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Abstract—Collaborative Filtering (CF) is the most popular
recommendation algorithm, which exploits the collected historic
user ratings to predict unknown ratings. However, traditional
recommender systems run at the central servers, and thus users
have to disclose their personal rating data to other parties.
This raises the privacy issue, as user ratings can be used to
reveal sensitive personal information. In this paper, we propose
a semi-distributed Belief Propagation (BP) approach to privacy-
preserving item-based CF recommender systems. Firstly, we
formulate the item similarity computation as a probabilistic
inference problem on the factor graph, which can be efficiently
solved by applying the BP algorithm. To avoid disclosing user
ratings to the server or other user peers, we then introduce a
semi-distributed architecture for the BP algorithm. We further
propose a cascaded BP scheme to address the practical issue
that only a subset of users participate in BP during one time
slot. We analyze the privacy of the semi-distributed BP from
a information-theoretic perspective. We also propose a method
that reduces the computational complexity at the user side.
Through experiments on the MovieLens dataset, we show that
the proposed algorithm achieves superior accuracy.

Index Terms—Collaborative filtering, recommender systems,
privacy, belief propagation, factor graph.

I. INTRODUCTION

THE thriving of the Internet and online services has

overwhelmed users with an explosive amount of product

information. It is too exhausting for users to go through the

complete list of thousands of items, e.g., books and movies,

to find items interest them. Recommender systems have been

widely used in e-commerce websites, such as Amazon.com

and Netflix.com, to suggest to users items that they might like

[1]. Good recommendation services increase user satisfaction

and boost business. Since users have different tastes, it ne-

cessitates personalized recommendation services that meet an

individual’s preferences.

Collaborative Filtering (CF) is the most popular recommen-

dation algorithm [2], where users express opinions on items

by rating them, and the CF algorithm exploits the collected

historic user ratings to predict ratings on unseen items for an

individual user, and recommends to the user the items with the

highest predicted ratings. The CF recommendation can be di-

vided into user-based and item-based methods. The user-based
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CF method recommends to an active user new items favorably

rated by other users with similar tastes to the active user [3].

The item-based CF method on the other hand analyzes the

similarity between items using the aggregated user ratings,

and recommends to an active user new items that are similar

to the items he liked in the past [4]. Closely related to the

item-based CF is the content-based recommendation method,

which also recommends similar items. However, the content-

based method evaluates item similarity based on the explicit

features that describe the items, and hence it is limited by the

content analysis techniques, as it is difficult to automatically

extract features from multimedia data [2]. The item-based CF

recommendation is immune to such problems, an important

reason for the popularity of the CF recommendation.

In traditional recommender systems, the recommendation

algorithm is run at the central server of the commercial

websites or other third party providers, and thus the users have

to disclose their personal information, such as preferences,

age and gender, to the server in order to receive satisfactory

recommendation services. This raises the privacy issue, as

users simply have no control over how their personal data

will be disseminated and used [5]. It is not uncommon that

websites sell to other parties such data, which are valuable

for targeted advertising. As users become more concerned

about their online privacy, they are less willing to directly

release their personal information. Since detailed user profiles

are difficult to obtain, most recommender systems employ

the CF recommendation approach which only relies on the

user ratings. Although rating data do not directly tell personal

details, it is still possible to infer user demographics, such as

age and gender, from their ratings [6], and even uncover user

identities and reveal sensitive personal information with access

to other databases [7]. While personalized recommendations

at e-commerce websites have been very successful [8], users

are increasingly worried about online privacy [9]. Privacy-

preserving CF recommender systems are thus in urgent need.

The challenge stems from the conflict between accuracy and

privacy. That is, to provide recommendations that better match

the user’s tastes, the system needs to know more about the user.

Most privacy-preserving recommender systems are devel-

oped either by obfuscating user data with random noise [10]

or fake data [11] at the cost of recommendation accuracy, or

by encrypting user data using cryptography techniques [12]

which require careful key management. In this paper, we

hope to build a recommender system with intrinsic privacy-

preserving properties. To achieve this goal, it is evident that

any communications between the server and users or between

user peers should avoid exposing user ratings. An interesting

work in [13] utilized concordance measure for computing user
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similarity required by the user-based CF algorithm, where

computation is conducted between users without exposure of

their ratings to each other, but unfortunately, to collaboratively

generate recommendation, users need to reveal ratings to

other users. We notice that user-based CF relies on direct

collaboration among users, i.e., a user needs to know what

other people like to find out what he might like, whereas

item-based CF exploits the consistency in an individual user’s

taste, i.e., if a user likes an item, he might also like other

items similar to it. We consider item-based CF a better choice

for privacy-preserving recommender systems. The accuracy of

the item-based CF system depends on the measure of item

similarity, which has to be estimated based on ratings on items,

and further, subject to the privacy constraint.

In this paper, we introduce a semi-distributed Belief Prop-

agation (BP) approach to privacy-preserving item-based CF

recommender systems. Firstly, we formulate the item similar-

ity computation, a key step of item-based CF, as a probabilistic

inference problem on a proper factor graph, which can then

be efficiently solved using BP. Then we develop a semi-

distributed architecture for BP, where probabilistic messages

on item similarity are exchanged between the server and users,

without disclosing user ratings to the server or other peer

users. We further propose a cascaded BP scheme to address

the practical issue that only a subset of users are available for

BP during one time slot. Each user locally generates rating

predictions by averaging his own ratings on items weighted

according to their similarities to other unseen items. Hence,

the proposed item-based CF algorithm preserves user privacy

in both item similarity computation and rating prediction. We

analyze the achieved privacy of the semi-distributed BP from

a information-theoretic perspective. We also propose a method

that reduces the computational complexity of BP at the user

side. Through experiments on the MovieLens dataset, we show

that our algorithm achieves superior accuracy.

The rest of the paper is organized as follows. In Sec. II,

we introduce the preliminaries. In Sec. III, we present the

modelling and computation of item similarity on factor graphs

as a key step of item-based CF. In Sec. IV, we describe the

semi-distributed privacy-preserving architecture as well as the

cascaded BP scheme. In Sec. V, we present the information-

theoretic privacy analysis. In Sec. VI, we analyze and reduce

the computational complexity. In Sec. VII, we evaluate the

recommendation performance of the proposed algorithm on

the MovieLens dataset, and compare it against other well-

known item-based CF algorithms. In Sec. VIII, we review the

related works on privacy-preserving information processing

techniques and applications of BP to recommender systems.

In Sec. IX, we conclude this paper 1.

II. PRELIMINARIES

A. Collaborative Filtering

Assuming there are M users and N items in a recommender

system, let U = {1, . . . ,M} represent the set of all users,

and I = {1, . . . , N} represent the set of all items. A user u

1Part of this work was previously published in [14].

expresses his opinion on item i in the form of rating rui which

takes values from a finite discrete set Γ = {r|1 ≤ r ≤ T, r =
1, 2, . . .}, e.g, Γ = {1, 2, 3, 4, 5}. We arrange the collection

of all ratings in an incomplete M ×N matrix R, with rui at

the intersection of u-th row and i-th column. The entries of

unknown ratings are unfilled. Let Iu denote the subset of items

rated by user u, and Ui denote the subset of users who have

rated item i. The task of a recommender system is to predict

the ratings for an active user u on the subset of unseen items

I\Iu. Throughout this paper, we focus on the item-based CF

recommendation algorithm [4].

