i. a) $x(t)=4 \cos (5 \pi t)$
periodic with period $T=\frac{2 \pi}{5 \pi}=\frac{2}{5} \sec$ To sketch: $A=4, T=\frac{2}{5}, \theta=0$

b) $x(t)=4 \cos (5 \pi t-\pi / 4)$
periodic with period $T=2 / \mathrm{s} \sec$
to sketch: $A=4 T=2 / 5, \theta=\pi / 4$ so peat is at $\pi / 4 / 5 \pi=1 / 20 \mathrm{sec}$

c) $x(t)=44(t)+2 \sin (3 t)$

d) $x(t)=u(t)-1 / 2$, not periodic

e) $x[n]=4 \cos (\pi n)$
periodic if $\Omega=\frac{2 \pi}{r}$ f for some integers $\&$ ar In $T h i s$ case $s=\pi \quad$ so $\quad q=1, r=2$ work.

So, this is periodic

$$
\begin{array}{c|cccc}
n & 0 & 1 & 2 & 3 \\
\hline 4 \cos (n \pi) & 4 & -4 & 4 & -4 \\
& & 4 & \\
\hline-3 & -2-1 & 0 & 1 & 1 \\
0 & & 1 & 4 & 1 \\
\hline
\end{array}
$$

repeats every
other value other value

f) $x[n]=4 \cos (\pi n-2)$, peniodic, repeats every other value of n | n | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $4 \cos (n \pi-2)$ | 1.66 | -1.66 | 1.66 | -1.66 | 1.66 |

g)

$$
\begin{aligned}
& x[n]=2 \sin (3 n) \\
& \quad \Omega=3 \neq \frac{2 \pi q}{r} \text { for } q, r \text { integers }
\end{aligned}
$$

so, not periodic

n	-1	0	1	2	3	4	5
$2 \sin (3 n)$	-.28	0	.28	-.56	.82	-1.07	1.3

h) $x[n]=u[n]+P_{3}[n]$

2.a)

$$
\begin{aligned}
& x(t)=\cos (4 t)+2 \sin (8 t) \\
& T_{1}=\frac{2 \pi}{4} \quad T_{2}=\frac{2 \pi}{8} \\
& \frac{T_{1}}{T_{2}}=\frac{\pi / 2}{\pi / 4}=\frac{2}{1} \Rightarrow \text { periodic with }
\end{aligned}
$$

b)

$$
\begin{aligned}
x(t)= & 3 \cos (4 t)+\sin (\pi t) \\
T_{1}= & \frac{2 \pi}{4} \quad T_{2}=\frac{2 \pi}{\pi}=2 \\
& \frac{T_{1}}{T_{2}}=\frac{\pi / 2}{2}=\frac{\pi}{4} \neq \frac{9}{6} \text { so not periodic }
\end{aligned}
$$

$$
\text { c) } x(t)=\cos (3 \pi t)+2 \cos (4 \pi t)
$$

$$
\begin{aligned}
& T_{1}=\frac{2 \pi}{3 \pi}=\frac{2}{3} \quad T_{2}=\frac{2 \pi}{4 \pi}=\frac{1}{2} \\
& \frac{T_{1}}{T_{2}}=\frac{2 / 3}{1 / 2}=4 / 3 \Rightarrow \text { Reniodic }
\end{aligned}
$$ with period $T=2 \sec$.

3. Give an expression for $x(t)$.

offset is -2
amplitude is $8 / 2=4$
frequency is $2 \pi / 2=\pi \mathrm{rad} / \mathrm{sec}$
shift is 0.35 sec to the left
$\mathrm{x}(\mathrm{t})=-2+4 \cos (\pi(\mathrm{t}+0.35))=-2+4 \cos (\pi \mathrm{t}+0.35 \pi)$
4.

a) Give an expression for $\mathrm{x}(\mathrm{t})$.
b) Plot $\mathrm{dx} / \mathrm{dt}$.
a) from plot, $x(t)=2 u(t)+\sin (\omega t) \quad($ phase $=0)$

$$
\begin{aligned}
\omega & =\frac{2 \pi}{T}=3 \mathrm{rad} / \mathrm{sec} \\
x(t) & =2 u(t)+\sin (3 t)
\end{aligned}
$$

b) $\frac{d x}{d t}=28(t)+3 \cos (3 t)$

5 a) not periodic since $u(t)$ shifts cos up for $t \geq 0$
b) $\Omega=0.5 \pi=\frac{2 \pi g}{r}$, works for $q=1, r=4$
\Rightarrow periodic (period is $N=4$)
c)

$$
\begin{aligned}
& T_{1}=\frac{2 \pi}{3 \pi}=\frac{2}{3}, T_{2}=\frac{2 \pi}{4 \pi}=\frac{1}{2} \\
& \frac{T_{1}}{T_{2}}=\frac{2 / 3}{1 / 2}=\frac{4}{3}=\text { ratio of integers }
\end{aligned}
$$

\Rightarrow periodic wiTh period $3 T_{1}=2 \mathrm{sec}$
d) $52=20=\frac{2 \pi q}{r}$ does not work for integers $q+r$
\Rightarrow not periodic
e) $T_{1}=\frac{2 \pi}{2 \omega_{1}}, \quad T_{2}=\frac{2 \pi}{3 \omega_{1}}$
$\frac{I_{1}}{T_{2}}=\frac{\pi / \omega_{1}}{2 \pi / 3 \omega_{1}}=\frac{3}{2}$ periodic with period $2 T_{1}=\frac{2 \pi}{w_{1}}$
f)

$$
T_{1}=\frac{2 \pi}{3 \pi}=\frac{2}{3} \quad, \quad T_{2}=\frac{\pi}{8 \pi}=\frac{1}{4}
$$

$\frac{T_{1}}{T_{2}}=\frac{2 / 3}{1 / 4}=\frac{8}{3} \Rightarrow$ ratio of integers
\Rightarrow periodic with period $=3 T_{1}=2 \mathrm{sec}$
g) $T_{1}=\frac{2 \pi}{3 \pi}=\frac{2}{3}, \quad T_{2}=\frac{2 \pi}{10}=\frac{\pi}{5}$ integers \Rightarrow not penodic
b) $\Omega=2 \pi(8)=16 \pi=2 \pi \frac{r}{q}$
works for $q=1$ or $r=8 \rightarrow$ parodic
note: $x[n]=10 \cos (16 \pi n)=10$ for all n (ie. period $=1$)
i) $\Omega=8 \neq 2 \pi \sim$ for any integers rag 8
\Rightarrow not periodic

