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Probe Compensated Near-Field
Measurements on a Cylinder

W. MARSHALL LEACH, JR., anxo DEMETRIUS T. PARIS

Abstract—A new method is developed for determining the far-
field pattern of an antenna from probe compensated near-field
measurements over the surface of a right circular cylinder enclosing
the antenna. The method is derived by first expanding both the
field radiated by the antenna and the field radiated by the measure-
ment probe, when it is used as a transmitter, into cylindrical wave
expansions. The Lorentz reciprocity theorem is then used to solve
for the field radiated by the antenna from the probe output voltage.
It is shown rigorously that the antenna pattern can be determined
independently of the characteristics of the measurement probe
provided that certain calibration data are known. A method for
determining these data from the measured far field radiated by
the probe is described. It is shown that the necessary numerical
integration can be performed with the fast Fourier transform
algorithm. Experimental results are presented to validate the
theory and to demonstrate its practicality from a measurement
and computational viewpoint.

I. INTRODUCTION

HIS PAPER concerns with the problem of the deter-

mination of the far-field pattern of an antenna from
measurements made in the near field. This problem has
been one of considerable interest [1]-[7], particularly
in the case of microwave antennas for which the distance
to the far field exceeds the dimensions of available antenna
test ranges. Early work in this area was based on the
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assumption that the measurement probe did not disturb
the field and that it measured the field at a point. The
far-field calculations were usually based on scalar diffrac-
tion theory.

There have been two recent methods proposed which
are based on three-dimensional modal expansions of the
antenna fields and which remove the ideal probe assump-
tion. A technique based on the planec wave speetrum
expansion has been proposed by Kerns [1] to predict
the far-field pattern from near-field data mecasured over
the surface of a plane located in front of the antenna.
A method was described to compensate for the effects
of the measurement probe using the measured far field
of the probe when it is used as a transmitier. This work
has becn verified experimentally by Baird et al. [2].
Jensen [6] has described a method based on spherical
wave expansions for obtaining the far ficld from near-
field data measured over the surface of a sphere enclosing
the antenna. However, the author implied that the
method does not seem to be suitable for practical purposes
unless an ideal probe is used. No experimental results
were presented.

The method proposed in the present paper is bascd on
the three-dimensional vector cylindrical wave expansion
of an electromagnetic field. The approach is similar to
that originally used by Brown and Jull [4] in that it is
based on an application of the Lorentz reciprocity integral.
It is shown that the complete vector far-field pattern of
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Fig. 1. Coordinate system definitions. (r indicates position vector
of point (r, ¢, 2). Symbol caret over a coordinate symbol denotes
unit vector in direction defined by increase in that coordinate.)

an arbitrary antenna can be obtained from near-field
data measured over the surface of a cylinder enclosing
the antenna. It is shown rigorously that the effects of
the measurement probe can be compensated for if the
complex amplitude weighting functions in the cylindrical
wave expansion of the field radiated by the probe, when
used as a transmitted, are known. It is shown that these
weighting functions can be obtained from the measured
amplitude and phase of the far field radiated by the probe.

II. CyLiNDRICAL WAVE EXpPANSION

In a linear, isotropic region containing no sources, it
can be shown that the electric and magnetic field in-
tensities can be expressed as functions of the cylindrical
coordinates (r,¢,2z) shown in Fig. 1 by linear combinations
of the vectors M and N given by [8]

. ~ ) . ~ a ﬂ-i . .
M) = (2 250r) = $%2 ) exp (no) exp (=)
(1)
B — _"-ﬁ 9Zn' 4 ﬁ}E i o f i )
Noapi(r) = ( T % or + ¢kr Z,i(Ar) + z P Za (Ar)

(2)

where n is any integer, h is any real number, k = w (ue)'?,
and where A = (k2 — h2)12 for b < k and —j(h* — k%)
for h > k. The function Z,*(Ar) is any one of the four
cylindrical Bessel functions given by Z,'(Ar) = J.(Ar),
Z(Ar) = Y. (Ar), Z3(Ar) = H,O (Ar), and Z,1(Ar) =
H,® (Ar).

