
Effects of Op-Amp Finite Gain and Bandwidth

Open-Loop Transfer Function

In our analysis of op-amp circuits this far, we have considered the op-amps to have an infinite gain
and an infinite bandwidth. This is not true for physical op-amps. In this section, we examine
the effects of a non-infinite gain and non-infinite bandwidth on the inverting and the non-inverting
amplifier circuits. Fig. 1 shows the circuit symbol of an op-amp having an open-loop voltage-gain
transfer function A (s). The output voltage is given by

Vo = A (s) (V+ − V−) (1)

where complex variable notation is used. We assume here that A (s) can be modeled by a single-pole
low-pass transfer function of the form

A (s) =
A0

1 + s/ω0
(2)

where A0 is the dc gain constant and ω0 is the pole frequency. Most general purpose op-amps have
a voltage-gain transfer function of this form for frequencies such that |A (jω)| ≥ 1.

Figure 1: Op-amp symbol.

Gain-Bandwidth Product

Figure 2 shows the Bode magnitude plot for A (jω). The radian gain-bandwidth product is defined
as the frequency ωx for which |A (jω)| = 1. It is given by

ωx = ω0

√
A2
0
− 1 � A0ω0 (3)

where we assume that A0 >> 1. This equation illustrates why ωx is called a gain-bandwidth
product. It is given by the product of the dc gain constant A0 and the radian bandwidth ω0. It is
commonly specified in Hz with the symbol fx, where fx = ωx/2π. Many general purpose op-amps
have a gain-bandwidth product fx � 1MHz and a dc gain constant A0 � 2× 105. It follows from
Eq. (3) that the corresponding pole frequency in the voltage-gain transfer function for the general
purpose op-amp is f0 � 1× 106/

(
2× 105

)
= 5Hz.

Non-Inverting Amplifier

Figure 3 shows the circuit diagram of a non-inverting amplifier. For this circuit, we can write by
inspection

Vo = A (s) (Vi − V−) (4)

V− = Vo
R1

R1 +RF
(5)
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Figure 2: Bode plot of |A (jω)|.

Simultaneous solution for the voltage-gain transfer function yields

Vo
Vi
=

A (s)

1 +A (s)R1/ (R1 +RF )
=

1 +RF /R1
1 + (1 +RF /R1) /A (s)

(6)

For s = jω and |(1 +RF/R1) /A (jω)| << 1, this reduces to Vo/Vi � (1 +RF /R1). This is the
gain which would be predicted if the op-amp is assumed to be ideal.

Figure 3: Non-inverting amplifier.

When Eq. (2) is used for A (s), it is straightforward to show that Eq. (6) can be written

Vo
Vi
=

A0f
1 + s/ω0f

(7)

where A0f is the gain constant with feedback and ω0f is the radian pole frequency with feedback.
These are given by

A0f =
A0

1 +A0R1/ (R1 +RF )
=

1 +RF/R1
1 + (1 +RF /R1) /A0

(8)

ω0f = ω0

(
1 +

A0R1
R1 +RF

)
(9)

It follows from these two equations that the radian gain-bandwidth product of the non-inverting
amplifier with feedback is given by A0fω0f = A0ω0 = ωx. This is the same as for the op-amp
without feedback. Fig. 4 shows the Bode magnitude plots for both Vo/Vi and A (jω). The figure
shows that the break frequency on the plot for Vo/Vi lies on the negative-slope asymptote of the
plot for A (jω).
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Figure 4: Bode plot for |Vo/Vi|.

Example 1 At very low frequencies, an op-amp has the frequency independent open-loop gain
A (s) = A0 = 2× 105. The op-amp is to be used in a non-inverting amplifier. The theoretical gain
is calculated assuming that the op-amp is ideal. What is the highest theoretical gain that gives an
error between the theoretical gain and the actual gain that is less than 1%?

Solution. The theoretical gain is given by (1 +RF /R1). The actual gain is always less than the
theoretical gain. For an error less than 1%, we can use Eq. (6) to write

1− 0.01 < 1

1 + (1 +RF/R1) / (2× 105)
This can be solved for the upper bound on the theoretical gain to obtain

1 +
RF
R1

< 2× 105
(
1

0.99
− 1
)
= 2020

Example 2 An op-amp has a gain-bandwidth product of 1MHz. The op-amp is to be used in a
non-inverting amplifier circuit. Calculate the highest gain that the amplifier can have if the half-
power or −3 dB bandwidth is to be 20 kHz or more.

