Appendix B

Electroacoustic Glossary of Symbols

Radius (m), Equivalent piston radius of diaphragm (m)
Magnetic flux density (T), Parameter in QB3 vented-box alignments, Parameter in
cardiod microphone pattern, Mass loading factor, Parameter in low-pass to band-pass
frequency transformation
2nd-order Butterworth infinite-baffle and closed-box alignment
4th-order Butterworth vented-box alingment
Velocity of sound (345 m/s, 1131 feet/s)
Acoustic compliance (m^5/N)
Acoustic compliance of volume V_{AB} (m ⁵ /N)
Acoustic compliance of passive radiator suspension (m ⁵ /N)
Acoustic compliance of diaphragm suspension (m^5/N)
Total acoustic compliance of diaphragm suspension and enclosure (m ⁵ /N)
Acoustic compliance in circuit for piston air load impedance (m^5/N)
Electrical capacitance (F)
Mechanical compliance (m/N)
Mechanical compliance of diaphragm suspension (m/N)
2nd-order Chebyshev alignment
4th-order Chebyshev vented-box alignment
Kinetic energy density (J/m^3)
Potential energy density (J/m^3)
Electrical voltage (V)
Force (N), Frequency (Hz)
Helmholtz resonance frequency of vented box (Hz, rad/s)
Closed-box system resonance frequency (Hz, rad/s)
Lower -3 dB cutoff frequency (Hz, rad/s)
Resonance frequency of driver in infinite baffle (Hz, rad/s)
Upper -3 dB cutoff frequency (Hz, rad/s)
Upper −3 dB cutoff frequency in pressure response of driver (Hz, rad/s)
Upper −3 dB cutoff frequency in power response of driver (Hz, rad/s)
Infinite-baffle low-frequency pressure transfer function
Forth-order bandpass system low-frequency pressure transfer function
Closed-box low-frequency pressure transfer function
Vented-box low-frequency pressure transfer function
Vented-box system Helmholtz tuning ratio (f_B/f_S)
Acoustic intensity (W/m^2)
Wavenumber (m ⁻¹), Parameter in C4 vented-box alignments, Mutual coupling coefficien

 $k_{\rm pad}$ L-pad voltage division ratio Length (m), Effective length of voice-coil wire that cuts air-gap flux (m) ℓ_f Flanged end correction (m) ℓ_{uf} Unflanged end correction (m) L_P, L_V Port or vent length (m) Constant in equation for impedance of lossy voice-coil inductance L_e L_E Electrical inductance (H) Constants in equation for cross-sectional area of acoustic horn m, M M_A Acoustic mass (kg/m⁴) Acoustic mass in circuit for piston air load impedance (kg/m⁴) M_{A1} M_{AB} Acoustic mass of air in box (kg/m^4) M_{AC} Acoustic mass of diaphragm and air load for driver on a box (kg/m⁴) M_{AD} Acoustic mass of diaphragm (kg/m⁴) M_{AS} Acoustic mass of diaphragm and air load for driver on infinite baffle (kg/m⁴) M_{M} Mechanical mass (kg) M_{MC} Mechanical mass of diaphragm and air load for driver on a box (kg) M_{MD} Mechanical mass of diaphragm (kg) Mechanical mass of diaphragm and air load for driver on infinite baffle (kg) M_{MS} Constant in equation impedance of lossy voice-coil inductance nAcoustic pressure (Pa) pAcoustic pressure difference (Pa) p_D Reference pressure for SPL (2 × 10⁻⁵ Pa) $p_{\rm ref}$ On-axis pressure sensitivity for $e_q = 1 \text{ V}$ and r = 1 m (Pa) Total pressure (Pa), Power (W), Phons P_A Acoustic power (W) P_{AR} Acoustic power radiated (W) P_E Electrical power (W) Static air pressure $(1.013 \times 10^5 \text{ Pa})$ P_0 f_{ℓ}/f_S for vented-box system qQQuality factor Q_{EC} Closed-box system electrical quality factor Q_{ES} Infinite-baffle system electrical quality factor Vented-box enclosure quality factor Q_L Q_{MC} Closed-box system mecahnical quality factor Infinite-baffle system mechanical quality factor Q_{MS} Closed-box system total quality factor Q_{TC} Infinite-baffle system total quality factor Q_{TS} QB3Quasi-Butterworth 3rd-order vented-box alignment Acoustic resistance (N·s/m⁵) R_A R_{AB} Acoustic resistance that models closed-box losses (N·s/m⁵) $R_{AS} + R_{AB}$ (N·s/m⁵) for closed-box system R_{AC} Acoustic resistance that models electrical losses (N·s/m⁵) R_{AE} R_{AL} Acoustic resistance that models air leak (N·s/m⁵) R_{AS} Acoustic resistance that models suspension losses (N·s/m⁵) R_{AT} $R_{AE} + R_{AS}$ (N·s/m⁵) for infinite-baffle system R_{ATC} $R_{AE} + R_{AC} \text{ (N·s/m}^5) \text{ for closed-box system}$ Acoustic resistors in circuit for piston air load impedance (N·s/m⁵) R_{A1}, R_{A2} Electrical resistance (Ω) R_E R_{ES} Increase in voice-coil impedance at $\omega = \omega_S$ for infinite-baffle system (Ω) Mechanical resistance (N·s/m) R_M R_{MS} Mechanical resistance of diaphragm suspension (N·s/m)

