ECE3050 Assignment 12

1. The figure shows a differential amplifier. Each MOSFET has the parameters $g_m = 1/400 \,\mathrm{S}$, $r_0 = 40 \,\mathrm{k}\Omega$, and $\chi = 0.5$. It is given that $R_D = 10 \,\mathrm{k}\Omega$ and $R_Q = 20 \,\mathrm{k}\Omega$. The answers given assume the r_0 approximations.

- (a) Show that the resistance seen looking out of each source is $R_{ts} = 263.16 \,\Omega$, the resistance seen looking into each drain is $r_{id} = 79.74 \,\mathrm{k}\Omega$, and the output resistance seen looking into the two outputs with $v_{i1} = v_{i2} = 0$ is $r_{out1} = r_{out2} = 8.886 \,\mathrm{k}\Omega$.
- (b) For the differential inputs $v_{i1} = v_{id}/2$ and $v_{i2} = -v_{id}/2$, show that $v_{o1}/v_{id} = -v_{o2}/v_{id} = -11.11$.
- (c) For the common-mode inputs $v_{i1} = v_{icm}$ and $v_{i2} = v_{icm}$, show that $v_{o1}/v_{icm} = v_{o2}/v_{icm} = -0.147$.
- 2. For a MOSFET diff amp, show that the body effect cancels out with differential inputs if there is no external resistor in series with the source leads, i.e. $R_S = 0$. Hint: For differential inputs, the currents can be calculated with the sources connected to signal ground. This is the case in the preceding problem.
- 3. The figure shows a MOSFET differential amplifier. For the MOSFETs, it is given that $k'=0.008\,\mathrm{A/V^2},\,W/L=1,\,V_{TO}=1.5\,\mathrm{V},\,\lambda=0,\,\mathrm{and}\,\chi=0.4.$ For the circuit, it is given that $V^+=20\,\mathrm{V},\,V^-=-20\,\mathrm{V},\,I_Q=2.5\,\mathrm{mA},\,R_G=5\,\mathrm{k}\Omega,\,R_S=100\,\Omega,\,\mathrm{and}\,R_D=12\,\mathrm{k}\Omega.$ Assume the dc components of each input are zero, i.e. $V_{I1}=V_{I2}=0.$
 - (a) With $v_{I1} = v_{I2} = 0$, calculate V_{GS} for each transistor. Answer: $V_{GS} = 1.956 \,\mathrm{V}$.
 - (b) With $v_{I1} = v_{I2} = 0$, calculate V_D for each transistor. Answer: $V_D = 5 \text{ V}$.
 - (c) Use the value of V_{GS} found in part (a) and the value of V_D found in part (b) to solve for V_{DS} for each transistor. Verify that $V_{DS} > V_{GS} V_{TO}$. Answers: $V_{DS} = 6.956 \,\mathrm{V}$ and $V_{GS} V_{TO} = 0.456 \,\mathrm{V}$.
 - (d) Calculate g_m , r_s , r'_s , r_0 , and the resistance R_{ts} seen looking out of each source. Answers: $g_m = 5.477 \,\text{mS}$, $r_s = 182.6 \,\Omega$, and $r'_s = 130.4 \,\Omega$, $r_0 = \infty$, and $R_{ts} = 330.4 \,\Omega$.

1

(e) With $v_{i2} = 0$, show that

$$\frac{v_{o1}}{v_{i1}} = -\frac{v_{o2}}{v_{i1}} = -18.6 \qquad r_{out} = 12 \, \mathrm{k}\Omega$$

(f) With $v_{i1} = 0$, use the Norton drain circuit to show that

$$\frac{v_{o2}}{v_{i2}} = -\frac{v_{o1}}{v_{i2}} = -18.6$$
 $r_{out} = 12 \,\mathrm{k}\Omega$

(g) For the differential input signals $v_{i1} = v_{id}/2$ and $v_{i2} = -v_{id}/2$, show that

$$\frac{v_{o1}}{v_{id}} = -\frac{v_{o2}}{v_{id}} = -18.6$$

(h) For the common mode inputs $v_{i1} = v_{i2} = v_{icm}$, why is the common-mode gain equal to zero? Answer: Because the tail supply is a perfect current source.