In the present case, a solution for E is desired which
is valid in the region external to the smallest cylinder
containing all sources defined by r > r,. In order for E
to satisfy the radiation condition at infinity, the large
argument asymptotic expansion of the cylindrical Bessel
function must represent surfaces of constant phase which
propagate in the positive radial direction. For time
variations of the form exp (jwt), the only one of these
functions which satisfies this condition is the Hankel
function of the second kind H,® (Ar). The large argument

-exp (jne) exp (—jhz)
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asymptotic expansion of this function is

. 2 1/2
H,® (Ar) N]n+1l2 (__> exp (—jAr).

wAr (3)

The most general linear combination of the vectors
M and N will involve an integral over all real 2 and a
sum over all integer n. Thus, in this case, the general
solution for E can be written

o

EO = T [ @®)Mat0) + baNut(n) dh (4)
where a.(h) and b,(h) are the complex amplitude
weighting functions of the vectors M and N, respectively.
The corresponding solution for H follows from Faraday’s
law and is given by

-k = o
HO) = 3 [ )Mt () + 0, (0N (1) dh

)
In general, the evaluation of (4) or (5) is a formidable
task. However, a considerable simplification results if
the field is to be evaluated in the far-field region of the
source. To do this, the Hankel function and its first
derivative are first replaced by their large argument
asymptotic expansions. The resulting integrals can then
be evaluated by the method of steepest descent. Although
the evaluation is straightforward, it is involved [9]. The
results are:

—2ksingexp (—jkR) 2

E(r) = 7 _Z J
cexp (jne) ($a.(k cos 8) + 8jb. (k cos8)) (6)
Hy =B j £ @)

where (R,0,¢) are the spherical coordinates of the far-field
point and n = (u/e)2

It can be secen that the far field is determined only by
those values of a,(h) and b,(h) for which —k < h <k,
since | kcos 8| < k. Thus it can be concluded that the
part of the near field for which |h| >k represents
evanescent waves in the vieinity of the antenna which
in no way influence the far-field structure except to the
extent that they are necessary to support a particular
current distribution on the antenna.

III. DETERMINATION OF AR FIELD FROM
ProBE COMPENSATED NEAR-FIELD MEASUREMENTS

In Fig. 2, let 2, be a cylinder of radius 7, that contains
an arbitrary test antenna connected to signal generator 4.
Denote the field radiated by the test antenna by E.(r)
and H,(r). Let this field be incident on a probe antenna
whose reference origin 0’ is located at the point (ro,d0,20).
Let the probe be connected via a waveguide feeder to
generator B. Denote the field radiated by the probe when
generator B is activated by E,(r') and H,(r’), where r’
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Fig. 2. Geometry for probe compensation derivation.

is measured with respect to 0’. Let the field scattered by
the test antenna when generator B is activated be denoted
by E,:(r) and H,,(r) and the field scattered by the probe
when generator A is activated by Es(r') and H, (1').
In the following analysis, it will be assumed that there
are no multiply scattered fields between the test antenna
and the probe so that the total scattered field is given by
these terms.

It is desired to solve for the signal induced across the
terminals of generator B when only gencrator A is
activated. If generator B is then replaced by a linear
detector having an input impedance equal to the output
impedance of generator B, it will be shown that the far
field of the test antenna can be calculated from the
detector output voltage if its amplitude and phase are
known as functions of ¢ and 2, over the cylinder of radius
ro. It will be assumed that the amplitude weighting
functions in the cylindrical wave expansion of the ficld
radiated by the probe when generator B is activated are
known. Without loss of generality, it will be assumed that
both gencrators A and B are matched to their respective
waveguide feeders. Otherwise the theory holds with only
slight modifications.

In Fig. 2, let V be the volume bounded by the surfaces
21, b, and 2, where Z; is the cylinder of radius r, 2
is the closed surface lying just outside the probe antenna
and shicld enclosing generator B which cuts the waveguide
feeder for the probe at Sy, and =, is the sphere of infinite
radius. Since V contains no sources, it follows from the
Lorentz reciprocity theorem that

f ((Ea + Eu) X (Hy + Has) — (Ey + Eay)
i+t 2o

X (H, + Hy))-nda =0 (8)
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where all multiply scattered terms have been neglected.
The integrand of this expression vanishes identically
over X, and over Z; except for the area S;. Also, E;; = 0
and H;, = 0 over Sy by virtue of their definition. Thus
it follows that (8) reduces to

f (E. X Hy — Ey X H.)
Zy

¢ (_?) da + f (Ea X Hus - Eas X Ha)
z

1

(=7) da + f (Ev X Hy — Ey X Hay)
Z

'(";)da“i‘f (Ee X Hy, — Ey X H,)
Sp

+(—x)da =0 9)

where the terms involving products of the scattered
fields have been neglected and where it has been assumed
that Ey 4 E,. = Ey and H; + H,, = H, over S;. These
assumptions are valid if the scattered fields over 2,
and S, are small compared to the incident fields. Without
them, the desired solution to (8) would be impossible.

