Appendix B ## Electroacoustic Glossary of Symbols | Radius (m), Equivalent piston radius of diaphragm (m) | |--| | Magnetic flux density (T), Parameter in QB3 vented-box alignments, Parameter in | | cardiod microphone pattern, Mass loading factor, Parameter in low-pass to band-pass | | frequency transformation | | 2nd-order Butterworth infinite-baffle and closed-box alignment | | 4th-order Butterworth vented-box alingment | | Velocity of sound (345 m/s, 1131 feet/s) | | Acoustic compliance (m^5/N) | | Acoustic compliance of volume V_{AB} (m ⁵ /N) | | Acoustic compliance of passive radiator suspension (m ⁵ /N) | | Acoustic compliance of diaphragm suspension (m^5/N) | | Total acoustic compliance of diaphragm suspension and enclosure (m ⁵ /N) | | Acoustic compliance in circuit for piston air load impedance (m^5/N) | | Electrical capacitance (F) | | Mechanical compliance (m/N) | | Mechanical compliance of diaphragm suspension (m/N) | | 2nd-order Chebyshev alignment | | 4th-order Chebyshev vented-box alignment | | Kinetic energy density (J/m^3) | | Potential energy density (J/m^3) | | Electrical voltage (V) | | Force (N), Frequency (Hz) | | Helmholtz resonance frequency of vented box (Hz, rad/s) | | Closed-box system resonance frequency (Hz, rad/s) | | Lower -3 dB cutoff frequency (Hz, rad/s) | | Resonance frequency of driver in infinite baffle (Hz, rad/s) | | Upper -3 dB cutoff frequency (Hz, rad/s) | | Upper −3 dB cutoff frequency in pressure response of driver (Hz, rad/s) | | Upper −3 dB cutoff frequency in power response of driver (Hz, rad/s) | | Infinite-baffle low-frequency pressure transfer function | | Forth-order bandpass system low-frequency pressure transfer function | | Closed-box low-frequency pressure transfer function | | Vented-box low-frequency pressure transfer function | | Vented-box system Helmholtz tuning ratio (f_B/f_S) | | Acoustic intensity (W/m^2) | | Wavenumber (m ⁻¹), Parameter in C4 vented-box alignments, Mutual coupling coefficien | | | $k_{\rm pad}$ L-pad voltage division ratio Length (m), Effective length of voice-coil wire that cuts air-gap flux (m) ℓ_f Flanged end correction (m) ℓ_{uf} Unflanged end correction (m) L_P, L_V Port or vent length (m) Constant in equation for impedance of lossy voice-coil inductance L_e L_E Electrical inductance (H) Constants in equation for cross-sectional area of acoustic horn m, M M_A Acoustic mass (kg/m⁴) Acoustic mass in circuit for piston air load impedance (kg/m⁴) M_{A1} M_{AB} Acoustic mass of air in box (kg/m^4) M_{AC} Acoustic mass of diaphragm and air load for driver on a box (kg/m⁴) M_{AD} Acoustic mass of diaphragm (kg/m⁴) M_{AS} Acoustic mass of diaphragm and air load for driver on infinite baffle (kg/m⁴) M_{M} Mechanical mass (kg) M_{MC} Mechanical mass of diaphragm and air load for driver on a box (kg) M_{MD} Mechanical mass of diaphragm (kg) Mechanical mass of diaphragm and air load for driver on infinite baffle (kg) M_{MS} Constant in equation impedance of lossy voice-coil inductance nAcoustic pressure (Pa) pAcoustic pressure difference (Pa) p_D Reference pressure for SPL (2 × 10⁻⁵ Pa) $p_{\rm ref}$ On-axis pressure sensitivity for $e_q = 1 \text{ V}$ and r = 1 m (Pa) Total pressure (Pa), Power (W), Phons P_A Acoustic power (W) P_{AR} Acoustic power radiated (W) P_E Electrical power (W) Static air pressure $(1.013 \times 10^5 \text{ Pa})$ P_0 f_{ℓ}/f_S