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The MOSFET

Device Symbols

Whereas the JFET has a diode junction between the gate and the channel, the metal-oxide semiconductor
FET or MOSFET differs primarily in that it has an oxide insulating layer separating the gate and the
channel. The circuit symbols are shown in Fig. 1. Each device has gate (G), drain (D), and source (S)
terminals. Four of the symbols show an additional terminal called the body (B) which is not normally used
as an input or an output. It connects to the drain-source channel through a diode junction. In discrete
MOSFETs, the body lead is connected internally to the source. When this is the case, it is omitted on
the symbol as shown in four of the MOSFET symbols. In integrated-circuit MOSFETs, the body usually
connects to a dc power supply rail which reverse biases the body-channel junction. In the latter case, the
so-called “body effect” must be accounted for when analyzing the circuit.

Figure 1: MOSFET symbols.

Device Equations

The discussion here applies to the n-channel MOSFET. The equations apply to the p-channel device if the
subscripts for the voltage between any two of the device terminals are reversed, e.g. vGS becomes vSG.
The n-channel MOSFET is biased in the active mode or saturation region for vDS ≥ vGS − vTH , where
vTH is the threshold voltage. This voltage is negative for the depletion-mode device and positive for the
enhancement-mode device. It is a function of the body-source voltage and is given by

vTH = VTO + γ
[√
φ− vBS −

√
φ
]

(1)

where VTO is the value of vTH with vBS = 0, γ is the body threshold parameter, φ is the surface potential,
and vBS is the body-source voltage. The drain current is given by

iD =
k′

2

W

L
(1 + λvDS) (vGS − vTH)2 (2)

where W is the channel width, L is the channel length, λ is the channel-length modulation parameter, and
k′ is given by

k′ = µ0Cox = µ
εox
tox

(3)
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In this equation, µ0 is the average carrier mobility, Cox is the gate oxide capacitance per unity area, εox is
the permittivity of the oxide layer, and tox is its thickness. It is convenient to define a transconductance
coefficient K given by

K =
k

2

′W

L
(1 + λvDS) = K0 (1 + λvDS) (4)

where K0 is given by

K0 =
k

2

′W

L
(5)

With these definitions, the drain current can be written

iD = K (vGS − vTH)2 (6)

Note that K plays the same role in the MOSFET drain current equation as β plays in the JFET drain
current equation.

Some texts define K = k′ (W/L) (1 + λvDS) so that iD is written iD = (K/2) (vGS − vTH)2. In this case,
the numerical value of K is twice the value used here. To modify the equations given here to conform to
this usage, replace K in any equation given here with K/2.

Transfer and Output Characteristics

The transfer characteristics are a plot of the drain current iD as a function of the gate-to-source voltage
vGS with the drain-to-source voltage vDS held constant. Fig. 2 shows the typical transfer characteristics
for a zero body-to-source voltage. In this case, the threshold voltage is a constant, i.e. vTH = VTO. For
vGS ≤ VTO, the drain current is zero. For vGS > VTO, Eq. (6) shows that the drain current increases as the
square of the gate-to-source voltage. The slope of the curve represents the small-signal transconductance
gm, which is defined in the following.

Figure 2: Drain current iD versus gate-to-source voltage vGS for constant drain-to-source voltage vDS.

The output characteristics are a plot the drain current iD as a function of the drain-to-source voltage
vDS with the gate-to-source voltage vGS and the body-to-source voltage vBS held constant. Fig. 3 shows the
typical output characteristics for several values of gate-to-source voltage vGS. The dashed line divides the
triode region from the saturation or active region. In the saturation region, the slope of the curves represents
the reciprocal of the small-signal drain-source resistance r0, which is defined in the next section.

Small-Signal Models

There are two small-signal circuit models which are commonly used to analyze MOSFET circuits. These are
the hybrid-π model and the T model. The two models are equivalent and give identical results. They are
described below. In addition, a simplified small-model is derived which is called the source equivalent circuit.
The models are first developed for the case of no body effect and then with the body effect. The former
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Figure 3: Drain current iD versus drain-to-source voltage vDS for constant gate-to-source voltage vGS.

case assumes that the body-source voltage is zero, i.e. vBS = 0. This is the case with discrete MOSFETs
in which the source is connected physically to the body. It also applies to small-signal ac analyses for which
the body and source leads are connected to the same or different dc voltages. In this case, the small-signal
body-source voltage is zero, i.e. vbs = 0, and there is no body effect.