Let the four integrals in (9) be denoted by I, I, I,
and I, respectively. The integral for Is can be evaluated
by assuming that the waveguide feeder for the probe
will support only the dominant TE,, mode. (This is
not a restrictive assumption, for the same result will be
obtained for any other mode or combination of modes.
Only the final constant of proportionality will differ.)
The result is

-1 b2 paj2 ,
—— C (70,0,20) [ f 2 cos? (ﬂ) dx’ dy’
Zw a

—b/2 ¥ —a/2

I,

Il

b
¢ C(TO;%;ZO) (10)

VA

where a is the width of the waveguide feeder, b is its
height, and Z, is the wave impedance. The factor
C (ro,¢0,20) represents the amplitude of the electric field
induced in the probe waveguide when only generator A
is activated. It is a function of the position of the probe
antenna with respect to the test antenna. The integral
has been normalized by the amplitude of the electric
field in the waveguide when generator B alone is activated.
If generator B is replaced by a matched linear detector
when only generator A is activated, the detector output
voltage will be proportional to C (ro,¢0,20). Thus the
expression for I, can be written

ab

I, = —KZ v (ro,¢0,20) (11)

where K is a constant of proportionality and v (re,¢0,20)
is the detector output voltage.
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To evaluate the integral for I, in (9), the cylindrical
wave expansions of the fields over 2; will be written
initially in the forms

E,(r) = an(h)Mut(r) + ba(h)Nuat(r) (12)
Ho(r) = ]—Tﬁ (ba ()Mot (1) + an (NS (1)) (13)
Eb(rl) = cm(ﬂ)Mmﬂ4(T,) + dm(’l)Nmn4(r,) (14)

H(r) = le’f (o )Mt () + e (D Nu (1)), (15)

After I, is evaluated for these fields, the result must be
summed in m and n and integrated in » and h to obtain
the final value of the integral.

With the vector translation theorems developed in
Appendix A, the origin for E, and H, is first changed
from 0’ to 0. The result is

E0) = % (—1)Hnei® () exp (o) exp (rzo)

=0

* (cm(ﬂ)M—lql (7) + dm(n)N——lnl (7)) (16)

o0

X (= 1)'Hupi® (o) exp (jlo) exp (jn20)

Iem—o0

(dn (M1 (1) + em(n)N_is' (1))

where A = (k? — 52)Y2. Substitution of these expressions

and those for E, and H, into the integrand for I; gives
. .

Ii=— % (—1)Hn® (\ro) exp (jldo)

JOU j=—x

—k
Hy(r) = —
Jw

(17)

cexp (o) [ [ ((@n b)) + a(h)emn))

—o0 ¥ —1

- (Mt X M_i;t + Nt X N_yy')
+ (an(h)cm(n) + bn(h)dm("l))

X (Mot X N_it + Nut X M_j1))-ridpdz (18)

where the vectors M and N are functions of the (r,¢,2).

From the orthogonality properties of the cylindrical
wave vectors developed in Appendix B, it follows that
the terms involving the products M X M_;'-7 and
Nut X N_j,t-7 have zero contribution to (18). The
remaining terms can be evaluated with the aid of (B3).
Thus I, becomes

k b .
L= 25 5 (= 1)Huu® (\ro) exp (o) exp ( jnzo)

JOU oo

+ (@n (Yo (n) + bu(h)dm () (ﬁkﬁ buid (n -+ 1)

(T (Ar)Ho® (Ary) — J o (Ary)Ho, @' (Ary) ))

(19)
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where 8,; is the Kronecker delta and &(n 4 k) is the
Dirac delta function. This expression can be simplified
with the aid of the identity
I (Ar))H,@ (Ary) — J_o (Ar)H,®' (Ary) = 21"
1I'A7'1

(20)

Thus I, reduces to
8mwA? . .
I = —JH"“"@) (Aro) exp (jnen) exp (Jnz0)é(n + k)
(@ (h)em(n) + ba(h)dn(n))

which is independent of r,. When this expression is
summed over all m and n and integrated in 5 and &,
the result is

(21)

_ 5T exp (o) [ (@)

n=—w

Y en(—h)

m=—00

I

Wi

Hoin® (A1) + ba(h) 3 (=) Hosn® (A70))

m=—w0

<exp (—jhzo) dh. (22)

Since multiple scattering is neglected, E., H,, E.,
and H,, satisfy the homogeneous wave equation outside
of =,. Thus by the Lorentz reciprocity theorem it follows
that I, is identically zero. Similarly, I; is also zero. Thus
it follows that (9) reduces to

A
Z

4n?k* ",

v (To,d)o,Zo) =

T en(—h)

m=—00

exp (jndw) [ (@ (h)

Hopm® (Aro) + ba(h) }E dn(—h)

m==—0

‘H,\n® (Aro)) exp (—jhzo) dh (23)

where v (ro,¢0,20) has been normalized by choosing the
constant of proportionality in (11) to be 32x°Z,k*/wuab.

