3}$, $T_2 = 2\pi = \frac{4}{3\pi}$
 $T_1 = \frac{2}{3\pi} = \frac{4}{3} = ratro of integers$
 \Rightarrow periodic with period $3T_1 = 2 \sec c$
d) $S_2 = 20 = 2\pi g$ does not work for integers
 $T_1 = 2\pi g + r$
 \Rightarrow not periodic
e) $T_1 = 2\pi f$, $T_2 = 2\pi f$
 $Z_1 = \frac{2}{3w}$, $T_2 = 2\pi f$
 $T_1 = \frac{T}{2w}$, $T_2 = 2\pi f$
 $T_2 = \frac{T}{3w}$, $T_3 = 2\pi f$
 $T_1 = \frac{T}{2w}$, $T_2 = 2\pi f$
 $T_2 = \frac{T}{3w}$, $T_3 = 2\pi f$
 $T_1 = \frac{T}{3w}$, $T_2 = 2\pi f$
 $T_3 = 2\pi f$

f)
$$T_{i} = \frac{2\pi}{3\pi} = \frac{2}{3}$$
, $T_{2} = \frac{\pi}{8\pi} = \frac{1}{4}$
 $T_{1} = \frac{2/3}{/4} = \frac{8}{3}$ \Rightarrow ratio of integers
 $T_{2} = \frac{2}{/4} = \frac{3}{3}$ \Rightarrow ratio of integers
 \Rightarrow periodic with period = $3T_{i} = 2$ sec
g) $T_{i} = \frac{2\pi}{3\pi} = \frac{2}{3\pi}$, $T_{2} = \frac{2\pi}{10} = \frac{\pi}{5}$
 $\frac{T_{i}}{T_{2}} = \frac{2/3}{3\pi} = \frac{10}{3\pi}$ not a ratio of
 $\frac{T_{1}}{T_{2}} = \frac{2/3}{\pi/5} = \frac{10}{3\pi}$ not a ratio of
integers \Rightarrow not pendic
h) $\Omega = 2\pi (8) = 16\pi = 2\pi \frac{r}{8}$
works for $g = 1 + r = 8 \Rightarrow$ periodic
note: $\chi(n) = 10\cos(16\pi n) = 10$ for all n (i.e. period=1)
 χ) $\Omega = 8 \neq 2\pi \mu$ for any integers $T = 8$
 \Rightarrow not periodic