No Body Effect

The small-signal models in this section assume that the body lead is connected to the source lead. The
models also apply when the body and source leads are connected to different dc voltages so that the ac or
signal voltage from body to source is zero.

Hybrid-π Model

Consider the case where the body-source voltage is zero, i.e. vBS = 0. In this case, the threshold voltage in
Eq. 1 is a constant and given by vTH = VTO. Let the drain current and each voltage be written as the sum
of a dc component and a small-signal ac component as follows:

iD = ID + id (7)

vGS = VGS + vgs (8)

vDS = VDS + vds (9)

If the ac components are sufficiently small, we can write

id =
∂ID
∂VGS

vgs +
∂ID
∂VDS

vds (10)

where the derivatives are evaluated at the dc bias values. Let us define

gm =
∂ID
∂VGS

= K (VGS − VTH) = 2
√
KID (11)

r0 =

[
∂ID
∂VDS

]−1
=

[
k′

2

W

L
λ (VGS − VTH)2

]−1
=
1/λ+ VDS

ID
(12)

It follows that the small-signal drain current can be written

id = i
′

d +
vds
r0

(13)
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where
i′d = gmvgs (14)

The small-signal circuit which models these equations is given in Fig. 4(a). This is called the hybrid-π
model.

Figure 4: (a) Hybrid-π model. (b) T model.

T Model

The T model of the MOSFET is shown in Fig. 4(b). The resistor r0 is given by Eq. (12). The resistor rs is
given by

rs =
1

gm
(15)

where gm is the transconductance defined in Eq. (11). The currents are given by

id = i
′

s +
vds
r0

(16)

i′s =
vgs
rs
= gmvgs (17)

The currents in the T model are the same as for the hybrid-π model. Therefore, the two models are equivalent.
Note that the gate and body currents in Fig. 4(b) are zero because the controlled source supplies the current
that flows through rs.

The Drain Equivalent Circuit

If the FET output is taken from the drain, the input can be either applied to the gate or to the source. If
it is applied to the gate, the circuit is called a common-source amplifier. If it is applied to the source, the
circuit is called a common-gate amplifier. In some cases, separate inputs can be applied to both the gate and
the source. In any of these cases, the drain output can be solved for by first making a small-signal Thévenin
or Norton equivalent circuit seen looking into the drain. We solve for the Norton equivalent circuit here. We
assume that the circuits external to the gate and the source can be represented by Thévenin equivalents.

Figure 5(a) shows the FET symbol with separate Thévenin sources connected to the gate and the source.
The bias circuits are not shown, but we assume that the bias solutions are known. Figure 5(b) shows the
circuit with the FET replaced with the hybrid-π model.

The Norton equivalent circuit seen looking into the drain consists of a parallel current source id(sc) and
resistor rid connecting between the drain and ground. This is shown in Figure 5(c). The value of id(sc) is
the drain current with vd = 0, i.e. with the drain node grounded. From Figure 5(b), this current is given by

id(sc) = i
′

d + i0 � i′d (18)
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Figure 5: (a) FET with Thevenin sources connected to the gate and the source. (b) Circuit with the FET
replaced with its hybrid-π model. (c) Drain Norton equivalent circuit.

where the approximation assumes that the current i0 through r0 is small compared to i′d. This is usually a
very good approximation because r0 is a large value resistor. We call it the “r0 approximation” when the
current i0 is neglected. In many cases, r0 is taken to be an infinite resistor, in which case the approximation
is exact.

To solve for i′d, we can write the loop equation

vtg − vts = vgs + isRts

= vgs + (i
′

s + i0)Rts

=
i′d
gm

+ (i′d + i0)Rts

� i′d

(
1

gm
+Rts

)
(19)

where the relations vgs = i′d/gm and i′s = i
′

d have been used. It follows that we can write

id(sc) = i
′

d = Gm (vtg − vts) (20)

where Gm is an equivalent transconductance given by

Gm =
1

1

gm
+Rts

or
=

1

rs +Rts
(21)

where rs = 1/gm.
We next solve for the resistance rid seen looking into the drain node. Consider the drain current id to be

an independent current source and set vtg = vts = 0. We can write

vd = i0r0 + isRts

= (id − i′d) r0 + isRts
= id (r0 +Rts)− i′dr0 (22)

i′d = gmvgs = −gmvs = −gmisRts = −gmidRts (23)

where vgs = −vs and is = id have been used. Substitution of i′d from the second equation into the first
equation yields

vd = id (r0 +Rts) + gmidRtsr0

= id [r0 (1 + gmRts) +Rts] (24)
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It follows that the drain resistance is given by

rid =
vd
id
= r0 (1 + gmRts) +Rts

or
= r0

(
1 +

Rts
rs

)
+Rts (25)