Examination of this equation reveals that v (ro,¢0,20)
is in the form of a Fourier series in ¢ and a Fourier
integral in z. Thus the equation has an inverse which
is given by

tn(h) T en(—h)Hupm® (Aro)

m=—o0

F0u() Y do(—h)Haim® (Aro)

m=—0

kZ 0 L
=7 [ vuton) exp (—jntw) exp (jhio) ddo deo

—_—0 Y —r

(24)
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This is the desired result. It relates the cylindrical wave
amplitude weighting functions a.(h) and b.(k) of an
arbitrary test antenna to the two-dimensional Fourier
transform of the output voltage of a probe antenna
when the measurement surface is a cylinder of radius ro.
If the cylindrical wave amplitude weighting functions for
the probe antenna are known, it follows that (24) can
be solved for a,(k) and b, (k) provided two independent
measurements of v (r,,¢0,20) are made.

Let o' (ro,d0,20) represent the voltage output of the
probe antenna when it is rotated 90° about its longitudinal
axis. An equation identical to (24) can be written which
relates a,(h) and b.(h) to v’ (ro,¢0,20) With the exception
that ¢n(—h) and d.(—h) must be replaced by the
amplitude weighting functions for the rotated probe.
If these are denoted by ¢’ (—h) and d,,’ (—#), then this
equation and (24) can be solved simultaneously for
ax(h) and b, (h) to obtain

an(h) = m (I.(h) ,,E_w dm’ (—h)H @ (Aro)
LR S dn(~h)Han® (Ar))  (25)
ba(h) = iy (0 8) mf:;w e (=) Hoym® (Are)
—Lh) S ow (=) Ham® (Ary)) (26)
where

L) = [ [ otutnz) exp (—jnge) exp (jhen) den dzo

@)
1:0) = [ [ Godz) exp (—jndu) exp (shee) e
(28)
A,(h) = ( _E: Cm(—h)H 1@ (Arg))
(T ol (~h)Han® (A1)
= (T o (=) Huen® (4ry))
(S dn(—R)Hon® (Aro)). (29)

me=—0co

It is assumed that the probe responds predominantly
to one polarization component so that a solution for
a.(h) and b, (k) exists, i.e., A, (h) must not be zero.
Equations (25) through (29) form the basis of the
method for the determination of the far field of an ar-
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bitrary antenna from measurements made with a probe
on a cylinder containing the antenna. By using these
equations to determine the cylindrical wave amplitude
weighting functions a.(h) and b, (%), the far field of the
antenna can be determined from (6) and (7). Since the
far field is determined from only those values of a, (h)
and b,(h) for which —k < h <k, it follows that the
cylindrical wave amplitude weighting functions of the
probe need be known only for arguments inside this
interval.

IV. NumERIcAL CONSIDERATIONS

A. Method of Evaluating Far Field from Measured Data

It has been shown that, over the surface of a sphere of
radius R, the far-field electric field intensity radiated by
an antenna can be written in the form

Ey(6,9) =jsin8 X job.(k cos ) exp (jne) (30)

N=—00

Es(0,¢) =sin® X jra.(k cos @) exp (jne)

n=—00

(31)

where the constant factor —2k exp (—jkR)/R has been
suppressed in each equation. In these equations a, (k)
and b, (h), where b = k cos , are the amplitude weighting
functions of the cylindrical wave vectors M and N,
respectively, in the cylindrical wave expansion of the
field radiated by the antenna. In this section a numerical
solution for a, (k) and b.(h) is developed which is based
on the results of the previous section. The numerical
evaluation of (30) and (31) for the far field of the antenna
is then described.

Let the measurement cylinder be divided into a lattice
of points with coordinates (ro,nA¢,mAz) where 0 < n <
N—-1,0<m<M~1, and M and N are positive
integers. To exactly evaluate (27) and (28) from the
output voltages of the probe at these points, two conditions
must be satisfied. First, v and v" must be zero when z < 0
and z > (M — 1)Az. Second, v and » must have no
angular harmonic n greater than 7/A¢ and must be
wavenumber limited in A to a maximum wavenumber
less than or equal to v/Az. The first condition cannot be
met with any radiating structure. However, if the test
antenna is aligned in the cylinder so that it does not
radiate appreciably in the =42 direction, it can be met
approximately if M is chosen large enough. The second
condition can be met if the sample intervals A¢ and
Az are not too large.

