
Designing Computer Systems

Gate Design

08:42:29 PM 4 June 2013 GD-1 © Scott & Linda Wills

Designing Computer Systems

Gate Design

Logical functions that are specified in Boolean algebra, can be implemented with
switches and wire. The resulting designs are often the fastest and most efficient
implementations possible. But the time and effort required for design is often
greater. And switch design requires the manipulating the desired expression so
that only input variables are complemented (no big bars). Often after the design
process, the desired expression is lost. Is there a way to implement a Boolean
expression quickly, without distorting the expression?

Yes!

We can simplify the design process by using more powerful components. We'll work
with gates, building blocks that match the logical operations in our expression.
Wires still connect outputs to inputs. Data still is digital. In fact, we use switches
to implement these new gate abstractions.

Suppose we want to implement the expression Out = (A + B) · C. Using switches,
details of the implementation technology (e.g., P-type switches are active low and
pull high) are visible and affect the design. Using gates, technology details are
hidden and the desired expression is easily discerned. Unfortunately this gate
design is twice as slow and uses twice as many switches. Convenience has a cost!

Of course, gate design can be improved if the choice of implementation
components is not tied to the desired expression. For CMOS technology, NAND
and NOR gates require fewer switches than AND and OR. So in this example, the
OR and AND gates can be replaced by NOR gates. Unfortunately, this requires
DeMorgan transformations of the desired expression. This distorts the

08:42:29 PM 4 June 2013 GD-2 © Scott & Linda Wills

expression, increases design time, and increases the possibility for errors. Why
can't we leave the expression alone?

We can. DeMorgan's square suggests that all gate types have two equivalent
representations. One is built on an AND body. The other employs an OR body.

At first this duplicity may seem a complication. But it can be productively used to
separate specification from implementation. Here's how.

When a desired expression is derived, AND and OR functions provide the
relationship between binary variables. The choice of gate types can improve the
implementation efficiency and performance. But it should not distort the meaning
of the desired expression.

Since each gate function can be drawn with either an AND or OR body, a desired
logical function can be realized using any gate type by simply adding a bubble to the
inputs and/or output. Unfortunately, a bubble also changes the behavior by
inverting the signal. But bubble pairs (bubbles at both ends of a wire) cancel out
and the behavior is unchanged.

So we can draw a gate design using the logical functions in the desired expression.
Then we can then add bubble pairs to define the implementation gate type without
changing the gate body (i.e., distort the expression being captured).

Here's an example: Out = A · B + C · D

08:42:29 PM 4 June 2013 GD-3 © Scott & Linda Wills

using AND and OR using NAND
If we draw the circuit directly using AND and OR gates, the expression is clear.
But the implementation cost is high (18 switches). If we preserve the gate bodies,
but add bubble pairs, the behavior is unchanged. But the implementation cost is
lowered (12 switches).

A bar over an input or subexpression indicates that an inversion is required. This
bar is part of the desired expression and should be preserved along with gate
bodies. But the implementation must include, in some way, the required inversion of
the signal. Again, bubble pairs can help.

Let's add bars to our gate design, not as active devices, but as a notational
reminder that a real signal inversion is needed. Then during implementation, we'll
place exactly one bubble on the bar. Bubble pairs are added to change the
implementation without changing the behavior. If one bubble in a bubble pair does
not actually cause a real inversion (because it is a notation), the signal will be
inverted (by the other bubble).

Consider the expression Out = (A + B) · C.

First let's draw the expression as a circuit.
Bars are added where they appear in the
expression. This is not an implementation.

Now suppose we want to use NOR gates for the
implementation. This is partially accomplished
by adding a bubble pair between the gates. But
the bubble on the lower input of the AND gate
is unmatched.

We can put the matching bubble on the bar,
indicating that we really do want the inversion.
The bubbled bar does not actually do anything;
it's just notation. The bubble on the AND input
does the required inversion.

08:42:29 PM 4 June 2013 GD-4 © Scott & Linda Wills

We also need a bubble on the A input. But we
can't add the matching bubble to the OR gate
body without changing its implementation.
Instead let's add a buffer on the A input.

Now we can add a bubble pair between the
buffer and bar. The implementation gate type
is NOR, all bubbles are matched, and all bars
have exactly one bubble. This implementation is
complete.