Note that no approximations have been made in solving for rid.
In summary, the small-signal Norton equivalent circuit seen looking into the drain of a FET is a current

source id(sc) in parallel with a resistor rid given by

id(sc) = i
′

d = Gm (vtg − vts) (26)

Gm =
1

1

gm
+Rts

or
=

1

rs +Rts
(27)

rid = r0 (1 + gmRts) +Rts
or
= r0

(
1 +

Rts
rs

)
+Rts (28)

where vtg and vts, respectively, are the Thévenin voltages seen looking out of the gate and source and Rts
is the Thévenin resistance in series with vts. Note that Rtg does not appear in the equations because the
current through it is zero.

Example 1 Figure 6(a) shows the signal equivalent circuit of a common-source amplifier. It is given that
Rtg = 1kΩ, Rts = 50Ω, RD = 10 kΩ, ID = 1mA, K = 1.5mA/V2, and r0 = 50kΩ. Solve for the voltage
gain and output resistance of the circuit.

Figure 6: (a) Common-source amplifier. (b) Common-gate amplifier. (c) Common-drain amplifier.

Solution: gm = 2
√
KID = 2.45mS, rs = 1/gm = 408Ω.

A flow graph for the voltage gain is shown in Figure 7(a). From the flow graph, we can write

vo
vtg

=
i′d
vtg

× vo
i′d
= Gm ×− (rid‖RD) (29)

The numerical values are

Gm =
1

rs +Rts
=

1

458
(30)
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rid = r0

(
1 +

Rts
rs

)
+Rts

= 50k

(
1 +

50

408

)
+ 50 = 56.2 kΩ (31)

vo
vtg

= Gm ×− (rid‖RC) =
1

458
×−56.2k× 10k

56.2k+ 10k
= −18.5 (32)

rout = rid‖RD =
56.2k× 10k
56.2k+ 10k

= 8.49 kΩ (33)

Because the gain is negative, the amplifier is said to be an inverting amplifier.

Figure 7: (a) Flow graph for the CS amplifier. (b) Flow graph for the CG amplifier.

Example 2 Figure 6(b) shows the signal equivalent circuit of a common-gate amplifier. It is given that
Rts = 50Ω, RD = 10 kΩ, ID = 1mA, K = 1.5mA/V2, and r0 = 50kΩ. Solve for the voltage gain and
output resistance of the circuit.

Solution: gm = 2
√
KID = 2.45mS, rs = 1/gm = 408Ω.

A flow graph for the voltage gain is shown in Figure 7(b). From the flow graph, we can write

vo
vts

=
i′d
vts

× vo
i′d
= −Gm ×− (rid‖RC)

The numerical values are

Gm =
1

rs +Rts
=

1

408 + 50
=

1

458

rid = r0

(
1 +

Rts
rs

)
+Rts

= 50k

(
1 +

50

408

)
+ 50 = 56.2 kΩ

vo
vtg

= −Gm ×− (rid‖RC) =
1

458
× 56.2k× 10k
56.2k+ 10k

= 18.5

rout = rid‖RD =
56.2k× 10k
56.2k+ 10k

= 8.49 kΩ

Because the gain is positive, the amplifier is said to be a non-inverting amplifier.

The Gate Equivalent Circuit

Because the gate current ig = 0, the equivalent circuit seen looking into the gate is an open circuit.
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Figure 8: (a) BJT symbol with a Thévenin source connected to the base. (b) Circuit with the BJT replaced
with its hybrid-π model. (c) Thévenin emitter equivalent circuit.

The Source Equivalent Circuit

Figure 8(a) shows the FET symbol with a Thévenin source connected to the gate. The bias circuits are not
shown, but we assume that the bias solutions are known. We wish to solve for the small-signal Thévenin
equivalent circuit seen looking into the source. Figure 8(b) shows the circuit with the FET replaced with
the hybrid-π model.