To predict the rating rui for user u on an unseen item i, the

algorithm sorts the items in Iu according to their similarity to

item i in descending order, and finds a subset of top K most

similar items, denoted by Nui, where |Nui| = K . We refer to

Nui as the neighbourhood of item i from user u’s perspective,

and K as the neighborhood size. Then rui is predicted by

r̂ui =

∑

j∈Nui
sij × ruj

∑

j∈Nui
|sij |

, (1)

where sij is the similarity between items i and j. The accuracy

of the algorithm depends on the measure of item similarity sij ,

which is computed based on the observed ratings on items.

The user-based CF algorithm uses a similar formula to (1),

but based on ratings from other users.

Several well-known methods for item similarity compu-

tation include Cosine Similarity (CS), Pearson Correlation

Similarity (PCS), and Adjusted Cosine Similarity (ACS) [4].

Yet, all of those mentioned methods directly operate on ratings

from different users, which requires users to disclose ratings

to the server or other users. In this paper, we will introduce a

semi-distributed BP algorithm for item similarity computation

with intrinsic privacy-preserving property.

B. Factor Graphs and Belief Propagation

A factor graph is a bipartite graph that expresses the

factorization structure of a global function of many variables,

where variable nodes and factor nodes represent variables and

local functions, respectively, and an edge connects a variable

node to a factor node if and only if the variable is an argument

of the local function represented by the factor node [15].

The sum-product BP algorithm is a message-passing algo-

rithm that operates on the factor graph, in which messages

are exchanged between the factor nodes and variable nodes.

It essentially exploits the factorization structure to efficiently

compute marginal functions from the global function [15],

[16].

III. MODELLING ITEM SIMILARITY ON FACTOR GRAPHS

A. Probabilistic Problem Formulation

We model the similarity sij between items i and j as a

discrete random variable that takes values from a predefined

set S. The total number of possible values is L = |S|. Let

Si = {sij : 1 ≤ j ≤ N, j 6= i} be the set of item similarities

between item i and other items. We denote by P (Si|R) the

joint posterior probability distribution of Si. To obtain sij ,
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Fig. 1: The factor graph Gi.

we need the marginal posterior probability distribution of sij ,

which can be derived by

P (sij |R) =
∑

si1∈S

. . .
∑

si(j−1)∈S

∑

si(j+1)∈S

. . .
∑

siN∈S

P (Si|R) .

(2)

For notational convenience, we rewrite (2) for the sum over

all variables in Si except sij as

P (sij |R) =
∑

Si\sij

P (Si|R) . (3)

However, direct computation using (3) is not appealing, be-

cause it must be performed by a central server, and thus users

are required to disclose their ratings to the server. Moreover,

(3) incurs an exponential complexity of O
(

LN
)

. We instead

resort to the factor graph to express the factorization of

P (Si|R), and apply the efficient sum-product BP algorithm

to infer the marginal posterior probability distributions. More

importantly, as will be described in Sec. IV, the BP algorithm

can be carried out in a semi-distributed manner, so that the

part of computation that requires knowledge of user ratings

can be locally performed by the user, eliminating the need to

disclosing user ratings.

B. Modelling with Factor Graphs

We first find a proper factorization for P (Si|R). For each

user u ∈ Ui, we denote Sui = {sij : j ∈ Iu\i} as the set

of item similarities between item i and other items user u has

rated, and use a local function fu(Sui) to model the dependen-

cies among variables in Sui from user u’s perspective. Hence,

P (Si|R) factorizes into local functions as follows

P (Si|R) =
1

Z

∏

u∈Ui

fu(Sui), (4)

where Z is a normalization constant. We construct a factor

graph Gi for the factorization in (4) as illustrated in Fig. 1,

where there are |Si| variable nodes and |Ui| factor nodes. Each

sij ∈ Si is represented by variable node j in Gi, and each local

function fu(Sui) is represented by factor node u. The subset

of variable nodes for Sui are connected to factor node u via

edges. Let Uij denote the set of common users of items i
and j, Uij = Ui ∩ Uj . Hence, variable node j is connected

to |Uij | factor nodes in Gi. Essentially, if a user u has rated

item i and other items in Iu\i, then this user has a belief

on the similarity sij , ∀j ∈ Iu\i, from his perspective. The

factor graph allows users’ beliefs be exchanged and aggregated

following the principle of sum-product message passing. To

solve for all item similarities {Si : 1 ≤ i ≤ N}, a total of N
such factor graphs need to be constructed.

fu

si1 si2 sij

µ
(n−1)
1,u

µ
(n−1)
2,u

λ
(n)
u,j

(a) The λ-message λ
(n)
u,j

(sij).

f1 f2 fu

sij

λ
(n)
1,j

λ
(n)
2,j

µ
(n)
j,u

(b) The µ-message µ
(n)
j,u

.

Fig. 3: Illustration of message passing at iteration n.

The local function fu(Sui) determines how user u estimates

item similarity based on his own ratings. It should be properly

designed with regard to the eventual goal to predict ratings

using (1). For a user u who has rated item i, we assume

for now rating rui is unknown, and let Îu = Iu\i. Given

a configuration of item similarities in Sui, user u predicts rui
as

r̂ui(Sui) =

∑

j∈Îu
sij × ruj

∑

j∈Îu
|sij |

. (5)

Note that (5) has a similar form to (1). Then user u checks

r̂ui(Sui) against the actual rating rui using the following factor

node function

fu (Sui) =
1

Zu

exp

{

−
1

σ2
(r̂ui(Sui)− rui)

2

}

, (6)

where Zu is a normalization constant, and σ is a designing

parameter that controls the sensitivity of fu (Sui) to the

discrepancy between r̂ui(Sui) and rui. We note that fu (Sui)
decreases with increasing discrepancy.

C. BP for Similarity Computation

We describe the sum-product BP algorithm to infer the

marginal posterior distribution P (sij |R), ∀sij ∈ Si, on the

factor graph Gi, without worrying about privacy. Later in

Sec. IV-A, we will introduce the semi-distributed implemen-

tation of BP for privacy, yet with no impacts on the computed

similarities. Since the constructed factor graph has loops, we

apply the “loopy” BP algorithm that iteratively exchanges

messages between factor nodes and variable nodes along the

edges until convergence [15]. As in the sum-product principle,

there are two types of messages passed on Gi: (i) The λ-

message λu,j(sij) sent from a factor node u to a variable

node j, and (ii) the µ-message µj,u(sij) sent from a variable

node j to a factor node u.