The gate implementation of this example requires ten switches. That's two more
than the switch design. But it is six less that the original gate implementation.
Note that by ignoring bubble pairs and buffers, we still see the desired
expression, graphically displayed. Specification and implementation are now
decoupled.

We can also implement the design using OR or AND gates. DeMorgan's
equivalence allows any gate body to be implemented in any multi-input gate
type. In CMOS technology, OR and AND implementations requires more
switches (18 for this design).

Here's another example: Out=A⋅BCDE⋅F

We start with the expression as a graph using gates and bars. It captures the
function. But its not an implementation.

Now we select a good implementation gate. One doesn't always need to use one
gate type for a design. The technology may favor an implementation approach. In
CMOS, inverting gates (NAND and NOR) use fewer switches than non-inverting

08:42:29 PM 4 June 2013 GD-5 © Scott & Linda Wills

gates (AND and OR). In this case, we use NAND gates. Bubble pairs are added to
gate bodies to transform the implementation.

Buffers are added where bubbles pairs are still needed for bars.

Finally bubbles pairs are added to complete the implementation.

Desired Expression: This gate design technique is called mixed logic. Its name is
derived from the fact the implementation combines positive (active true) and
negative (active false) logic. A key advantage is the ability to preserve the desired
expression (i.e., the expression the designer specified) in an implementation. For
example, the circuit below is built with NAND gates.

To see the desired expression, ignore the bubbles and buffers and read the
expression from the gate bodies and bars.

08:42:29 PM 4 June 2013 GD-6 © Scott & Linda Wills

This expression is Out=A⋅B⋅CDE

If we wish to reimplement it, say using NOR gates, we just move around bubble
pairs, adding and removing buffer bodies as needed.

Note that the desired expression has not changed.

Common Subexpressions: Often in design, a logical expression is required for
multiple outputs. It would be wasteful to build multiple copies. We can just use a
computed value in multiple places. This is called fanout since a single gate output
fans out to multiple gate inputs. Consider these two equations.

OutX=A⋅BCDE OutY=CDE⋅F

Both expressions require the subexpression CDE so it can used in creating
both outputs.

During implementation, here using NOR gates, special attention is needed for fan
out connections. In order to ignore a bubble on an output, there must be a bubble
on each input that uses it. The bubble pair on the output of the subexpression
becomes a bubble trio.

08:42:29 PM 4 June 2013 GD-7 © Scott & Linda Wills

Propagation Delay

When considering the speed of circuits, one must look at underlying technology –
here, switches and wire. The two parameters that dominate delay are resistance
and capacitance.

Resistance is an abundance of charge carriers. It is proportional to the availability
of charge carriers brought in by the electronic field on the gate. It is proportional
to the charge carrier mobility. Metals are a charge carrier gas. They have clouds
of electrons that are easy to acquire. A semiconductor has more bound charge
carriers that are harder to acquire and more difficult to move around with a field,
leading to higher resistance to pull a node to a high voltage or to a low voltage.

The charge it takes to reach a high or low voltage is proportional to a node's
capacitance C. Capacitance forms automatically when two insulated conductors are
near one another separated by a dielectric material. The higher the dielectric
constant, the higher capacitance. Dislike charges attract to form an electric field
when the insulated conductive dislike charges appear on the conducting surfaces
(for example, the polysilicon gate oxide on the switch).

The bigger the switch, the more charge carriers are needed to charge the switch
voltage to the On level, which is a product of the switch resistance R and the gate
capacitance C. RC is proportional to the propagation delay through the switch.

CompuCanvas models delay as unit delay, which assumes a fixed constant delay
through each gate.

Energy

Energy is proportional to the product of induced voltage on a node and channel
conductance, which is the inverse of the resistance through a conducting channel
of a turned on switch. This resistance is proportional to the major charge carrier
mobility. Conductors have an electron cloud of free electrons that can be easily

08:42:29 PM 4 June 2013 GD-8 © Scott & Linda Wills

moved by a field. Doped silicon has limited charge carrier mobility that limits
conductance and energy.

Summary: Gate design of Boolean expression is a fast and clean alternative to
switch design.

• Gate design is easier to understand than switches and is independent of
implementation technology.

• Gate implementations often require more switches than direct switch
implementations, but designs can still be optimized.

• DeMorgan's gate equivalence allows specification and implementation to be
separated using mixed logic design.

• Mixed logic design also preserves the designer's desired expression.

08:42:29 PM 4 June 2013 GD-9 © Scott & Linda Wills

