## ECE 3040 Microelectronic Circuits Quiz 6, June 23, 2004

Professor Leach Name\_\_\_\_\_

**Instructions.** Print your name in the space above. The quiz is closed-book and closed-notes. The quiz consists of 2 problems. **Honor Code Statement:** I have neither given nor received help on this quiz. Initials \_\_\_\_\_\_

1. A two stage MOSFET amplifier is shown. Each device has the parameters  $I_D=1.5\,\mathrm{mA},$   $g_m=0.004\,\mathrm{S},\ V_{DS}=10\,\mathrm{V},\ \mathrm{and}\ r_0=30\,\mathrm{k}\Omega.$  The element values are  $R_1=1\,\mathrm{k}\Omega,$   $R_2=3\,\mathrm{k}\Omega,\ R_{D1}=36\,\mathrm{k}\Omega,\ \mathrm{and}\ R_{D2}=12\,\mathrm{k}\Omega.$ 



(a) What is the type or configuration of each amplifier stage? Each stage is a common-source stage.

(b) What is the input resistance seen looking into the  $v_i$  node?

$$r_{in} = R_1 + R_2 = 4 \,\mathrm{k}\Omega$$

(c) What is  $v_{g1}/v_i$ ?

$$\frac{v_{g1}}{v_i} = \frac{R_2}{R_1 + R_2} = 0.75$$

(d) What is  $v_{d1}/v_{g1}$ ?

$$\frac{v_{d1}}{v_{g1}} = -g_m \left( r_0 || R_{D1} \right) = -65.46$$

(e) What is  $v_o/v_{d1}$ ?

$$\frac{v_o}{v_{d1}} = -g_m \left( r_0 || R_{D2} \right) = -34.29$$

(f) Combine the above three answers to determine the value of  $v_o/v_i$ .

$$\frac{v_o}{v_i} = \frac{v_{g1}}{v_i} \times \frac{v_{d1}}{v_{g1}} \times \frac{v_o}{v_{d1}} = +1684$$

(g) What is the output resistance seen looking into the  $v_o$  node?

$$r_{out} = r_0 || R_{D2} = 8.57 \,\mathrm{k}\Omega$$

1

2. (a) What is the following circuit called and why? From HW problem 1, it is called a phase splitter because, with equal resistors in the source and in the drain, the two gains have equal magnitudes but opposite signs.



- (b) When a common-drain stage is added between a common-source stage and a load resistor, why does the gain increase? Because the CD stage isolates the load resistor from the CS stage, which increases its gain. The CD stage has a low output resistance so that it can drive the load resistor without its gain decreasing.
- (c) What is the basis of the assumption that capacitors in a circuit can be replaced with a short circuit for an ac analysis of the circuit? For an ac signal with an angular frequency  $\omega$ , the phasor impedance of a capacitor is  $Z_C = (j\omega C)^{-1}$  which can be made as small as desired by making C large enough.
- (d) What does the body effect model in the MOSFET? The body effect models the change in drain current caused by a change in the body-to-source voltage. Alternately, the body effect models the change in threshold voltage caused by a change in the body-to-source voltage.