We illustrate the message passing in Fig. 3. In each iteration,

each node (factor node or variable node) in the factor graph

generates and sends messages to the neighbor nodes connected

to it, based on incoming messages. In iteration n, factor node

u generates the λ-message λ
(n)
u,j (sij) sent to variable node j by

computing the product of local factor function fu(sui) with all

µ-messages received in the previous iteration from neighbor
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Fig. 2: Architecture of semi-distributed BP.

variable nodes of factor node u, excluding the message from

the recipient variable node j, and sums out all variables except

sij as follows

λ
(n)
u,j (sij) ∝

∑

Sui\sij

fu(Sui)
∏

h∈Îu\j

µ
(n−1)
h,u (sih). (7)

The λ-message λ
(n)
u,j (sij) is a list of the beliefs on the similar-

ity sij = s, ∀s ∈ S, perceived from user u’s perspective, given

the current collective knowledge of the similarity between

other items in Îu\j and item i.

Variable node j generates the µ-message µ
(n)
j,u (sij) sent to

factor node u as the product of all incoming λ-messages re-

ceived in the current iteration from all factor nodes connected

to variable node j, excluding the one from the recipient factor

node u as follows

µ
(n)
j,u (sij) ∝

∏

f∈Fj\u

λ
(n)
f,j (sij), (8)

where Fj denotes the set of factor nodes connected to variable

node j. Here in graph Gi, Fj = {u : u ∈ Uij}. The µ-message

µ
(n)
j,u (sij) is a list of beliefs on the similarity sij = s, ∀s ∈ S,

which is generated by aggregating beliefs from other users in

Uj\u on the similarity sij .

After convergence, the marginal posterior distribution

P (sij |R) is computed at variable node j as product of all

λ-messages received from neighbor factor nodes connected to

variable node j as

P (sij |R) =
1

Zij

∏

f∈Fj

λ
(n)
f,j (sij), (9)

where Zij is a normalization constant. Finally, based on the

marginal posterior distribution P (sij |R), the item similarity

sij can be estimated in various ways. We consider using the

minimum mean squared error criterion, for which the optimal

estimated sij is given by the expectation

ŝij =
∑

s∈S

s× P (sij = s|R) . (10)

We summarize the BP algorithm for computing Si on factor

graph Gi in Alg. 1.

Algorithm 1 BP on Gi for computing item similarity Si.

• Initialize all messages as λ
(0)
u,j(sij = s) = 1

L
and

µ
(0)
j,u(sij = s) = 1

L
, ∀s ∈ S, and set iteration n = 1.

• Iterative message passing until convergence.

(a) Update all λ-messages using (7);

(b) Update all µ-messages using (8);

(c) n = n+ 1. If not convergent, repeat (a) and (b).

• Compute marginal posterior probability distributions of

sij ∈ Si using (9).

• Compute item similarity sij ∈ Si using (10).

IV. SEMI-DISTRIBUTED PRIVACY-PRESERVING CF

Our goal is to build a privacy-preserving recommender

system. Specifically, we would like to preserve user privacy

for both item similarity computation and recommendation

generation. In the following, we introduce the semi-distributed

architecture of the proposed BP algorithm for item similarity

computation without exposing user ratings, and the user-side

recommendation generation as well.

A. Semi-Distributed BP

From Sec. III-C, we know that the messages exchanged

between factor nodes and variable nodes are probabilistic

statements on item similarity, and such messages do not

directly reveal user ratings. However, the user rating data are

used to compute fu(Sui) for generating λ-messages using (7).

Hence, the key to preserve user privacy is to compute λ-

messages at the user side. The µ-messages can be generated

at a central server by performing multiplication operations

on received λ-messages. This leads to the semi-distributed

implementation of the BP algorithm. As we will see next, the

computation follows the BP algorithm described in Sec. III-C,

and thus the semi-distributed BP does not impact the computed

results.

The architecture of the semi-distributed BP is shown in

Fig. 2. The message passing on graph Gi is carried out by

exchanging messages between the server and the users. Users

locally store their personal ratings, and generate λ-messages

according to (7) without disclosing their ratings to the server

or other users. User u sends the λ-message λ
(n)
u,j (sij) to the

server in the format shown in Table I, where the L-entry
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TABLE I: The format of λ-messages.

Graph i User u Item j Iteration n L-entry vector
−→

λ

TABLE II: The format of µ-messages.

Graph i User u Item j Iteration n L-entry vector −→µ

vector
−→
λ stores the values of λ

(n)
u,j (sij = s), ∀s ∈ S. The

server is responsible for generating µ-messages. To compute

the µ-message µ
(n)
j,u (sij), the server checks if all λ-messages

λ
(n−1)
u,j (sij) from users in Uj have been received. The server

then performs multiplication operations on the λ-messages

to generate µ-messages according to (8), and sends the µ-

message µ
(n)
j,u (sij) to user u in the format shown in Table II,

where the L-entry vector −→µ stores the values of µ
(n)
j,u (sij = s),

∀s ∈ S. The server checks the convergence of messages,

and obtains the item similarity after convergence using (10).

Although we have applied synchronous BP here, asynchronous

BP can be readily used, where messages are updated whenever

new messages arrive. Indeed, round-robin asynchronous BP

converges at least as fast as synchronous BP [17].

The computation of all item similarities in {Si : 1 ≤ i ≤ N}
requires N factor graphs, with Si computed using factor graph

Gi. We introduce three protocols for coordinating the message

passing on different graphs: the serial protocol, the parallel

protocol, and the pipeline protocol. In the serial protocol, the

message passing on factor graphs is performed in a serial

manner, that is at any time, all generated messages belong

to one factor graph, and unless inference on that graph is

finished, no messages on other factor graphs are generated.

Alternatively, we can adopt the parallel protocol. If the band-

width of the communication channel between users and the

server is sufficient, and if the user’s computational capability

allows, message passing on multiple factor graphs can be

performed in parallel to accelerate the inference process. The

pipeline protocol, which is a combination of the serial and

parallel protocols, is favorable when the delay in the network

is large. While waiting for the messages on one factor graph

to arrive, users can compute messages on other factor graphs

and continue to send them to the server, so as to increase

throughput and make more efficient use of computational

resources as well.

Aside from the semi-distributed implementation, a fully

distributed implementation is also possible. For example, [18]

proposed a distributed BP-based trust management algorithm

for P2P networks. Users directly send λ-messages to other

users instead of to the server, and also generate µ-messages

locally using received λ-messages, without relying on the

server. However, there is a significant increase in communica-

tion overhead, considering that a λ-message λu,j(sij) needs

to be sent to each of the users in Uj , as they require this

λ-message for updating µ-messages. Moreover, for each item

a user has rated, he needs to find out other users who also

have rated that item, i.e., the graph must be known by the

users. Further, since the item similarity is locally computed

by users, and user u ∈ Ui only obtains {sij : j ∈ Îu}, the

users need to share with each other the item similarities. Thus,

a more sophisticated protocol needs to be developed for a fully

distributed system.

B. Cascaded BP

The semi-distributed BP architecture in Sec. IV-A requires

that all users be active and participate in BP message propaga-

tion at the same time. Yet, in practical scenarios, it is difficult

to meet this stringent requirement due to various reasons, e.g.,

some users may not be active temporally. To address this

challenge, we adapt the original BP architecture to perform

BP in cascade. Rather than wait until all users become active,

we can perform BP on the subgraph constructed based only

on the subset of users active during the current time slot, and

store the inferred knowledge for use in the next time slot.