Area (m^2) , Sones

```
S_D
               Area of diaphragm (m<sup>2</sup>)
S_B
               Inside area of box wall (m^2)
               Mouth area of acoustic horn
S_M
S_T
               Throat area of acoustic horn
SPL
               Sound pressure level (dB)
SPL_{\mathrm{sens}}^{1V}
SPL_{\mathrm{sens}}^{1W}
               On-axis SPL sensitivity for e_g = 1 \text{ V} and r = 1 \text{ m} (dB)
               On-axis SPL sensitivity for P_E = 1 W and r = 1 m (dB)
               Piston area of diaphragm (m<sup>2</sup>)
S_D
S_P, S_V
               Port or vent area (m<sup>2</sup>)
T_{u1}\left(s\right)
               Transfer function which models high frequency pressure response of driver
T_{u2}\left(s\right)
               Transfer function which models high frequency power response of driver
               Mechanical velocity, Particle velocity (m/s)
               Mechanical velocity of diaphragm (m/s)
u_D
U
               Volume velocity (m^3/s)
               Volume velocity emitted by diaphragm (m<sup>3</sup>/s)
U_D
               Volume velocity emitted by air leak (m<sup>3</sup>/s)
U_P, U_V
               Volume velocity emitted by port or vent (m<sup>3</sup>/s)
               Volume (m<sup>3</sup>)
               Volume compliance of driver suspension (m<sup>3</sup>)
V_{AS}
V_{AB}
               Effective volume of air in box including filling effect (m<sup>3</sup>)
V_{AT}
               Net volume compliance of driver and enclosure (m<sup>3</sup>)
               Volume of air in unfilled enclosure (m<sup>3</sup>)
V_B
W_{\rm KE}
               Kinetic energy (J)
               Potential energy (J)
W_{\rm PE}
               Mechanical displacement (m), Distance (m)
               Mechanical displacement of diaphragm (m)
x_D
               Maximum diaphragm displacement (m)
x_{\text{max}}
Y_E
               Electrical admittance (\Omega^{-1})
Y_M
               Mechanical admittance (mech. \Omega^{-1})
               Acoustic admittance (acoust. \Omega^{-1})
Y_A
Z_e
               Impedance of lossy voice-coil inductance (\Omega)
Z_E
               Electrical impedance (\Omega)
Z_M
               Mechanical impedance (mech. \Omega)
Z_s
               Specific acoustic impedance (mks rayls)
Z_{VC}
               Voice-coil impedance (\Omega)
               Compliance ratio C_{AS}/C_{AB} or V_{AS}/V_{AB}
\alpha
\delta
               Passive radiator compliance ratio C_{AP}/C_{AB}
               dB ripple factor for Chebyshev alignments
\epsilon
               Efficiency
\eta
               Midband reference efficiency of driver
\eta_0
               Ratio of specific heat at constant pressure to specific heat at
\gamma
               constant volume, Propagation constant for wave in acoustic horn
\lambda
               Wavelength (m)
               Density of air (1.18 \text{ kg/m}^3)
\rho_0
               Time constant (s^{-1}), Crystal coupling coefficient (N/C)
ξ
               Particle displacement (m)
```