Since high- antennas are rarely encountered in
practice, practical upper bounds on A¢ and Az can be
obtained by studying the antenna Q. Collin and Roths-
child [117] have evaluated the Q of single modes in the
cylindrical wave expansion of a radiating structure as a
function of the mode indices n and h. From their work,
it follows that the @ of an antenna can become large if
there is any significant energy in cylindrical waves for
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Fig. 3. Flow-diagram for far-field evaluation.

which & > &k or n > ka, where a is the radius of the
smallest cylinder with center coinciding with the z axis
and which completely encloses the antenna. Thus it
follows that practical upper bounds on the sample
intervals are A¢ = m/ka and Az = \/2.

Assuming that the preceding conditions are met, the
integrals for I,(h) and I./(h) can be evaluated easily
with a two-dimensional fast Fourier transform (FFT)
algorithm. The FFT is an extremely efficient algorithm
for the evaluation of the Fourier integral. When used to
evaluate (27) and (28), the integrals for I.(h) and
1./ (k) are evaluated for all ordered pairs (n,h) such that
—N/2<n < N/2— 1and h = mAh, where Ah = 27/ M Az
and —M/2 <m < M/2 — 1. Since the far-field expres-
sions for Ky (8,¢) and E, (8,¢) are evaluated at b = k cos 8,
the values of @ corresponding to h = mAh are given by
0, = cosH{(mA/MAz).

Inasmuch as it is impossible to measure the near field
over a complete cylinder enclosing an antenna, the present
method for determining the far field of the test antenna
is most suitable when applied to antennas which radiate
predominantly in the annular region about 6 = /2
defined by 6, < 8§ <« — 6,. In order for all 6, defined
earlier to lie in this interval, it follows that Az must
satisfy Az = \/2 cos 8,. However, for 6, # 0 this condition
violates the z-sample spacing criterion of Az < A/2.

This problem can be overcome by “low-pass filtering”
the near-field data in z and then resampling at the rate
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given in the preceding. This can be accomplished easily
with the FFT. First, the near-field data arrays are trans-
formed in z so that on output the wavenumber spacing
is Ah = 2x/MAz. Second, only the elements in the
transformed arrays corresponding to values of m such that
Im| < MAzcos0.,/\ are inverse transformed to create
the filtered arrays with M’ elements in z where M’ < M.
It follows that the z-sample spacing in these arrays is
given by Az = A\/2cosf.. Finally, the filtered arrays
are augmented with M — M’ zeros so that the final
arrays again contain M eclements in z. It can be shown
that when these arrays are transformed with the FFT,
all M values of 8,, defined earlier lie in the desired interval
0, <0, <wm— 8.

After the evaluation of I,(mAh) and I, (mAh), the
cylindrieal wave amplitude weighting functions a. (mAh)
and b,(mAR) can be solved for using (25) and (26).
(The evaluation of the coefficients in these equations
which are determined by the probe will be discussed under
the following heading.) The calculation of the far-field
electric field intensity radiated by the test antenna can
be achieved then by performing the summations indicated
in (30) and (31). Again, this can be done most efficiently
with the FFT algorithm. However, each a,(mAh) and
b.(mah) must be multiplied by the factors j»sin 6.
and j»+ sin 8, respectively, before the FFT can be used
to perform the summations. The far-field components
so computed will be Eg(0m,¢,) and E4 (0m,¢n}, where

2
N
_ 1| mCOS 0 M M
6, = cos [_(M,/Z) , 5 <m < 2 1. (33)

The preceding operations arc summarized in the flow
diagram of Fig. 3. In the digital computer implementation
of these computations, the majority of the calculations
can be performed “in-place” so that the input near-field
data arrays arc finally replaced by the output far-field
values. This leads to a more efficient use of computer
space.

B. Probe Coefficients

To evaluate (25) and (26) for the amplitude weighting
functions in the cylindrical wave expansion of the far
field radiated by the test antenna, it is necessary to know
the amplitude weighting functions in the expansion of
the field radiated by the probe. Since it is necessary
to known these functions only for the wavenumbers h
such that | h| <k, it is possible to obtain them from a
knowledge of the far field radiated by the probe when it
is connected to a signal source. Two near-field probes
were used in the experimental phase of the research, one
an open-end WR-90 waveguide and the other a WR-90
waveguide terminating in a pyramidal horn with a 5.7°
E-plane half-angle flare and a 15.7° H-plane half-angle
flare. The aperture dimensions of the two probes were
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1 in X 0.5 in and 1.88 in X 0.81 in, respectively. The
two probes had been calibrated at 9.68 GHz for use
with the near-field range at Georgia Institute of Tech-
nology [37]. The calibration data consisted of the measured
amplitude and phase of the far-field components E,(6,6)
and E; (6,¢) of the probes over a sector of a sphere defined
by 30° < 8 < 150° and —60° < ¢ < 60°. The step sizes
in the far-field data were A8 = 5° and A¢ = 1°.