Let U(1),U(2), . . . ,U(t) denote the available subsets of users

at time slots 1, 2, . . . , t, respectively. We construct G
(t)
i based

on U(t) at each time slot t, and perform inference in G
(t)
i .

To incorporate the knowledge from the previous graph G
(t−1)
i

into G
(t)
i at time slot t, we introduce the priors P (sij |G

(t−1)
i ),

∀sij ∈ Si, where P (sij |G
(t−1)
i ) is the marginal distribution

of sij computed from G
(t−1)
i . With these priors, the server

computes the µ-messages according to

µ
(n)
j,u (sij) ∝

∏

f∈Fj\u

λ
(n)
f,j (sij)× P (sij |G

(t−1)
i ). (11)

Upon convergence, the server computes the marginal distribu-

tion P (sij |G
(t)
i ) as follows

P
(

sij |G
(t)
i

)

=
1

Zij

∏

f∈Fj

λ
(n)
f,j (sij)× P (sij |G

(t−1)
i ). (12)

Note that P (sij |G
(t−1)
i ) is actually computed by the server in

the previous graph G
(t−1)
i , and hence it is directly available

for the server. The computation of λ-messages at the user side

is still the same as (7). Hence, during cascaded BP, the priors

are always directly computed and used at the server side.

The intermediate item similarity sij at time slot t can be

computed as

ŝij =
∑

s∈S

s× P
(

sij = s|G
(t)
i

)

. (13)

We will also update sij at each time slot of the cascaded BP.

This allows us to generate recommendations using the most

up-to-date item similarity.

C. User-Side Recommendation

Thus far, we have focused on the item similarity compu-

tation using the semi-distributed BP algorithm. To complete

the privacy-preserving item-based CF recommender system,

it remains to specify the recommendation generation. As

introduced in Sec. II, the item-based CF computes rating

prediction for user u on item i using (1), which takes as

its input the past ratings of user u and item similarities. To

avoid revealing user ratings, users would then locally generate

rating predictions. Since the item similarities are obtained at
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TABLE III: Summarization of entity functions.

Entity Function

Server
Coordinate message passing;
Generate µ-messages;
Compute and store item similarity.

User
Store personal rating data;
Generate λ-messages;
Generate recommendations.

the server side in the semi-distributed BP algorithm, the server

should send to users the required item similarities. To predict

ratings on all unseen items in I\Iu, user u only needs item

similarities in {sij : i ∈ I\Iu, j ∈ Iu}. After computing

rating predictions, users can locally store the item similarities

received from the server for future uses, and only update them

periodically. We summarize the functions of the server and

users in Table III.

It is worth noting that in addition to preserving privacy, user-

side recommendation also enhances user trust in e-commerce.

Traditionally, centralized recommender systems owned by the

commercial websites can manipulate the recommendations in

various ways for revenue. A website might place the items

with the highest profits on top of the recommendation list, or

even employ recommendations as tools for advertisement of

new products. This trust issue is well addressed by user-side

recommendation, where users locally generate recommenda-

tions on their personal computers.

D. Accuracy and Communication Overhead

Assuming all users participate in BP, the semi-distributed

architecture does not compromise the accuracy. Basically, we

let users locally conduct the computations that require private

rating data, but all computations are carried out exactly as

in a centralized approach in Sec. III-C, and the user-side

recommendation generates rating predictions using exactly (1).

When not all users are available for BP at the same time slot,

we can apply the cascaded BP scheme to improve performance

over time. We will present performance evaluation later in

Sec. VII.

The proposed algorithm incurs additional communication

overhead. In the semi-distributed BP on graph Gi, for each

user u ∈ Ui, there are |Iu| λ-messages and |Iu| µ-messages

exchanged between the server and use u in each iteration. And

the server needs to send a total of |Iu|(N − |Iu|) item sim-

ilarities to user u for user-side recommendation. Whereas in

the centralized approach, only the generated recommendations

need to be sent to the user.

V. INFORMATION-THEORETIC PRIVACY ANALYSIS

We analyze the achieved privacy of the proposed algo-

rithm for item-based CF by charactering the information

leakage from the information-theoretic perspective. According

to Sec. IV, the λ-messages and µ-messages are exchanged

between the server and users, which can cause privacy degra-

dation.

A. User Privacy Loss Due to λ-Messages

The λ-message λu,j(sij) in (7) is sent from user u to the

server. Suppose the server tries to infer information from λ-

messages about user u’s ratings on items. We characterize the

upper bound of information-theoretic privacy loss. To simplify

the analysis, we assume sij can only take values from S =
{1, 2}. From (7) and (6), we can see that
{

λu,j(sij = 1) < λu,j(sij = 2) if |ruj − rui| < δui

λu,j(sij = 1) ≥ λu,j(sij = 2) if |ruj − rui| ≥ δui
(14)

where δui > 0 is a parameter whose value is determined

by ratings ruh on other items h ∈ Îu\j and the messages

µh,u(sih), ∀h ∈ Îu\j. Since the server does not have direct

access to user ratings, δui is unknown to it. To derive an upper

bound, we assume that δui is close to 1 with large probability,

as the empirical results in [4] show that the item-based rating

prediction method generates a rating with absolute error less

than 1 on average using datasets with similar rating scale to

Γ. Using this prior knowledge and (14), the server can infer

about user ratings as follows
{

ruj = rui if λu,j(sij = 1) < λu,j(sij = 2);

ruj 6= rui if λu,j(sij = 1) ≥ λu,j(sij = 2).
(15)

We define the total privacy of user u, i.e., his rating

information unknown to the server, as

Hu = H({ruk|k ∈ Iu}) =
∑

k∈Iu

H(ruk)

= |Iu| log |Γ|, (16)

where H(·) denotes entropy. Note that we have assumed that

user u rates different items independently, and the user rating

on each item takes values from Γ with equal probabilities.

Next we compute the privacy loss ∆I(λu,j(sij)) as the

reduction of unknown information of user u’s ratings after

the server observes λu,j(sij)

∆I(λu,j(sij))

= H({ruk|k ∈ Iu})−H
(

{ruk|k ∈ Iu}
∣

∣λu,j(sij)
)

= H({ruk|k ∈ Iu})−
[

H
(

ruj
∣

∣λu,j(sij), {ruk|k ∈ Iu\j}
)

+ H
(

{ruk|k ∈ Iu\j}
∣

∣λu,j(sij)
)]

(17)

Since λu,j(sij) only introduces dependency between rui and

ruj , we have

H
(

ruj
∣

∣λu,j(sij), {ruk|k ∈ Iu\j}
)

= H (ruj |λu,j(sij), rui) ,

H
(

{ruk|k ∈ Iu\j}
∣

∣λu,j(sij)
)

= H({ruk|k ∈ Iu\j}).