Solution. The minimum bandwidth occurs at the highest gain. For a bandwidth of 20kHz, we
can write A0f × 20× 103 = 106. Solution for A0f yields A0f = 50.

Example 3 Two non-inverting op-amp amplifiers are operated in cascade. Each amplifier has a
gain of 10. If each op-amp has a gain-bandwidth product of 1MHz, calculate the half-power or
−3dB bandwidth of the cascade amplifier.

Solution. Each amplifier by itself has a pole frequency of 106/10 = 100 kHz, corresponding to
a radian frequency ω0f = 2π × 100, 000. The cascade combination has the voltage-gain transfer
function given by

Vo
Vi
= 100

(
1

1 + s/ω0f

)2

The half-power frequency is obtained by setting s = jω and solving for the frequency for which
|Vo/Vi|2 = 1002/2. If we let x = ω/ω0f , the resulting equation is

1002
(

1

1 + x2

)2
=
1002

2

3



This equation reduces to 1+x2 =
√
2. Solution for x yields x = 0.644. It follows that the half-power

frequency is 0.644× 100 kHz = 64.4kHz.

Inverting Amplifier

Figure 5(a) shows the circuit diagram of an inverting amplifier. Fig. 5(b) shows an equivalent
circuit which can be used to solve for V−. By inspection, we can write

Vo = −A (s)V− (10)

V− =

(
Vi
R1

+
Vo
RF

)
(R1‖RF ) (11)

These equations can be solved for the voltage-gain transfer function to obtain

Vo
Vi
=

− (1/R1)A (s) (R1‖RF )
1 + (1/RF )A (s) (R1‖RF )

=
−RF /R1

1 + (1 +RF /R1) /A (s)
(12)

For s = jω and |(1 +RF /R1) /A (jω)| << 1, the voltage-gain transfer function reduces to Vo/Vi �
−RF/R1. This is the gain which would be predicted if the op-amp is assumed to be ideal.

Figure 5: (a) Inverting amplifier. (b) Equivalent circuit for calculating Vo.

When Eq. (2) is used for A (s), it is straightforward to show that the voltage-gain transfer
function reduces to

Vo
Vi
=

−A0f
1 + s/ω0f

(13)

where A0f is the gain constant with feedback and ω0f is the radian pole frequency with feedback.
These are given by

A0f =
(1/R1)A0 (R1‖RF )

1 + (1/RF )A0 (R1‖RF )
=

RF/R1
1 + (1 +RF/R1) /A0

(14)

ω0f = ω0

(
1 +A0

R1‖RF
RF

)
= ω0

(
1 +A0

R1
R1 +RF

)
(15)

Note that A0f is defined here as a positive quantity so that the negative sign for the inverting gain
is retained in the transfer function for Vo/Vi.

Let the radian gain-bandwidth product of the inverting amplifier with feedback be denoted by
ω′x. It follows from Eqs. (14) and (15) that this is given by ω′x = A0fω0f = ωxRF/ (RF +R1).
This is less than the gain-bandwidth product of the op-amp without feedback by the factor
RF / (RF +R1). Fig. 6 shows the Bode magnitude plots for Vo/Vi and for A (jω). The frequency
labeled ω′

0f is the break frequency for the non-inverting amplifier with the same gain magnitude
as the inverting amplifier. The non-inverting amplifier with the same gain has a bandwidth that is
greater by the factor (1 +R1/RF ). The bandwidth of the inverting and the non-inverting amplifiers
is approximately the same if R1/RF << 1. This is equivalent to the condition that A0f >> 1.
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Figure 6: Bode plot for |Vo/Vi|.

Example 4 An op-amp has a gain-bandwidth product of 1MHz. Compare the bandwidths of an
inverting and a non-inverting amplifier which use the op-amp for A0f = 1, 2, 5, and 10.

Solution. The non-inverting amplifier has a bandwidth of fx/A0f . The inverting amplifier has
a bandwidth of (fx/A0f ) × RF / (R1 +RF ). If we approximate A0f of the inverting amplifier by
A0f � RF /R1, its bandwidth reduces to fx/ (1 +A0f ). The calculated bandwidths of the two
amplifiers are summarized in the following table.