From the circuit in 8(b), we can write

vs = vtg − vgs

= vtg −
i′d
gm

= vtg −
i′s
gm

= vtg −
is − i0
gm

� vtg −
is
gm

(34)

where the approximation assumes i0 is small compared to is has been used. It follows that the Thévenin
equivalent circuit seen looking into the source is the voltage source vtg in series with a resistance ris given
by

ris =
1

gm
= rs (35)

The equivalent circuit is shown in Figure 8(c). There is no Rtg in this solution because the current through
it is zero.

With the definition of ris, we can define another way of calculating id(sc) in the Norton drain circuit.
The current is in Figure 5(a) is given by

is =
vtg − vts
ris +Rts

(36)

Because i′d = i
′

s � is and id(sc) = i′d = Gm (vtg − vts), we have a third equation for Gm given by

Gm =
1

ris +Rts
(37)

Example 3 Figure 6(c) shows the signal equivalent circuit of a common-drain amplifier. It is given that
Rtg = 10kΩ, Rts = 1kΩ, ID = 1mA, K = 1.5mA/V2, and r0 = 50 kΩ. Solve for the voltage gain and
output resistance of the circuit.
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Solution: gm = 2
√
KID = 2.45mS, rs = 1/gm = 408Ω.

ris = rs =
1

gm
= 408Ω

Gm =
1

ris +Rts
=

1

408 + 1k
=

1

1408

The output resistance is

rout = ris‖Rts =
408× 1k
408 + 1k

= 290Ω

The input resistance is an open circuit.
Two possible flow graphs for the solution are shown in Figure 9.

Figure 9: Flow graphs for the common-collector amplifier.

The first solution for the voltage gain is illustrated in Figure 9(a), where voltage division is used to solve
for the gain to obtain

vo
vtg

=
Rts

ris +Rts
=

1k

408 + 1k
= 0.710

The second solution is illustrated in Figure 9(b). The voltage gain is

vo
vtg

=
i′d
vtg

× is
i′d
× vo
is
= Gm × 1×Rts =

1

1408
× 1× 1k = 0.710

Example 4 Figure 10(a) shows a CS/CD amplifier. What are the expressions for the input resistance, the
output resistance, and the voltage gain?

Solution: Because ig1 = 0, the input resistance is an open circuit, i.e. rin =∞. The output resistance is

rout = ris2‖RS2

where ris2 = rs2 = 1/gm2. A flow graph for the voltage gain is shown in Figure 11(a). The gain is given by

vo
vtg

=
i′d1
vtg

× vtg2
i′d1

× vo
vtg2

= Gm1 ×− (rid1‖RD1)×
RS2

ris2 +RS2

where Gm1 = 1/ (ris1 +RS1) and rid1 = r01 (1 + gm1RS1) +RS1.

Example 5 Figure 10(b) shows a combination CS amplifier and a CD/CG amplifier. What are the expres-
sions for the input resistances, the output resistance, and the output voltage?

Solution: Because ig1 == ig2 = 0, both input resistances are open circuits, i.e. rin1 = rin2 =∞. The output
resistance is

rout = rid1‖RD1
where ris1 = RS + ris2 = RS +1/gm2. A flow graph for the output voltage is shown in Figure 12. It is given
by

vo = i
′

d1 × rid1‖RD1 = Gm1 × (vtg1 − vts1)× rid1‖RD1 = Gm1 × (vtg1 − vtg2)× rid1‖RD1
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Figure 10: (a) CS/CD amplifier. (b) Combination CS amplifier and CD/CG amplifier.

Figure 11: Flow graph for the CS/CD amplifier.
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where

Gm1 =
1

ris1 +RS + ris2
=

1
1

gm1
+RS +

1

gm2

rid1 = r01

[
1 + gm1

(
RS +

1

gm2

)]
+

(
RS +

1

gm2

)

Figure 12: Flow graph for the combination CS amplifier and CD/CG amplifier.

The Body Effect

The small-signal models above assume that the body lead is connected to the source lead. In the following,
we assume that the body lead is connected to ac signal ground. In integrated circuit design, this ac signal
ground is typically a dc power supply rail. In this case, any ac signal voltage on the source lead causes an
ac signal voltage between the body and source. The effect of this voltage is called the body effect.