Hence,

∆I(λu,j(sij))

= H({ruk|k ∈ Iu})−H (ruj |λu,j(sij), rui)

−H({ruk|k ∈ Iu\j})

= H(ruj)−H(ruj |λu,j(sij), rui). (18)
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Specifically, for the two cases in (15), we have:

(1) If λu,j(sij = 1) < λu,j(sij = 2)

∆I1(λu,j(sij)) = H(ruj)−H(ruj |ruj = rui, rui)

= log |Γ|; (19)

(2) If λu,j(sij = 1) ≥ λu,j(sij = 2)

∆I2(λu,j(sij)) = H(ruj)−H(ruj |ruj 6= rui, rui)

= log |Γ| − log(|Γ| − 1). (20)

The expected privacy loss per λ-message can be given by

E {∆I(λu,j(sij))}

= ∆I1(λu,j(sij))P (ruj = rui)

+ ∆I2(λu,j(sij))P (ruj 6= rui)

= log |Γ| −
|Γ| − 1

|Γ|
log(|Γ| − 1), (21)

where P (ruj = rui) is the probability that user u rates items i
and j with the same rating, P (ruj = rui) =

1
|Γ| and P (ruj 6=

rui) = 1− P (ruj = rui).
Taking into account all λ-messages from user u on graph

Gi, we can compute the λ-message privacy loss for user u on

graph Gi as

∆I
(

{λuj(sij)|j ∈ Îu}
)

= H ({ruk|k ∈ Iu})

−H
(

{ruk|k ∈ Iu}
∣

∣{λu,j(sij)|j ∈ Îu}
)

= H ({ruk|k ∈ Iu})

−H
(

{ruk|k ∈ Iu\i}
∣

∣{λu,j(sij)|j ∈ Îu}, rui
)

−H
(

rui
∣

∣{λu,j(sij)|j ∈ Îu}
)

. (22)

Observing that

H
(

{ruk|k ∈ Iu\i}
∣

∣{λu,j(sij)|j ∈ Îu}, rui
)

=
∑

j∈Iu\i

H
(

ruj
∣

∣λu,j(sij), rui
)

, (23)

H
(

rui
∣

∣{λu,j(sij)|j ∈ Îu}
)

= H(rui), (24)

we have

∆I
(

{λuj(sij)|j ∈ Îu}
)

=
∑

j∈Îu

H(ruj)−
∑

j∈Îu

H(ruj |λu,j(sij), rui)

=
∑

j∈Îu

∆I(λu,j(sij)). (25)

Hence, the expected privacy loss resulting from all λ-

messages from user u on graph Gi is

E

{

∆I
(

{λu,j(sij)|j ∈ Îu}
)}

=
∑

j∈Îu

E {∆I(λu,j(sij))}

= |Îu|

(

log |Γ| −
|Γ| − 1

|Γ|
log(|Γ| − 1)

)

. (26)

As one example, suppose user u has rated 20 items with the

rating scale Γ = {1, 2, 3, 4, 5}. His total privacy is Hu = 46.44
bits, and the expected privacy loss due to λ-messages on one

graph is 8.02 bits.

B. Total User Privacy Lost to the Server

In the previous analysis, we focused on the privacy loss due

to messages on a single graph, but each user may participate

in as many graphs as the number of items he rated, e.g., user

u may send λ-messages on the set of graphs {Gi|i ∈ Iu}.

We are interested to know the total privacy loss of user u
as a result of participating in multiple graphs. However, it is

not simply the sum of privacy loss on all graphs, since the

λ-messages on different graphs are not independent and thus

there is significant redundancy in the revealed information. We

next derive an upper bound of the total privacy loss.

Suppose the server is intelligent, and by combining the

pairwise relationships between item ratings of user u inferred

from λ-messages on multiple graphs using (15), it can divide

the unknown ratings of user u in to |Γ| groups, where the items

in each group g have the same rating rg ∈ Γ while items in

different groups have different ratings. Let Gg denote the set

of items in group g, then ruk = rg , ∀k ∈ Gg. The unknown

information of item ratings in each group g is

H({ruk|k ∈ Gg}) = H
(

{ruk|k ∈ Gg\i}
∣

∣rui
)

+H(rui)

= H(rui)

= H(rg). (27)

The unknown information of item ratings in all groups can be

derived as

H
(

{ruk|k ∈ G1} , {ruk|k ∈ G2} , . . . ,
{

ruk|k ∈ G|Γ|

})

= H(r1, r2, . . . , r|Γ|)

= H(r1) +H(r2|r1) + . . .+H(r|Γ||r1, r2, . . . , r|Γ|−1)

= log |Γ|+ log(|Γ| − 1) + . . .+ log 1

= log(|Γ|!). (28)

Hence, the total privacy loss of user u is

∆I total
u = |Iu| log |Γ| − log(|Γ|!). (29)

In the example of 20 rated items with |Γ| = 5, the privacy loss

is 39.53 bits versus the total privacy of 46.44 bits. However,

without knowing exactly the rating of each group, the server

will not be able to launch effective attacks against users to

reveal sensitive personal information [6], [7]. Yet, the users are

suggested to randomly participate in only a subset of graphs

to better preserve their privacy.

C. User Privacy Lost to Other Users Due to µ-Messages

The µ-messages are sent from the server to users, and

no direct messages are exchanged between users. Suppose a

curious user u tries to extract from µ-messages information

about ratings of other users. We notice that µj,u(sij) in

(8) mixes the λ-messages from multiple users, but does not

contain any information about who are the source users that

send those λ-messages. Thus, even if user u can extract any
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information from µ-messages, he does not know whom the

information should be related to.

Nevertheless, we are interested in characterizing the amount

of information a curious user can extract from µ-messages

about ratings of other users, assuming the server colludes

with some curious users and provides the graph structure

information of Gi to them. We compute the upper bound of

the rating information of other users a curious user u can infer

about from the received µ-message µj,u(sij), as well as the

privacy of a particular user lost to user u.

From (8), we know that µj,u(sij) is the product of λ-

messages from multiple users in Uij\u. To simplify analysis,

we consider the worst case of privacy loss where µj,u(sij)
is consistent with each λ-message λv,j(sij), i.e., user u can

infer about λ-messages as follows

(1) If µj,u(sij = 1) < µj,u(sij = 2)

λv,j(sij = 1) < λv,j(sij = 2);

(2) If µj,u(sij = 1) ≥ µj,u(sij = 2)

λv,j(sij = 1) ≥ λv,j(sij = 2).

With the inferred λ-messages, user u can further infer about

the ratings from other users in Uij\u. The inference process is

the same as described in Sec. V-A. Hence, the upper bound of

the rating information of other users extracted from µ-message

µuj(sij) can be given by

∆I(µj,u(sij)) =
∑

v∈Uij\u

∆I(λv,j(sij)). (30)

Using (21), we can obtain the expected amount of information

extracted by user u from µj,u(sij) as

E {∆I(µj,u(sij))}

=
∑

v∈Uij\u

E {∆I(λv,j(sij))}

= (|Uij | − 1)

(

log |Γ| −
|Γ| − 1

|Γ|
log(|Γ| − 1)

)

. (31)

The privacy of user v lost to a curious user u are essentially

caused by the µ-messages on graph Gi that mix λ-messages

from user v and are forwarded to user u by the server. Hence,

we can derive the expected privacy of user v lost to user u on

graph Gi as

E

{

∆I
(

{λv,j(sij)|j ∈ Îuv}
)}

= |Îuv|

(

log |Γ| −
|Γ| − 1

|Γ|
log(|Γ| − 1)

)

, (32)

where Îuv = Îu ∩ Îv denotes the set of common items rated

by users u and v.

