## ECE 3050 Analog Electronics Quiz 10

March 25, 2009

Professor Leach

Name\_

Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials \_

- 1. The figure shows an op amp circuit. It is given that  $R_1 = 20 \,\mathrm{k}\Omega$ ,  $R_2 = 4 \,\mathrm{k}\Omega$ ,  $R_3 = 6 \,\mathrm{k}\Omega$ ,  $R_4 = 3 \,\mathrm{k}\Omega$ ,  $R_{F1} = 180 \,\mathrm{k}\Omega, \, R_{F2} = 30 \,\mathrm{k}\Omega.$ 
  - (a) Solve for  $v_{O1}$  as a function of  $v_{I1}$ .
  - (b) Solve for  $v_{O2}$  as a function of  $v_{I1}$  and  $v_{I2}$ .



$$R_1 := 20000$$

$$R_2 := 4000$$

$$R_3 := 6000$$

$$R_3 := 6000$$
  $R_4 := 3000$ 

$$R_{F1} := 180000$$

$$R_{F2} := 30000$$

$$A_{11} := \frac{-R_{F1}}{R_{1}}$$

$$A_{11} = -9$$

$$A_{11} := \frac{-R_{F1}}{R_1}$$
  $A_{11} = -9$   $A_{12} := A_{11} \cdot \frac{R_3}{R_2 + R_3} \cdot \left(1 + \frac{R_{F2}}{R_4}\right)$   $A_{12} = -59.4$ 

$$A_{12} = -59.4$$

$$A_{22} := \frac{-R_{F2}}{R_4}$$

$$A_{22} = -10$$

$$A_{22} := \frac{-R_{F2}}{R_4}$$
  $A_{22} = -10$   $v_{O1} = A_{11} \cdot v_{I1}$   $v_{O2} = A_{12} \cdot v_{I1} + A_{22} \cdot v_{I2}$ 

- 2. The figure shows an op amp circuit. It is given that  $R_1=R_2=10\,\mathrm{k}\Omega,\,R_3=R_4=40\,\mathrm{k}\Omega$  and  $v_I=2\,\mathrm{V}.$ 
  - (a) Solve for  $i_1$ .
  - (b) Solve for  $v_{O1}$ .
  - (c) Solve for  $R_5$  such that  $v_{O2} = -v_{O1}$ .



$$\begin{array}{lll} R_1 := 10000 & R_2 := 10000 & R_3 := 40000 & R_4 := 40000 & v_1 := 2 \\ i_1 := \frac{v_1}{R_1 + R_2} & i_1 = 1 \bullet 10^{-4} & v_{O1} := i_1 \cdot \left( R_3 + R_4 \right) & v_{O1} = 8 \\ \\ v_{O2} := -v_{O1} & R_5 := \frac{-v_{O2}}{i_1} & R_5 = 8 \bullet 10^4 \end{array}$$