Hybrid-π Model

Let the drain current and each voltage be written as the sum of a dc component and a small-signal ac
component as follows:

iD = ID + id (38)

vGS = VGS + vgs (39)

vBS = VBS + vbs (40)

vDS = VDS + vds (41)

If the ac components are sufficiently small, we can write

id =
∂ID
∂VGS

vgs +
∂ID
∂VBS

vbs +
∂ID
∂VDS

vds (42)

where the derivatives are evaluated at the dc bias values. Let us define

gm =
∂ID
∂VGS

= K (VGS − VTH) = 2
√
KID (43)

gmb =
∂ID
∂VBS

=
γ
√
KID√

φ− VBS
= χgm (44)

χ =
γ

2
√
φ− VBS

(45)

r0 =

[
∂ID
∂VDS

]−1
=

[
k′

2

W

L
λ (VGS − VTH)2

]−1
=
VDS + 1/λ

ID
(46)
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The small-signal drain current can thus be written

id = i
′

d +
vds
r0

i′d = idg + idb (47)

where
idg = gmvgs (48)

idb = gmbvbs (49)

The small-signal circuit which models these equations is given in Fig. 13(a). This is called the hybrid-π
model. If the body (B) lead is connected to the source, then vbs = 0 and the circuit becomes that given in
Fig. 4(a).

Figure 13: (a) Hybrid-π model with body effect. (b) T model with body effect.

T Model

The T model of the MOSFET is shown in Fig. 4(b). The resistor r0 is given by Eq. (12). The resistors rs
and rsb are given by

rs =
1

gm
(50)

rsb =
1

gmb
=

1

χgm
=
rs
χ

(51)

where gm and gmb are the transconductances defined in Eqs. (43) and (44). The currents are given by

id = isg + isb +
vds
r0

(52)

isg =
vgs
rs
= gmvgs (53)

isb =
vbs
rsb

= gmbvbs (54)

The currents are the same as for the hybrid-π model. Therefore, the two models are equivalent. Note that
the gate and body currents are zero because the two controlled sources supply the currents that flow through
rs and rsb.
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A Simplified T Model

There is a simplification to the T model with body effect that simplifies many calculations. Figure 14(a)
shows the T model of the MOSFET with a Thévenin source connected to the gate and the body connected
to signal ground. We desire the Thévenin equivalent circuit seen looking up into the i′s branch. The open
circuit or Thévenin voltage is given by

voc = vtg
rsb

rsg + rsb
= vtg

1

gmb
1

gm
+

1

gmb

=
vtg

1 +
gmb
gm

=
vtg
1 + χ

(55)

The Thévenin resistance is calculated with vtg = 0. Let this be denoted by r
′

s. It is given by

r′s = rs‖rsb =
rsrsb
rs + rsb

=
rs
1 + χ

or
=

1

(1 + χ) gm
(56)

Figure 14(b) shows the simplified T model. For the case where the body and the source connect to the same
signal node, set χ = 0 in the equations.

Figure 14: (a) T model with a Thévenin source connected to the gate and the body grounded. (b) Simplified
T mode.

The Drain Equivalent Circuit

Figure 15(a) shows the MOSFET with Thévenin sources connected to the gate and source leads. We wish to
solve for the Norton equivalent circuit seen looking into the drain. The circuit consists of a parallel current
source id(sc) and resistor rid connecting between the drain and ground. The value of id(sc) is the drain current
with vd = 0, i.e. with the drain node grounded. From the simplified T model circuit in Figure 15(b), this
current is given by

id(sc) = i
′

d + i0 � i′d (57)

where the approximation assumes that the current i0 through r0 is small compared to i
′

d. This is usually a
very good approximation because r0 is a large value resistor. We call it the “r0 approximation” when the
current i0 is neglected. In many cases, r0 is taken to be an infinite resistor, in which case the approximation
is exact.

To solve for i′d, we can write the loop equation

vtg
1 + χ

− vts = i′sr′s + isRts = i′sr′s + (i′s + i0)Rts = i′dr′s + (i′d + i0)Rts � i′d (r′s +Rts) (58)
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Figure 15: (a) MOSFET with Thévenin sources connected to the gate and the source. (b) Simplified T
model of the circuit. (c) Norton equivalent drain circuit.

