206 {0 CHAPTER 5/ ARITHMETIC FUNCTIONS AND CIRCUITS

By A B, A B A By, Ag
l A 2] m & d m <& o
G, S, S, S, %

O FIGURE 5-5
4-Bit Ripple Carry Adder

full adder. For example, consider the two binary aumbers A = 1011 and B = 0011.
Their sum, § = 1110, is formed with a 4-bit ripple carry adder as follows:

- '
Input carry 0110
Augend A 1011
Addend B 0011
Sum S 1110
Qutput carry i{l) 11

The input carry in the least significant position is (. Each full adder receives the
corresponding bits of A and B and the input carry and generates the sum bit for $
and the output carry. The output carry in cach position is the input carry of the
next-higher-order position, as indicated by the blue lines.

The 4-bit adder is a typical example of a digital component that can be used
as a building block. It can be used in many applications involving arithmetic opera-
tions. Observe that the design of this circuit by the nsual method would require a
truth table with 512 entries, since there are nine inputs to the circuil. By cascading
the four instances of the known full adders, it is pessible to obtain a simple and
straightiorward implementation without directly solving this larger problem. This
is an example of the power of iterative circuits and circuit reuse in design..

Carry Lookahead Adder

The ripple carry adder, although simple in concept, has a long circuit delay due to
the many gates in the carry path from the least significant bit to the most significant
bit. For a typical design, the longest delay path through an n-bit ripple carry adder
is 2n + 2 gate delays. Thus, for a 16-bit ripple carry adder, the delay is 34 gate
delays. This delay tends to be one of the largest in atypical computer design.
Accordingly, we find an alternative design, the carry lookahead adder, attractive.
This adder is a practical design with reduced delay at the price of more complex

5-2 / Binary Adders O 207

hardware. The carry lookahead design can be obtained by a transformation of the
ripple carry design in which the carry logic over fixed groups of bits of the adder is
reduced to two-level logic. The transformation is shown for a 4-bit adder group mn
Figure 5-6.

First, we construct a new logic hierarchy, separating the parts of the full
adders not involving the carry propagation path from those containing the path.
We call the first part of each full adder a partial full adder (PFA). This separation is
shown in Figure 5-6(a), which presents a diagram of a PFA and a diagram of four
PFAs connected to the carry path. We have removed the OR gate and one of the
AND gates from each of the full adders to form the ripple carry path.

There are two outputs, P; and G, from each PFA to the ripple carry path and
one input C;, the carry input, from the carry path to each PFA. The function 7 =A,;
@ B, is called the propagate function, Whenever P; is equal to 1, an incoming carry
is propagated through the bit position from C; to Ciyy. For P; equal to 0, carry
propagation through the bit position is blocked. The function G; = A4, B; and is
called the generate function. Whenever G; is equal to 1, the carry output from the
position is 1, regardless of the value of Py, so a carry has been generated in the
position. When G, is 0, a carry is not generated, so that C;.11s 0 if the carry propa-
gated through the position from C;is also 0. The generate and propagate functions
correspond exactly to the half adder and are essential in controlling the values in
the ripple carry path. Also, as in the full adder, the PFA generates the sum function
by the exclusive-OR of the incoming carry C; and the propagate function P;.

The carry path remaining in the 4-bit ripple carry adder has a tetal of eight
gates in cascade, so the circuit has a delay of eight gate delays. Since only AND
and OR gates are involved in the carry path, ideally, the delay for each of the four
carry signals produced, C; through Cy, would be just two gate delays. The basic
carry lookahead circuit is simply a circuit in which functions C; through C; have a
delay of only two gate delays, The implementation of C,is more complicated in
order to allow the 4-bit carry lookahead adder to be extended to multiples of 4
bits, such as 16 bits, The 4-bit carry lookahead circuit is shown in Figure 5-6(b). It
is designed to directly replace the ripple carry path in Figure 5-6(a). Since the logic
generating C, is already two-level, it remains unchanged. The logic for C;, how-
ever, has four levels. So to find the carry lookahead logic for C;, we must reduce
the logic to two levels. The equation for C; is found from Figure 5-6(a), and the
distributive law is applied to obtain

Cy= Gy + Pi(Gy + PyCy)

= Gl+PlGQ+P1PDC{]

This equation is implemented by the logic with output C, in Figure 5-6(b). We
obtain the two-level logic for C; by finding its equation from the carry path in
Figure 5-6(a) and applying the distributive law:

C3 = GZ+P2(GI +P1{GD+P0C0))

Los]
=
3
C
=
o
:
28]
Z
2
H
2
<5
2
T
43}
=1
oy
=
21
-
-
[Ts]
=4
=
[~ 1
-
o
9
||
a0
=
o]

PTA

PFA

TFA

PEA

Carry Lookahead

% |

Cs

Gy Py
_/__ |-+
A

(»).

Devetopment of a Carry Lookahead Adder

9 FIGURE 5-6.

5-2 / Binary Adders [0 209

= G, + Py(G; + PG, + PyCy)
= G + PG + PP Gy + PP Py(

The two-level logic with output C; in Figure 5-6(b) implements this function.

We could implement C, using the same method. But some of the gates would
have a fan-in of five, which may increase the delay. Also, we are interested in reus-
ing this same circuit for higher numbered bits (e.g., 4 through 7, 8 through 11, and
12 through 15 of a 16-bit adder). For this adder, in positions 4, §, and 12 we would
like the carry to be produced as fast as possible without using excessive fan-in.
Accordingly, we want to repeat the same carry lookahead trick for 4-bit groups
that we used to handle the 4 bits. This will allow us to reuse the carry lookahead
circuit for each group of 4 bits, and also to use the same circuit for four 4-bit groups
as if they were individual bits. So instead of generating C,, we produce generate
and propagate functions that apply to 4-bit'groups instead of a single bit to act as
the inputs for the group carry lookahead circuit. To propagate a carry from Cj to
C4, we need to have all four of the propagate functions equal to 1, giving the group
propagate function

Py_y = PaPyP Ry

To represent the generation of a carry in positions 0, 1, 2, and 3, and its propaga-
tion to C4, we need to consider the generation of a carry in each of the positions, as
represented by Gy through Gs, and the propagation of each of these four gener-
ated carries to position 4. This gives the group generate function

Gy_3 = G3 + P3G, + PP, Gy + PP PGy

The group propagate and group generate equations are implemented by the logic
in the lower part of Figure 5-6(b). If there are only 4 bits in the adder, then the
logic circuit used for C; can be used to generaie C; from these two outputs. In a
jonger adder, a carry lookahead circuit identical to that in the figure, except for
labeling, is placed at the second level to generate Cy, Cy, and C;. This concept can
be extended with more carry lookahead circuits in the second level and with one
carry lookahead circuit in the third level to generate carries for positions 16, 32,
and 48 in a 64-bit adder.

Assuming that an exclusive OR contributes 2 gate delays, the longest delay in
the 4-bit carry lookahead adder is 6 gate delays, compared with 10 gate delays in
the ripple carry adder. The improvement is very modest and perhaps not worth all
the extra logic. But applying the carry lookahead circuit to a 16-bit adder using five
copies in two levels of lookahead reduces the delay from 34 to just 10 gate delays,
improving the performance of the adder by a factor of close to three. In a 64-bit
adder, with the use of 21 carry lookahead circuits in three levels of lookahead, the
delay is reduced from 130 gate delays to 14 gate delays, giving more than a factor
of 8 in improved performance. In general, for the implementation we have shown,
the delay of a carry lockahead adder designed for the best performance is 4L + 2
gate delays, where L is the number of lookahead levels in the design.