A0f Non-Inverting Inverting
1 1MHz 500kHz
2 500 kHz 333kHz
5 200 kHz 167kHz
10 100 kHz 91kHz

For the case of the ideal op-amp, the V− input to the inverting amplifier is a virtual ground so
that the input impedance Zin is resistive and equal to R1. For the op-amp with finite gain and
bandwidth, the V− terminal is not a virtual ground so that the input impedance differs from R1.
We use the circuit in Fig. 5(a) to solve for the input impedance as follows:

Zin =
Vi
I1
=

Vi
(Vi − V−) /R1

=
R1

1− (V−/Vo) (Vo/Vi)
(16)

To put this into the desired form, we let V−/Vo = −1/A (s) and use Eq. (12) for Vo/Vi. The
equation for Zin reduces to

Zin = R1 +
RF

1 +A (s)
= R1 +

[
1

RF
+

(
RF
A0

+
RF
A0ω0

s

)
−1
]
−1

(17)

where Eq. (2) has been used. It follows from this equation that Zin consists of the resistor R1 in
series with an impedance that consists of the resistor RF in parallel with the series combination of
a resistor R2 and an inductor L given by

R2 =
RF
A0

(18)

L =
RF
A0ω0

(19)
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The equivalent circuit for Zin is shown in Fig. 7(a). If A0 → ∞, it follows that R2 → 0 and
L2 → 0 so that Zin → R1. The impedance transfer function for Zin is of the form of a high-pass
shelving transfer function given by

Zin (s) = RDC
1 + s/ωz
1 + s/ωp

(20)

where RDC is the dc resistance, ωp is the pole frequency, and ωz is the zero frequency. These are
given by

RDC = R1 +
RF

1 +A0
(21)

ωp =
R2 +RF

L
= ω0 (1 +A0) (22)

ωz =
R2 +RF‖R1

L
= ω0

(
1 +

A0R1
R1 +RF

)
(23)

The Bode magnitude plot for Zin is shown in Fig. 7(b).

Figure 7: (a) Equivalent input impedance. (b) Bode plot for |Zin|.

Example 5 At very low frequencies, an op-amp has the frequency independent open-loop gain
A (s) = A0 = 2 × 105. The op-amp is to be used in an inverting amplifier with a gain of −1000.
What is the required ratio RF/R1? For the value of RF /R1, how much larger is the input resistance
than R1?

Solution. By Eq. (12), we have

−1000 = − RF /R1
1 + (1 +RF /R1) / (2× 105)

This can be solved for RF /R1 to obtain

RF
R1

=
2× 105 + 1

(2× 105/1000)− 1 = 1005

By Eq. (17), the input resistance can be written

Rin = R1

(
1 +

RF /R1
1 +A0

)
= R1

(
1 +

1005

1 + 2× 105
)
= 1.005R1
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Example 6 An op-amp has a dc gain A0 = 2×105 and a gain bandwidth product fx = 1MHz. The
op-amp is used in the inverting amplifier of Fig. 5(a). The circuit element values are R1 = 1kΩ
and RF = 100 kΩ. Calculate the dc gain of the amplifier, the upper cutoff frequency, and the value
of the elements in the equivalent circuit for the input impedance. In addition, calculate the zero
and the pole frequencies in Hz for the impedance Bode plot of Fig. 7(b).

Solution. The dc voltage gain is −A0f . Eq. (14) can be used to calculate A0f to obtain

A0f =
2× 105 × (1k‖100k) /1k

1 + 2× 105 × (1k‖100k) /100k = 99.95

By Eqs. (3) and (15), the upper cutoff frequency f0f is given by

fof =
ω0f
2π

=
106

2× 105
(
1 + 2× 1051k‖100k

100k

)
= 9.91 kHz

The element values in the equivalent circuit of Fig. 7(a) for the input impedance are as follows:

R1 = 1kΩ, RF = 100 kΩ, R2 = 0.5Ω, and L = 15.9mH

where Eqs. (18) and (19) have been used for R2 and L. The pole and zero frequencies in the Bode
impedance plot are

fp = f0 (1 +A0) =
fx
A0
(1 +A0) = 1.00MHz

fz = f0

(
1 +A0

R1
R1 +RF

)
= 9.91 kHz
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