VI. COMPLEXITY ANALYSIS AND REDUCTION

The computational complexity of the BP algorithm is de-

termined by the computation of λ-messages and µ-messages.

While the complexity of generating a µ-message using (8) is

O (|Iu|), the complexity of generating a λ-message using (7)

is O
(

|Iu|L|Iu|
)

, where L = |S|, which is exponential in the

fu

si1 si2 sij

(a) A high-degree factor node.

DD

fu
(1)

fu
(k)

si1 sij

(b) Multiple D-degree factor nodes.

Fig. 4: Illustration of complexity reduction via grouping.

degree of the factor node, i.e., the number of items user u has

rated. Unfortunately, in recommender systems, a user can rate

over hundred of items. We thus propose a complexity reduction

technique by controlling the degree of the factor node.

A. Complexity Reduction

We randomly divide the variable nodes in Îu at factor node

u into small groups of size D where D is a small integer.

There are Gu = ⌈|Îu|/D⌉ such groups. Let D
(k)
u denote the

size of group k, D
(k)
u = D for 1 ≤ k ≤ Gu − 1 and D

(k)
u =

|Îu| − D(Gu − 1) for k = Gu. Let I
(k)
u denote the variable

nodes in group k. We set an indicator j
(k)
u = 1 if j ∈ I

(k)
u

and j
(k)
u = 0 otherwise. Since each variable node j ∈ Îu only

belongs to one group, we have
∑Gu

k=1 j
(k)
u = 1. Let S

(k)
ui =

{sij : j ∈ I
(k)
u } denote the variable nodes in group k of Îu.

Assuming independence of variable nodes in different groups,

we replace the factor node function fu (Sui) in (6) with

Gu
∏

k=1

f (k)
u

(

S
(k)
ui

)

, (33)

where f
(k)
u is the local function of variables in group k. Hence,

we modify the factor graph Gi accordingly to obtain a new

factor graph Ĝi for complexity reduction. Instead of connecting

all variable nodes in Îu to one factor node u, we connect a

separate factor node u(k) to the group of variable nodes in I
(k)
u .

We illustrate the complexity reduction at one factor node in

Fig. 4.

A more intuitive understanding is that, user u first randomly

divides the items in Îu into multiple groups of size D, and

decides item similarity on the basis of groups, as if items in

different groups were rated independently by user u. Since

variable node j is associated with item j, the variable nodes

in Îu are grouped exactly as the grouping among items.

The local function at factor node u(k) can be similarly

derived as (6). Assuming rui on item i is unknown, then using

ratings from items within group k, user u predicts rui as

r̂ui(S
(k)
ui ) =

∑

j∈I
(k)
u

sij × ruj
∑

j∈I
(k)
u

|sij |
. (34)
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We substitute r̂ui(Sui) with r̂ui(S
(k)
ui ) in (6) to obtain the new

local function of factor node u(k)

f (k)
u

(

S
(k)
ui

)

=
1

Z
(k)
u

exp

{

−
1

σ2

(

r̂ui(S
(k)
ui )− rui

)2
}

, (35)

where Z
(k)
u is a normalization constant.

On the new factor graph Ĝi, we apply the BP algorithm

described in Sec. III-C. The λ-messages and µ-messages are

exchanged between the new factor nodes and variable nodes.

The λ-message λ
(n)

u(k),j
(sij) sent from factor node u(k) to

variable node j is given by

λ
(n)

u(k),j
(sij) ∝

∑

S
(k)
ui

\sij

fu(S
(k)
ui )

∏

h∈I
(k)
u \j

µ
(n−1)

h,u(k)(sih). (36)

And the µ-message µ
(n)

j,u(k)(sij) sent from variable node j to

factor node u(k) is given by

µ
(n)

j,u(k)(sij) ∝
∏

f∈F̂j\u(k)

λ
(n)
f,j (sij), (37)

where F̂j = {v(k) : v ∈ Uij , j
(k)
v = 1, 1 ≤ k ≤ Gv}.

The complexity of updating a λ-message is effectively

reduced to O
(

DLD
)

from O
(

|Iu|L|Iu|
)

by using (36). Mean-

while, the total number of λ-messages need to be generated

from user u’s perspective in each iteration remains |Îu|, which

is the same as in Gi. There is no change in complexity

regarding the µ-messages. The overall complexity of the BP

algorithm on Ĝi with complexity reduction in each iteration is

O
(

M̄N̄DLD +NM̄2
)

, where N̄ is the average number of

items rated by one user, and M̄ is the average number of users

of one item. Since the number of items a user can consume

is limited by his time and money, we can assume N̄ is much

smaller than N . As for M̄ , we assume M̄ grows in the order of

M1−ǫ, where 0 < ǫ < 1. Then we can rewrite the computation

complexity on Ĝi as O
(

M1−ǫN̄DLD +NM2(1−ǫ)
)

, and

when N and M is large, it is dominated by the second term,

so we have O
(

NM2(1−ǫ)
)

.

B. Impact on Semi-Distributed BP

The complexity reduction part can be easily integrated

into the semi-distributed BP architecture in Sec. IV. Indeed,

the complexity reduction is for reducing the computational

burden of the users, and users can locally perform the required

grouping. Also, the grouping information is not needed at the

server side for BP. The server does not need to know from

which group of user u the λ-message is generated, since only

one λ
(n)
u,j (sij) message is generated by user u that is destined

to variable node j on graph Gi. Meanwhile, at the user side,

user u can easily recover the group information “k” from the

received message µ
(n)
j,u (sij) by looking up for k with j

(k)
u = 1,

and obtain µ
(n)

j,u(k)(sij), as if it was computed using (37), which

can then be used to update λ
(n)

u(k),j
(sij) in (36).

Therefore, the grouping step is transparent to the server.

The computational complexity on graph Gi at each user is

only O
(

N̄DLD
)

, regardless of N and M , and users can

autonomously adjust D according to the availability of local

computation resources and power.

VII. EXPERIMENTAL EVALUATION

We evaluate the accuracy of the proposed privacy-preserving

item-based CF algorithm on the 100K MovieLens dataset2,

which consists of 100, 000 ratings on 1682 items (movies)

by 943 users. Each rating is an integer between 1 and 5. We

randomly divide the dataset into two disjoint sets: a training

set containing 80% of the ratings, and a test set containing

the rest 20% of the ratings. The ratings in the training set are

used as memory for the item-based CF algorithm to compute

item similarities and predict unknown ratings. We compare

the predicted ratings with the actual ratings in the test set

to evaluate the accuracy of the recommendation algorithms in

terms of Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE), which are computed as follows

MAE =
1

|T|

∑

rui∈T

|rui − r̂ui|,

RMSE =

√

1

|T|

∑

rui∈T

(rui − r̂ui)2,

where r̂ui is the predicted rating, and rui is the actual rating

in the test set denoted by T. The smaller the MAE and RMSE,

the better accuracy. Note that RMSE is more sensitive to large

errors than MAE. In the experiments in Secs. VII-A and VII-B,

we assume all users are active and participate in BP during the

same time slot. In Sec. VII-C we examine the performance of

the cascaded BP where only a subset of users are active during

each time slot.

