Effects of Op-Amp Finite Gain and Bandwidth

Open-Loop Transfer Function

In our analysis of op-amp circuits this far, we have considered the op-amps to have an infinite gain
and an infinite bandwidth. This is not true for physical op-amps. In this section, we examine
the effects of a non-infinite gain and non-infinite bandwidth on the inverting and the non-inverting
amplifier circuits. Fig. 1 shows the circuit symbol of an op-amp having an open-loop voltage-gain
transfer function A (s). The output voltage is given by

Vo=A(s) (Vi = V2) (1)

where complex variable notation is used. We assume here that A (s) can be modeled by a single-pole
low-pass transfer function of the form

Ao

A(S) - 1—|—s/w0

(2)
where Ag is the dc gain constant and wq is the pole frequency. Most general purpose op-amps have
a voltage-gain transfer function of this form for frequencies such that |A (jw)| > 1.
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Figure 1: Op-amp symbol.

Gain-Bandwidth Product

Figure 2 shows the Bode magnitude plot for A (jw). The radian gain-bandwidth product is defined
as the frequency w, for which |A (jw)| = 1. It is given by

wz:woy/A(Z)*lﬁAowo (3)

where we assume that Ay >> 1. This equation illustrates why w, is called a gain-bandwidth
product. It is given by the product of the dc gain constant Ay and the radian bandwidth wg. It is
commonly specified in Hz with the symbol f,, where f, = w,/27. Many general purpose op-amps
have a gain-bandwidth product f, ~ 1MHz and a dc gain constant Ag ~ 2 x 10°. It follows from
Eq. (3) that the corresponding pole frequency in the voltage-gain transfer function for the general
purpose op-amp is fo >~ 1 x 106/ (2 X 105) = 5Hz.

Non-Inverting Amplifier

Figure 3 shows the circuit diagram of a non-inverting amplifier. For this circuit, we can write by
inspection

Vo= A(s) (Vi — Vo) (4)
Ry
V-=VeR TRy (5)
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Figure 2: Bode plot of |A (jw)|.

Simultaneous solution for the voltage-gain transfer function yields
Vo _ Al(s) _ 1+ Rp/Ry (6)
Vi 1+A(S)R1/(R1+RF) 1+(1+RF/R1)/A(S)

For s = jw and |(1+ Rp/R1) /A (jw)| << 1, this reduces to V,/V; ~ (1 + Rp/R:1). This is the
gain which would be predicted if the op-amp is assumed to be ideal.

Figure 3: Non-inverting amplifier.

When Eq. (2) is used for A (s), it is straightforward to show that Eq. (6) can be written

Vo Aos

V. = T afoor "

where Agy is the gain constant with feedback and wgy is the radian pole frequency with feedback.
These are given by

Agj = Ao _ I+ R/l (8)
" T 14 AgRi/(Ri + Rrp) 1+ (1+Rr/Ry) /4
AR
Wof = Wo <1+ﬁ> 9)

It follows from these two equations that the radian gain-bandwidth product of the non-inverting
amplifier with feedback is given by Agfwor = Aowo = w,. This is the same as for the op-amp
without feedback. Fig. 4 shows the Bode magnitude plots for both V,/V; and A (jw). The figure
shows that the break frequency on the plot for V,/V; lies on the negative-slope asymptote of the
plot for A (jw).
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Figure 4: Bode plot for |V, /V;|.

Example 1 At very low frequencies, an op-amp has the frequency independent open-loop gain
A(s) = Ag =2 x 105. The op-amp is to be used in a non-inverting amplifier. The theoretical gain
15 calculated assuming that the op-amp is ideal. What is the highest theoretical gain that gives an
error between the theoretical gain and the actual gain that is less than 1%7?

Solution. The theoretical gain is given by (1 + Rp/Ry). The actual gain is always less than the
theoretical gain. For an error less than 1%, we can use Eq. (6) to write

1
1+ (11 Rr/R1) /(2 x 109)

This can be solved for the upper bound on the theoretical gain to obtain

1-0.01 <

1+ 88 -9 105 (—— —1) =2020
TR < (0.99 )

Example 2 An op-amp has a gain-bandwidth product of 1 MHz. The op-amp is to be used in a
non-inverting amplifier circuit. Calculate the highest gain that the amplifier can have if the half-
power or —3dB bandwidth is to be 20kHz or more.