Since it is necessary to resolve the measured probe
data into Fourier series in the azimuth angle ¢, some
upper limit on the maximum angular harmonic for each
probe must be established. This can be done by using
the criterion established by Harrington [10] that the
maximum significant angular harmonic is N = ka, where
a is the radius of the smallest sphere completely enclosing
the aperture of the probe. At 9.68 GHz, it follows that
the smallest integer greater than ka for each probe is
N = 3 for the open-end waveguide and N = 6 for the
small horn.

Let the probe antenna be oriented as shown in Fig. 4.
Aside from the factor —2k exp (—jkR)/R, the far-field
electric field intensity radiated by the probe can be
expressed by (30) and (31) with b,(h) and a.(h) re-
placed by d.(h) and ¢, (h), respectively, with & = k& cos 6.
If the probe is rotated 90° in the right-hand sense about
the x axis, the far-field components Ey' (6,¢) and £, (6,¢)
can be expressed similarly using the cylindrical wave
weighting functions d,/ (k) and ¢,/ (h). In order to com-
pensate for the effects of the probe in calculating the
far ficld of the test antenna, it is necessary to know
ca(h), da(h), ¢./(h), and d.'(h) with the argument
h = —kcosb, = kcos (180° — 6,), where 0, is the
clevation angle at which the far field of the test antenna
is to be computed.

Since the far-field components radiated by the probe
are in the form of a Fourier series in ¢, the amplitude
weighting functions for a particular value of 8 can be
obtained by numerically evaluating the Fourier inversion
integral from the measured fields. However, an alternate
procedure was used in this research since the far field of
the probe was known only for —60° < ¢ < 60°. The
approach taken was to perform a least squares curve fit
of the far-field expressions to the measured probe data.

For example, it can be shown that the expression for
Eq(6,¢) approximates the measured Fy(0,¢) in the least
squares senses sense if the d, (k cos 6) satisfy the system
of equations

sin (im — n)¢ _ 1
(m —n)¢s  2™sing

-exp (—jme) d¢ (34)

where —N < m < N. The d,(k cos 8) for the test probes
were obtained by solving this system of equations with
the Gauss-Jordan method for solving simultaneous
equations. The integral on the right of (34) was evaluated
from the measured data by using the trapezoidal rule
for numerical integration with a step size of 1° and

‘Z’: d.(k cos 9)

n=—N

1
| mwe
—é1
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Fig. 4. Coordinate system for probe antenna.

¢1 = 60°. The solutions for d,(k cosf) were obtained
for —N <n < N and 30° < ¢ < 150° with a step size
in 6 of 5° Solutions for ¢, (k cos8), d.’(k cos 8), and
¢x’ (k cos 8) were obtained for each probe in a similar way.
In the case of the rotated probe, the far-field B, 6,0)
and Ey'(6,¢) were obtained from the measured K, 6,9)
and Ej(0,¢) using numerical interpolation and the
necessary coordinate transformations.

V. ExpERIMENTAL REsuLTs

A, Test Antenna

The experimental work was implemented to verify the
theory and to demonstrate the practicality of calculating
the far-field pattern of an antenna from near-field measure-
ments on a cylinder. The test antenna was a ten-element
resonant array of longitudinal shunt slots cut into the
broad wall of a section of WR-90 waveguide. The slots
were designed so that the antenna radiated a Chebyschev
pattern with sidelobe levels of —20 dB. The load end of
the waveguide array was terminated in an adjustable
short which was set for minimum input VSWR at the
measurement frequency of 9.68 GHz.

B. Near-Field Measurements

The near-field measurement system consisted of a
rotating platform on which the test antenna was mounted
and a probe positioning mechanism capable of positioning
the probe to any point on a 100-in vertical line parallel
to the axis of rotation of the platform. The probe mech-
anism was aligned so that the longitudinal axis of the
probe intersected the axis of rotation of the platform one
foot from the mouth of the probe. The rotating platform
and the probe mechanism were servo-controlled and
could be positioned remotely.

The near-field data v (ro,0,20) and v’ (ro,¢0,20) Were
measured separately over the cylinder by rotating the
antenna platform and moving the probe vertically. To
minimize amplitude and phase errors in the signal path
due to the motion of the antenna platform and the probe
mechanism, rotary signal joints were incorporated at
all axes of rotation. The near-field amplitude and phase
data were recorded on an FM tape deck and subsequently
transferred to a digital computer via an analog-to-digital
converter.
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Fig. 5. Near-field amplitude and phase patterns for measurement
case one. (a) Amplitude and phase patterns of E,. (b) Amplitude

and phase patterns of E,.
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Fig. 6. Near-field amplitude and phase patterns for measurement
case two. (a) Amplitude of Es. (b) Phase of Ep. (c) Amplitude
of E,. (d) Phase of Ejy.