A. Performance Comparison

We compare our proposed privacy-preserving algorithm

with other item-based CF algorithms using the well-known

similarity measures, including the CS, PCS and ACS methods

as introduced in Sec. II. In all cases, rating predictions

are generated by (1). We assume no privacy requirement

is imposed on other algorithms, so the CS, PCS and ACS

measures are directly applied to original rating data, and thus

their results are not compromised by privacy techniques such

as obfuscation. In particular, the presented results of the CS

measure represent the best achievable performance of the

distributed personal recommender system proposed in [19], as

the item similarity between two items is computed based on

the complete rating vectors associated with them in R, rather

than computed in an incremental manner as in [19].

The PCS and ACS methods compute the item similarity

sij between two items i and j using the ratings from the set

of their common users Uij = Ui ∩ Uj . We denote by Nc the

minimum number of common users required for computing the

item similarity sij using PCS and ACS. If |Uij | < Nc, then

neither item i nor item j will be used to predict each other’s

ratings. Let Ni be the set of all valid items for item i under Nc.

To predict ratings on item i for user u, the neighborhood Nui

used in (1) is formed from the set of items in Nui = Ni∩Iu. In

addition, given a required neighborhood size K , if |Nui| < K ,

we simply say the unknown rating rui in the test set T is

2Available at: http://www.grouplens.org/node/73.
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TABLE IV: MAE performance comparison of various item-based CF algorithms under different neighborhood size K .

Algorithms
Nc = 3 (Ppred = 74%) Nc = 8 (Ppred = 67%)

K = 10 K = 20 K = 30 K = 40 K = 50 K = 10 K = 20 K = 30 K = 40 K = 50

PCS 0.8839 0.8486 0.8370 0.8326 0.8418 0.8330 0.8073 0.8009 0.7989 0.8127
ACS 0.7812 0.7585 0.7609 0.8029 0.9278 0.7390 0.7264 0.7389 0.8044 0.9765
CS 0.7567 0.7601 0.7676 0.7751 0.7812 0.7418 0.7428 0.7494 0.7566 0.7632

Proposed 0.7512 0.7437 0.7486 0.7557 0.7632 0.7283 0.7255 0.7293 0.7359 0.7450

TABLE V: RMSE performance comparison of various item-based CF algorithms under different neighborhood size K .

Algorithms
Nc = 3 (Ppred = 74%) Nc = 8 (Ppred = 67%)

K = 10 K = 20 K = 30 K = 40 K = 50 K = 10 K = 20 K = 30 K = 40 K = 50

PCS 1.0993 1.0562 1.0435 1.0392 1.0560 1.0403 1.0096 1.0031 1.0013 1.0208
ACS 0.9896 0.9622 0.9671 1.0473 1.2712 0.9433 0.9264 0.9475 1.0755 1.3740
CS 0.9754 0.9791 0.9876 0.9942 0.9992 0.9577 0.9583 0.9651 0.9716 0.9768

Proposed 0.9680 0.9543 0.9580 0.9637 0.9703 0.9397 0.9322 0.9349 0.9400 0.9485

unpredictable by the PCS and ACS. We denote TK as the

subset of all predictable ratings in T at neighborhood size K .

Note that TK changes with Nc, since Nc impacts Ni. For fair

comparison of different algorithms, we apply the same Nc to

all evaluated algorithms.

In Tables IV and V, we examine the MAE and RMSE

performance of various algorithms. The parameters of the

proposed algorithm are set as D = 4, S = {1, 2}, and σ = 0.5.

We show the results for Nc = 3 and 8 with K varying from

10 to 50 in steps of 10. Under each Nc, to fairly compare the

performance of different K’s, all results are obtained on the

same subset of test ratings T50, and the percentage of ratings

in T used for evaluation is

Ppred = |T50|/|T| × 100%.

Our proposed algorithm achieves superior performance com-

pared to other algorithms in terms of both MAE and RMSE.

As K increases from 10, the performance of the proposed

algorithm, as well as PCS and ACS algorithms, first improves

but then degrades when K becomes too large, because ratings

from neighbor items with smaller similarity to the active

item, on which the rating is predicted, corrupt the prediction

accuracy. Thus, to achieve the best performance, a proper

neighborhood size K should be chosen. The computational

complexity cost of our algorithm to solve for the similarities

between item i and other items on graph Gi is O
(

NM2(1−ǫ)
)

for large N and M as discussed in Sec. VI, whereas for the

CS method the complexity is O (NM), and for PCS and ACS,

the complexity is O
(

NM (1−ǫ)
)

. Finally, as we will see next,

the performance of our algorithm can be further improved

if a higher degree D is used, but at the cost of increased

computational complexity at users.

B. Impact of Parameters

In the following experiments, we investigate the impact

of the parameters D, σ, and S on the performance of our

proposed algorithm. We always set Nc = 3 and evaluate

the proposed algorithm on T50. In Fig. 5, we investigate the

influence of group size D on the accuracy of the proposed

algorithm, where we fix other parameters as S = {1, 2}, and
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Fig. 5: Impact of D on MAE of the proposed algorithm.
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Fig. 6: Impact of σ on MAE of the proposed algorithm.

σ = 0.5. It can be seen that increasing D slightly improves

accuracy. However, since the computational complexity at user

side is O
(

N̄DLD
)

, which is exponential in D, users need to

wisely choose D according to their computational capability.

In Fig. 6, we show the results for different σ’s, where D = 3
and S = {1, 2}. The performance slightly degrades if σ is too
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TABLE VI: Impact of S on MAE of the proposed algorithm.

S
MAE

K = 10 K = 20 K = 30

S2 0.7546 0.7471 0.7513
S5 0.7504 0.7500 0.7545

small or too large, since for a small σ, the curve of the factor

function (6) quickly flattens out with respect to |r̂ui − rui|,
while for a large σ, the curve becomes too flat. But overall,

the algorithm is not sensitive for large dynamic ranges of σ.

In Table VI, we show the results of the proposed algorithm

for different S’s, where Sl = {1, 2, . . . , l}, ∀l ∈ {2, 5}, D = 3,

and σ = 0.5. We observe that S2 and S5 achieve their

best performance when K = 20, but S2 actually provides

better accuracy than S5. This is because large l could cause

overfitting, that is the obtained item similarity is strongly

biased towards the memory data, and does not generalize

well when used for prediction. Meanwhile, the computational

complexity O
(

N̄DLD
)

at user side significantly increases

with L = |Sl|, depending on D.

C. Cascaded BP

We now investigate the more challenging scenarios where

only a subset of users are available for BP at a given time slot.