Solution. The minimum bandwidth occurs at the highest gain. For a bandwidth of 20 kHz, we
can write Aoy x 20 x 10% = 10°. Solution for Ags yields A = 50.

Example 3 Two non-inverting op-amp amplifiers are operated in cascade. Fach amplifier has a
gain of 10. If each op-amp has a gain-bandwidth product of 1 MHz, calculate the half-power or
—3dB bandwidth of the cascade amplifier.

Solution. Each amplifier by itself has a pole frequency of 10°/10 = 100 kHz, corresponding to
a radian frequency wor = 27 x 100,000. The cascade combination has the voltage-gain transfer

function given by
b Ly
Vo =100 [ —————
Vi 1+s / wof

The half-power frequency is obtained by setting s = jw and solving for the frequency for which
|V, /Vi]> = 1002/2. Tf we let & = w/wqy, the resulting equation is

1002 1 2:&)2
14 22 2




This equation reduces to 1+xz2 = v/2. Solution for z yields z = 0.644. It follows that the half-power
frequency is 0.644 x 100 kHz = 64.4 kHz.
Inverting Amplifier

Figure 5(a) shows the circuit diagram of an inverting amplifier. Fig. 5(b) shows an equivalent
circuit which can be used to solve for V_. By inspection, we can write

Vo= —A(s) V- (10)
Vi V%
-~ \p Tp. 11
(3 + ) (e )
These equations can be solved for the voltage-gain transfer function to obtain
Vo _ —(1/R1)A(s) (BalRr) _ —Rp/R 12)

Vi 14 (1/Rp)A(s)(Ri|Rp) 1+ (1+ Rp/R1)/A(s)

For s = jw and |(1+ Rr/Ry) /A (jw)| << 1, the voltage-gain transfer function reduces to V,/V; ~
—Rp/R;y. This is the gain which would be predicted if the op-amp is assumed to be ideal.
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Figure 5: (a) Inverting amplifier. (b) Equivalent circuit for calculating V.

When Eq. (2) is used for A (s), it is straightforward to show that the voltage-gain transfer

function reduces to
Vo _—Aos (13)
Vi T T4 s/wor

where Aoy is the gain constant with feedback and wqy is the radian pole frequency with feedback.
These are given by

__ (YR) Ao (Ri||Rr)  _ Rp /Ry (14)
O T 1+ (1/Rr) Ao (Ri[Rr) 1+ (1+ Rr/Ry) /Ao
wof = Wo (1—1—1%%?) = wo <1+A0%) (15)

Note that Agy is defined here as a positive quantity so that the negative sign for the inverting gain
is retained in the transfer function for V,/V;.

Let the radian gain-bandwidth product of the inverting amplifier with feedback be denoted by
wh,. It follows from Eqgs. (14) and (15) that this is given by w), = Agfwor = waRr/ (RF + R1).
This is less than the gain-bandwidth product of the op-amp without feedback by the factor
Rp/(Rp + R1). Fig. 6 shows the Bode magnitude plots for V,/V; and for A (jw). The frequency
labeled wyj, ¢ is the break frequency for the non-inverting amplifier with the same gain magnitude
as the inverting amplifier. The non-inverting amplifier with the same gain has a bandwidth that is
greater by the factor (1 + Ry /Rp). The bandwidth of the inverting and the non-inverting amplifiers
is approximately the same if R;/Rr << 1. This is equivalent to the condition that Agy >> 1.
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Figure 6: Bode plot for |V,/Vi|.

Example 4 An op-amp has a gain-bandwidth product of 1 MHz. Compare the bandwidths of an
inverting and a non-inverting amplifier which use the op-amp for Agy =1, 2, 5, and 10.

Solution. The non-inverting amplifier has a bandwidth of f,/Ags. The inverting amplifier has
a bandwidth of (f;/Aof) X Rrp/(R1+ RF). If we approximate Aoy of the inverting amplifier by
Ao ~ Rp/Ry, its bandwidth reduces to f,/(1+ Aof). The calculated bandwidths of the two
amplifiers are summarized in the following table.