From this equation, it follows that we can write

id(sc) = i
′

d = Gm (vtg − vts) (59)

where Gm is an equivalent transconductance given by

Gm =
1

r′s +Rts

or
=

1
rs
1 + χ

+Rts

or
=

1
1

(1 + χ) gm
+Rts

(60)

We next solve for the resistance rid seen looking into the drain node. Consider the drain current id to be
an independent current source and set vtg = vts = 0. We can write

vd = i0r0 + isRts = (id − i′d) r0 + isRts = id (r0 +Rts)− i′dr0 (61)

i′d = i
′

s =
vgs
r′s
= − isRts

r′s
= − idRts

r′s

where vgs = −vs = −isRts and is = id have been used. Substitution of i′d from the second equation into the
first equation yields

vd = id (r0 +Rts)− i′dr0 = id (r0 +Rts) +
idRts
r′s

r0 = id

[
r0

(
1 +

Rts
r′s

)
+Rts

]
(62)

It follows that the drain resistance is given by

rid =
vd
id
= r0

(
1 +

Rts
r′s

)
+Rts

or
= r0

[
1 + (1 + χ)

Rts
rs

]
+Rts

or
= r0 [1 + (1 + χ) gmRts] +Rts (63)

Note that no approximations have been made in solving for rid.
In summary, the small-signal Norton equivalent circuit seen looking into the drain of a FET is a current

source id(sc) in parallel with a resistor rid given by

id(sc) = i
′

d = Gm

(
vtg
1 + χ

− vts
)

(64)
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Gm =
1

r′s +Rts

or
=

1
rs
1 + χ

+Rts

or
=

1
1

(1 + χ) gm
+Rts

(65)

rid = r0

(
1 +

Rts
r′s

)
+Rts

or
= r0

[
1 + (1 + χ)

Rts
rs

]
+Rts

or
= r0 [1 + (1 + χ) gmRts] +Rts (66)

where vtg and vts, respectively, are the Thévenin voltages seen looking out of the gate and source and Rts
is the Thévenin resistance in series with vts. Note that Rtg does not appear in the equations because the
current through it is zero.

The Source Equivalent Circuit

The source equivalent circuit is derived above for the case where the body lead is connected to the MOSFET
gate. The circuit derived here is for the case where the body is connected to signal ground. Figure 16(a)
shows the MOSFET symbol with a Thévenin equivalent source connected to the gate. The equation for the
source voltage vs follows from the simplified T model circuit in Figure 14(b). It is given by

vs =
vtg
1 + χ

− i′sr′s =
vtg
1 + χ

− (is − i0) r′s �
vtg
1 + χ

− isr′s (67)

where the approximation assumes that i0 is small compared to is. It follows that the source equivalent
circuit consists of a voltage source vs(oc) in series with a resistance ris given by

vs(oc) =
vtg
1 + χ

ris = r
′

s =
rs
1 + χ

=
1

(1 + χ) gm
(68)

The circuit is shown in Figure 16(b).

Figure 16: (a) MOSFET with Thevenin source connected to the gate and the body connected to signal
ground. (b) Source equivalent circuit.

Summary of Models

id(sc) = i
′

d = Gm

(
vtg
1 + χ

− vts
)

(69)

Gm
or
=

1

r′s +Rts

or
=

1
rs
1 + χ

+Rts

or
=

1
1

gm (1 + χ)
+Rts

or
=

1

ris +Rts
(70)

rs =
1

gm
ris = r

′

s =
rs
1 + χ

or
=

1

gm (1 + χ)
(71)
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Figure 17: Summary of the equivalent circuits.

rid = r0

(
1 +

Rts
r′s

)
+Rts

or
= r0

[
1 + (1 + χ)

Rts
rs

]
+Rts

or
= r0 [1 + (1 + χ) gmRts] +Rts (72)

rig =∞ (73)

Set χ = 0 when the body is connected to the source or when the body and the source are connected to the
same node.

Small-Signal High-Frequency Models

Figures 18 and 19 show the hybrid-π and T models for the MOSFET with the gate-source capacitance
cgs, the source-body capacitance csb, the drain-body capacitance cdb, the drain-gate capacitance cdg, and
the gate-body capacitance cgbadded. These capacitors model charge storage in the device which affect its
high-frequency performance. The first three capacitors are given by

cgs =
2

3
WLCox (74)

csb =
csb0

(1 + VSB/ψ0)
1/2

(75)

cdb =
cdb0

(1 + VDB/ψ0)
1/2

(76)

where VSB and VDB are dc bias voltages; csb0 and cdb0 are zero-bias values; and ψ0 is the built-in potential.
Capacitors cgd and cgb model parasitic capacitances. For IC devices, cgd is typically in the range of 1 to 10
fF for small devices and cgb is in the range of 0.04 to 0.15 fF per square micron of interconnect.
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Figure 18: High-frequency hybrid-π model.

Figure 19: High-frequency T model.
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