for vented-box system qQQuality factor Q_{EC} Closed-box system electrical quality factor Q_{ES} Infinite-baffle system electrical quality factor Vented-box enclosure quality factor Q_L Q_{MC} Closed-box system mecahnical quality factor Infinite-baffle system mechanical quality factor Q_{MS} Closed-box system total quality factor Q_{TC} Infinite-baffle system total quality factor Q_{TS} QB3Quasi-Butterworth 3rd-order vented-box alignment Acoustic resistance (N·s/m⁵) R_A R_{AB} Acoustic resistance that models closed-box losses (N·s/m⁵) $R_{AS} + R_{AB}$ (N·s/m⁵) for closed-box system R_{AC} Acoustic resistance that models electrical losses (N·s/m⁵) R_{AE} R_{AL} Acoustic resistance that models air leak (N·s/m⁵) R_{AS} Acoustic resistance that models suspension losses (N·s/m⁵) R_{AT} $R_{AE} + R_{AS}$ (N·s/m⁵) for infinite-baffle system R_{ATC} $R_{AE} + R_{AC} \text{ (N·s/m}^5) \text{ for closed-box system}$ Acoustic resistors in circuit for piston air load impedance (N·s/m⁵) R_{A1}, R_{A2} Electrical resistance (Ω) R_E R_{ES} Increase in voice-coil impedance at $\omega = \omega_S$ for infinite-baffle system (Ω) Mechanical resistance (N·s/m) R_M R_{MS} Mechanical resistance of diaphragm suspension (N·s/m) Area (m^2) , Sones ``` S_D Area of diaphragm (m²) S_B Inside area of box wall (m^2) Mouth area of acoustic horn S_M S_T Throat area of acoustic horn SPL Sound pressure level (dB) SPL_{\mathrm{sens}}^{1V} SPL_{\mathrm{sens}}^{1W} On-axis SPL sensitivity for e_g = 1 \text{ V} and r = 1 \text{ m} (dB) On-axis SPL sensitivity for P_E = 1 W and r = 1 m (dB) Piston area of diaphragm (m²) S_D S_P, S_V Port or vent area (m²) T_{u1}\left(s\right) Transfer function which models high frequency pressure response of driver T_{u2}\left(s\right) Transfer function which models high frequency power response of driver Mechanical velocity, Particle velocity (m/s) Mechanical velocity of diaphragm (m/s) u_D U Volume velocity (m^3/s) Volume velocity emitted by diaphragm (m³/s) U_D Volume velocity emitted by air leak (m³/s) U_P, U_V Volume velocity emitted by port or vent (m³/s) Volume (m³) Volume compliance of driver suspension (m³) V_{AS} V_{AB} Effective volume of air in box including filling effect (m³) V_{AT} Net volume compliance of driver and enclosure (m³) Volume of air in unfilled enclosure (m³) V_B W_{\rm KE} Kinetic energy (J) Potential energy (J) W_{\rm PE} Mechanical displacement (m), Distance (m) Mechanical displacement of diaphragm (m) x_D Maximum diaphragm displacement (m) x_{\text{max}} Y_E Electrical admittance (\Omega^{-1}) Y_M Mechanical admittance (mech. \Omega^{-1}) Acoustic admittance (acoust. \Omega^{-1}) Y_A Z_e Impedance of lossy voice-coil inductance (\Omega) Z_E Electrical impedance (\Omega) Z_M Mechanical impedance (mech. \Omega) Z_s Specific acoustic impedance (mks rayls) Z_{VC} Voice-coil impedance (\Omega) Compliance ratio C_{AS}/C_{AB} or V_{AS}/V_{AB} \alpha \delta Passive radiator compliance ratio C_{AP}/C_{AB} dB ripple factor for Chebyshev alignments \epsilon Efficiency \eta Midband reference efficiency of driver \eta_0 Ratio of specific heat at constant pressure to specific heat at \gamma constant volume, Propagation constant for wave in acoustic horn \lambda Wavelength (m) Density of air (1.18 \text{ kg/m}^3) \rho_0 Time constant (s^{-1}), Crystal coupling coefficient (N/C) ξ Particle displacement (m) ```