Ags Non-Inverting Inverting

1 1MHz  500kHz
2 500kHz  333kHz
5 200kHz  167kHz
10 100 kHz 91kHz

For the case of the ideal op-amp, the V_ input to the inverting amplifier is a virtual ground so
that the input impedance Z;, is resistive and equal to R;. For the op-amp with finite gain and
bandwidth, the V_ terminal is not a virtual ground so that the input impedance differs from Rj.
We use the circuit in Fig. 5(a) to solve for the input impedance as follows:

Vi Vi Ry
Ton (Vi=Vo)/Re 1= (Vo Vo) (Vo/Vi)
To put this into the desired form, we let V_/V, = —1/A(s) and use Eq. (12) for V,/V;. The
equation for Z;, reduces to

(16)

-1

Rp ;L-%<§£-%‘RFS)1 (17)

Zin = Ry + ——F
B T A

=R+

Rr Ao Agwo

where Eq. (2) has been used. It follows from this equation that Z;, consists of the resistor R; in
series with an impedance that consists of the resistor Rp in parallel with the series combination of
a resistor Re and an inductor L given by

Ry = Ay (18)
= down (19)
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The equivalent circuit for Z;, is shown in Fig. 7(a). If Ag — oo, it follows that Ry — 0 and
Ls — 0 so that Z;,, — Ry. The impedance transfer function for Z;, is of the form of a high-pass
shelving transfer function given by

1+S/UJZ

Zin (5) =
(5) RDCl + s/wp

(20)

where Rpc is the dc resistance, w), is the pole frequency, and w, is the zero frequency. These are
given by

Rp
= 21
Rpc = R1 + 1T A (21)
R R
wy = % — wo (1 + Ap) (22)
Ry +RF||R1 AgRy
w T wo + R+ Rr (23)

The Bode magnitude plot for Z;, is shown in Fig. 7(b).
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Figure 7: (a) Equivalent input impedance. (b) Bode plot for |Z;,|.

Example 5 At very low frequencies, an op-amp has the frequency independent open-loop gain
A(s) = Ag = 2 x 105, The op-amp is to be used in an inverting amplifier with a gain of —1000.
What is the required ratio Rp/R1? For the value of Rp/R1, how much larger is the input resistance
than R1?

Solution. By Eq. (12), we have

Rrp/Ry

000 = T R Ry S (2 X 107)

This can be solved for Rrp/R; to obtain

5
Rp _ _ 2x10°+1 .
Ry (2% 105/1000) — 1

By Eq. (17), the input resistance can be written

Rr/R; 1005
& R1< +1+Ao> Rl( +1+2><105> 00541




Example 6 An op-amp has a dc gain Ag = 2x10° and a gain bandwidth product f, = 1 MHz. The
op-amp is used in the inverting amplifier of Fig. 5(a). The circuit element values are Ry = 1kQ
and Rp = 100kQ2. Calculate the dc gain of the amplifier, the upper cutoff frequency, and the value
of the elements in the equivalent circuit for the input impedance. In addition, calculate the zero
and the pole frequencies in Hz for the impedance Bode plot of Fig. 7(b).

Solution. The dc voltage gain is —Ag¢. Eq. (14) can be used to calculate Ag¢ to obtain

2 x 10° x (1k||100k) /1k

Ao = = 99.95
0F = T2 % 10° x (1k[[100k) /100k
By Egs. (3) and (15), the upper cutoff frequency fy; is given by
wof 10° 5 1k|| 100k
op = —L = 142x10°——=) =9.91kH
Jor = 5 = 2x10s \M T2 T 0p 9-91klz

The element values in the equivalent circuit of Fig. 7(a) for the input impedance are as follows:
Ry =1k, Rp =100kS2, Ry = 0.5, and L = 15.9mH

where Egs. (18) and (19) have been used for Ry and L. The pole and zero frequencies in the Bode
impedance plot are

fo=fo(l+ Ay = —ﬁ’” (1+ Ag) = 1.00 MHz
0
_ Ry _
f-=fo (1 + AORl +RF) = 9.91kHz