To minimize reflections and stray radiation, the nearest
reflecting surfaces in the vicinity of the near-field range
and the klystron signal source and its associated hardware
were covered with a limited supply of absorbing material.
It is estimated that the repeatability of the measurements
was £0.5 dB in amplitude and #+3° in phase. The dynamic
range of the measurement system was 40 dB.

The measured near-field amplitude and phase patterns
of the test antenna are shown in Figs. 5 and 6. In Fig. 5,
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the antenna was centered vertically in the measurement
cylinder. The near field in this case was sampled at
intervals on the cylinder of A¢ = 11.25° and Az = /3.
The height of the cylinder was 52.1 in or 128 one-third
wavelengths at 9.68 GHz. In Fig. 6, the antenna was
centered horizontally in the measurement eylinder. The
near-field elevation pattern was so broad in this case that
the field was measured only on a circle around the antenna.
The near field in this case was sampled 1024 times in the
azimuth angle ¢.

C. Calculated Far-Field Patterns

The caleulation of the far-field patterns was performed
on a Univac 1108 digital computer. The input data
consisted of the measured near-field components of the
test antenna and the cylindrical wave amplitude weighting
functions for the probe. The computational process has
been described in Section IV.

The three-dimensional far-field amplitude pattern of
E4 which was caleulated from the measurement with the
antenna mounted vertically in the cylinder is displayed
in Fig. 7. The base coordinates in this figure are the
azimuth angle ¢, where —180° < ¢ < 180°, and the
wavenumber h = k cos 6, where 30° < 6 < 150°. Although
the cross polarization pattern was calculated, it was too
low in amplitude to be interpreted meaningfully. In
Fig. 8, the principal plane amplitude patterns representing
the two cuts ¢ = 0° and § = 90° in Fig. 7 are displayed
with the measured relative far-field patterns of the test
antenna. There is strong evidence that the discrepancies
between the measured and caleulated patterns in this
figure were caused by reflections from unshielded objects
in the vicinity of the near-field range. A limited supply
of RF absorber made it impossible to cover all reflecting
objects over the full 360° circle illuminated by the test
antenna as it rotated on the rotating platform.

Fig. 9 displays the calculated far-field azimuth pattern
of Ey for the measurement case with the antenna mounted
horizontally. Again the cross polarization pattern has
been omitted.

For the sake of brevity, only two measurement cases
have been discussed here. In this research, however, the
near field of the test antenna was measured for four
different cases corresponding to three orientations of the
test antenna in the measurement cylinder and to two
different near-field probes. The omitted measurements and
calculations for the other cases are in full agreement with
the results presented here.

VI. ConcLusioN

It has been shown and experimentally verified that it is
possible to calculate the far-field pattern of an antenna
from measurements on a cylinder with a probe with
arbitrary, but known characteristics. In addition, it has
been demonstrated that the necessary calculations can
be implemented on the digital computer with the FFT
algorithm. The equipment necessary to experimentally
implement the near-field measurements is a rotating
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platform on which the test antenna is mounted, a linear
motion mechanism to move the probe in a vertical line
up the measurement cylinder, and the necessary signal
detection and recording system.

It may seem that probe compensation is not a significant
consideration when the near-field measurement surface
is a cylinder. As far as the azimuth pattern of the test
antenna at a fixed elevation angle is concerned, this is
true if one is not interested in precision measurements
since the probe is always pointed toward the center of
the measurement cylinder. However, probe correction is
an important consideration in calculating the elevation
pattern of the test antenna. This follows since the eleva-
tion pattern is predominantly determined by the axial
variation of the near-field data on the cylinder. In any
case, there is essentially no difference in the numerical
work necessary to calculate the far-field patterns with or
without probe compensation [9]. Once the probe co-
efficients have been determined, the only difference
between the two cases is the Hankel functions which
enter the solution. Without probe compensation, both
these functions and their first derivatives must be eval-
uated, while derivatives of the Hankel functions do not
enter the probe compensated solution.