Firstly, we consider applying the basic BP algorithm without

introducing priors, i.e., the inferred knowledge from previous

time slots are not incorporated. The parameters are set as

S = {1, 2}, D = 3, σ = 0.5, and K = {10, 20, 30}. In Fig. 7,

we show the MAE results with the percentage of participating

users ranging from 10% to 100%. The performance degrades

significantly as the percentage of users decreases. Thus, rely-

ing only on the users available at the current time slot is not

satisfactory.

Next, we apply the cascaded BP proposed in Sec. IV-B.

In the experiment, the users are randomly divided into 5

subsets with equal sizes, i.e., only 20% of users can participate

in BP at each time slot. In Fig. 8, we show the MAE

performance versus the number of elapsed time slots, where

at each time slot the updated item similarity results are used

to predict ratings. We also show the results of the original

BP algorithm with all users participating at the same time

slot. We can see that as the number of elapsed time slots

increases, the MAE performance improves. After 5 time slots,

the performance of the cascaded BP approaches that of the

original BP algorithm with all users. Therefore, incorporating

knowledge from previous time slots can effectively improve

the performance.

VIII. RELATED WORKS

Recently, privacy-preserving information processing and

data mining techniques have been widely studied. In [20],

the authors proposed distributed online learning with intrinsic

privacy-preserving properties, where local parameters at each

participating user are updated based on local data sources,

and parameters are periodically exchanged among a small

subset of neighbors, and they showed that malicious users

cannot reconstruct the subgradients of other users. In [21], the
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Fig. 7: MAE versus percentage of participating users.
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Fig. 8: MAE performance of cascaded BP.

authors applied homomorphic encryption to privacy-preserving

distributed aggregation of energy consumption metering data

in smart grids. A number of works also investigated privacy-

preserving information processing in semi-distributed or cen-

tralized cloud computing. [22] proposed privacy-preserving

back-propagation neural network learning via cloud comput-

ing, where private data of each party are first encrypted before

being uploaded to the cloud, and operations over ciphertexts

are supported via doubly homomorphic encryption. [23] ad-

dressed multi-keyword ranked search over encrypted data in

cloud computing using secure inner product computation.

There are existing works on both centralized and distributed

privacy-preserving recommendation systems. The privacy-

preserving techniques that have been applied to centralized

systems mainly include data obfuscation and cryptography

approaches. The data obfuscation approach is to obfuscate

user ratings with random noise before releasing them to the

server, e.g., differentially private recommender system [24]

and the perturbation technique [10]. In [6], [11], the authors

proposed to disguise genuine user profiles by adding extra

fake data. However, obfuscation and random noise undermine

accuracy, and users have to sacrifice more privacy for better

recommendation. In [25], the authors proposed a data pertur-
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bation approach based on differential privacy with accuracy

guarantees.

The cryptography approach encrypts users data using ad-

vanced cryptography techniques to hide user information,

e.g., item ratings, from the recommender server, which only

operates on the encrypted user data [26], [27]. In particular,

[27] proposed an item-based privacy-preserving recommender

system with homomorphic encryption, where the server main-

tains an item-item similarity model, and generates rating

predictions blindly by performing homomorphic operations

on the encrypted ratings. However, the authors assumed the

similarity model is known a priori, and did not provide any

privacy-preserving solution for that. Besides, key management

required by cryptography tools could be demanding in prac-

tice. [28] applied the garbled circuits cryptographic technique

to matrix factorization collaborative filtering, where a third-

party crypto-service provider is required for private compu-

tation. [29] discussed practical implementations of privacy-

preserving collaborative filtering deployed in cloud computing

infrastructures.

Alternatively, distributed privacy-preserving recommender

systems let users store data in their devices. [19] presented

a personal collaborative filtering recommender running on the

user side. Each user stores his data locally, and constructs an

item-item similarity model using the cosine similarity measure

by incrementally incorporating ratings from other neighbour

users in a peer-to-peer (P2P) environment. The quality of the

locally constructed similarity model depends on the set of

neighbours a user can find and contact. The best performance

is achieved by using ratings from all common users of two

items to evaluate the item similarity, which is much harder

to implement in P2P architectures than in a centralized CF

system. Moreover, the user privacy is not guaranteed as users

need to share their ratings with each other. An attacker can

easily mimic the behaviour of genuine users to acquire their

personal data. As in centralized systems, cryptography [12]

and obfuscation techniques [30] can be applied to distributed

systems to avoid disclosing data to other users. A client-side

content-based mobile shopping recommender was proposed

in [31], where user data, e.g., historical purchases, are locally

stored on users’ devices, e.g., smartphones, and each device

runs its own content-based recommendation algorithm to find

products that match the user’s profile based on product de-

scriptions. However, the complete product catalog can be chal-

lenging for mobile devices to process, and incurs significant

data traffic as well. In [32], the authors proposed social con-

nection recommendation in mobile social networking, where

matching user attributes are computed via secure multi-party

computation (SMC) techniques based on secret sharing.

Previously, BP has been applied to recommender systems

without considering privacy in [33]–[35]. In [33], the proposed

algorithm therein follows the philosophy of the user-based

CF algorithm. To receive recommendations, an active user

discloses his ratings to other users, who then compare their

own ratings with the active user’s ratings on common items in

order to update their “confidence”, which can be understood

as similarity to the active user. The central server collects

“confidences” as well as ratings of all users, and sends back

to users probabilistic messages regarding predicted ratings on

items. In [34], each user combines his “confidence” and ratings

to form probabilistic messages on ratings, and sends them to

the server. The work in [35] proposed to predict ratings for

an active user on a Pairwise Markov Random Field (PMRF),

where the local evidence for each unknown rating is the

aggregated ratings from other users similar to the active user,

and probabilistic messages on predicted ratings are exchanged

between similar items. Whereas in this work, we are concerned

with preserving privacy in item-based CF recommendation.

Instead of directly using BP for rating prediction as in [33]–

[35], we employ BP for item similarity computation in a semi-

distributed fashion, where messages are exchanged between

the server and users, without disclosing user ratings. The rating

prediction for an active user is then locally computed at the

user side by combining his own ratings and item similarity.

We note that we can further apply the distributed privacy-

preserving belief propagation [36] that sends only masked

messages to each party for enhanced privacy.

IX. CONCLUSION

In this work, we proposed a semi-distributed BP approach

to item-based CF recommender system that preservers user

privacy. The proposed algorithm computes item similarity by

exchanging probabilistic messages between the server and

users without directly exposing user ratings. To address the

issue that only a subset of users participate in BP at one time

slot, we proposed the cascaded BP scheme which accumulates

the inferred knowledge from the previous time slots. With the

computed similarities, a user then locally generates rating pre-

dictions as the weighted average of his own ratings on items.

Through information-theoretic analysis, we showed that the

proposed semi-distributed BP algorithm effectively preserves

user privacy. In addition, we proposed a complexity reduction

technique for efficient computation at the user side. The

experimental results on the MovieLens dataset demonstrated

that the BP algorithm with all users participating at the same

time slot achieves superior performance, and the cascaded BP

algorithm can improve performance as the number of elapsed

time slots increases.
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