Compared to the plane wave approach for which the
far-field pattern can be calculated for only one hemisphere
of space without repeating the procedure, the method
which has been described here is advantageous when
applied to antennas for which it is desired to calculate
the complete 360° far-field azimuth pattern. It is limited
to far-field elevation angles which do not include 0°
and 180° since the Hankel functions in the cylindrical
wave expansions are not defined for these angles. In
cases where the antenna radiates a broad, but symmetrical
elevation pattern, it has been experimentally demonstrated
that the broadside azimuth pattern can be calculated
from near-field measurcments on a circle around the
antenna. This can be particularly advantageous in the
case of large microwave antennas which might require
the accumulation of a prohibitively large amount of data
to compute a two-dimensional far-field pattern.

APPENDIX A

VecTOorR TRANSLATION THEOREMS FOR
CyLINDRICAL VECTOR WAVE FUNCTIONS

Let the coordinates (ro,¢0,20) be the location of the
origin of the coordinate system (r’,¢’,2’) in the coordinate
system (r,¢,2) as shown in Fig. 10. It is desired to express
the cylindrical vector wave functions M,*(r') and
N4 (r") as functions of the coordinates (r,¢,2).

In the system (r'¢’,2’) the generating function ¥t
for these vectors is given by

Yt (') = H,® (Ar') exp (jng’) exp (—jhe’). (A1)

This can be expressed as a function of (r,¢,2) by using
Graf’s addition theorem for the Hankel funetion, which
states
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P(r,e,2)

Fig. 10. Coordinate system for cylindrical wave translation
theorems.

H,® (Ar') = exp (—jn¢’) 2 Huim® (Aro)Jm(Ar)

m=-—00

-exp [jm (6 — ¢0)]. (A2)

When this is substituted into (A1), the generating function
is transformed into

Yt (") = T (Hasn® (Aro) exp (jmen) exp (jhzo))

Jm(Ar) exp (—jme) exp (—jhz). (A3)

The vectors M,;% and N,;* are obtained by the following
operations on Yupt:

Mnh4 = V’ X z‘l’nh4 (A4)
1
Nt = %V' X Mot (A5)

where the primes denote operations on the primed co-
ordinates (r',¢’,2’). Since the del operator is invariant to
a coordinate transformation, these become

Myi(r') = L (Huen® (Aro) exp (jmeo) exp (jho)

m=—0c0

-V X (2Jm(Ar) exp (—jme) exp (—jhz)) (AB)

1 ¢
Nat(r') =+ 2 (Huiw® (Aro) exp (jmgo) exp (Jh0))

U m——0

\V X VX (2Jn(Ar) exp (—jme) exp (—jhz))

(A7)
From the definitions
Myl = V X (2Jn(Ar) exp (—jme) exp (—jhz))
=V X 2 (A8)
1
Nt = A V X Mt (r) (A9)
it follows that (A6) and (A7) reduce to
Muat(r') = X (—1)"Hnpyn® (Aro) exp (jmeo)
exp (jhzo)M_m!(r) (A10)
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Nab() = 5 (=1)"Hopn® (Ary) exp (jmer)

cexp (Jhao)N_nal (1).

These are the desired translation theorems. They are
valid for all » < 7.

(A11)

ArpENDIX B

ORTHOGONALITY PROPERTIES OF
CyLinpricAL WAVE VECTORS

Property A
/ / M., X M,i-7d¢dz =0, VYm,n,nandh. (Bl)

This property follows from the fact that the vector M
contains no z component. Thus the product M,;¢ X M,,,
has only a z component which is zero when scalar multi-
plied by the unit vector 7.

Property B
/ / NP X Npi-tdpdz =0, VYm,n, g andh. (B2)

The integrand in (B2) can be simplified as follows:
Nnhi X Nmni'; = Nmni' (,7: X Nnhi)

It

AZ
("h Zi (A7) Zmi (Nr)
k2r

mnA?
-

rexp [j(m + n)¢]exp [—j(n + h)z].

This is identically zero when integrated with respect
to ¢ and z unless m = —n and n = —h. However, under
these conditions, the term in parentheses is identically
zero since X = A when 9 = —h. Thus property B follows
immediately.

Y/ (Ar)me()\r))

Property C

f / Nuwi X M- d dz

47243
- ’rk Zni(AT)Z -1 (Ar)8 (n + h),

form= —n

0, otherwise
(B3)
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The integrand of the preceding integral can be simplified
as follows:

Nnhi X Mmr/"'; = — nhi' (; X Mmﬂj)
AA2
=% Za (Ar) 2, (W)

rexp [j(m + n)¢]exp [ (n + h)z].

This is zero when integrated with respect to ¢ unless
m = —n. In this case the integral of the exponential
term involving ¢ is 27. The integral of the exponential
term involving 2z results in the factor 2r8(y + ). Since
this is zero for n + h # 0, it follows that the substitution
n = —h can be made in the rest of the expression. Thus
property C follows immediately.
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