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Designing Computer Systems

Arithmetic

Arithmetic  in  digital  systems  involves  a  few  familiar  operations  (addition, 
subtraction, multiplication, and division) on quantitative representations described 
in Number Systems. Everyone knows what the answer should be. The challenge is 
making  hardware  that  performs  these  operations,  and  detecting  when  the 
representation  cannot  capture  the  result  (overflow).  This  chapter  combines 
Number  Systems and  Gate  Design to  define  and  implement  addition  and 
subtraction.

Addition:  Addition is a simple  dyadic operation in that operates on two operands, 
the addends, to produce a result, a sum. The rules of addition were first learned in 
an early grade on decimal values.

1      1 1      1 1       
6 8 3 6 8 3 6 8 3 6 8 3 6 8 3

  +   3 6 5   +   3 6 5   +   3 6 5   +   3 6 5   +   3 6 5
8 4 8 0 4 8 1 0 4 8

When adding these values, one starts at the least significant digit. Adding three 
and  five is easy. The result,  eight is expressible within the significance of this 
digit (the one's place). So this place is done. The next digit, in  the ten's place is 
more complicated. The sum of eight (80) and six (60) is 14 (140). But this cannot be 
expressed fully in the tens place. So the six (60) is recorded and the ten (100) is 
carried to the next place, the hundreds place. The sum of six (600), three (300), 
and the carried in one (100) sums to one thousand. Again, this cannot be captured 
in the hundred's place. So it is carried to the next digit, the thousand's place. This 
leads  to  a  habit  that  humans  have,  but  digital  systems  cannot  support:  The 
presumption of unlimited bit resolution. Humans assume that if there is space in 
the  result  line,  it  can  be  used  to  fully,  and  accurately  express  the  result. 
Unfortunately  digital  systems  must  live  within  the  available  bits  in  the 
representation. If the representation if three decimal digits, 000 to 999, it cannot 
represent 1048. So there is an overflow error.

Moving to binary addition is simply a matter of employing a binary notation.

1 1 1 1 1
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

  + 0 1 1   + 0 1 1   + 0 1 1   + 0 1 1   + 0 1 1
1 0 1 0 0 1 1 0 0 1
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Zero added to one results in  one. There are fewer characters in the alphabet so 
this happens less frequently. Note also that places here are not powers of ten (1, 
10, 100) but are instead powers of two (1,  2,  4, 8). When one (2) is added to one 
(2),  the  result,  10 (4)  cannot  be  represented  in  the  two's  place.  So  zero is 
recorded and 10 (4) is carried to the next bit position, the 4's place. This 10 (4) is 
added to the one (4) and zero already in this place to produce a result 10 (8). The 
zero remains in the 4's place, and the 10 (8) is carried to the 8's place.

But as before, digital systems may not always have an extra bit position (here in  
the 8's place) to hold the one carried out of the 4's place. If it's available, 110 (6) 
added to 011  (3)  results  in  1001 (9).  Otherwise  the result  is  001  (1),  which is 
incorrect,  at  least  for  unsigned  integers.  Interestingly,  in  a  three  bit  two's 
complement representation, 110 (-2) added to 011 (3) is  001 (1)! So overflow errors 
are dependent on the representation. More on this later.

Addition Hardware:  The goal is to build hardware to perform arithmetic.  It is 
important to note that the operation of binary addition is invariant to bit position. 
It's  the same operation with respect  to given inputs  used to compute outputs 
regardless of whether it is performed in the 1's place, 2's place, etc. So building a 
one-bit  adder  is  the  place  to  start.  Here's  an  adder  for  two  one-bit  binary 
operands, X and Y. The result is S.

X

+ S
Y

X Y S
0 0 0
1 0 1
0 1 1
1 1 10

Again, the rules of addition are applied in binary. 0 + 0 = 0, 1 + 0 = 1, 0 + 1 = 1, 1 + 1 = 
10.  Only this is a one-bit adder. So 10 (2) cannot be represented in this place. An 
additional output is added to carry this value to the next bit position. This is called 
Carry Out (Cout). When the sum of X and Y exceeds one, this output signals that 
the bit position capacity exceeded, and a carry out takes excess output to the 
next bit position. When X and Y are one, the output is two and carry out transfers 
this excess. For all other addition cases, the sum can be represented in this bit 
position so carry out is zero.
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X

+ S
Y

Cout

X Y Cout S
0 0 0 0
1 0 0 1
0 1 0 1
1 1 1 0

This output is drawn on the bottom rather than the left side of the adder  icon 
because it is used as an input for another one-bit adder. Since the next bit position 
must process this carry out signal, the adder also needs another input.

Two for You is One for Me: When a two in one bit position is carry into the next, 
what is it worth? Moving from least significant to most significant bit positions, 
each bit is twice the significance of the bit before it. So the two's place is twice 
the significance of the one's place. The four's place is twice the two's place. The 
eight's place is twice the four's place.  In general,  the i+1's place is twice the 
significance of i's place. So when two is carried out of the i's place, it becomes one 
in the i+1's place. So a carry out (two) from the lesser significant neighboring bit 
becomes one as a carry in.

This  simplifies the behavior  when a  Carry In (Cin)  is  added.  Now,  rather than 
adding X and Y, the adder is adding X + Y + Cin. All three inputs have the same 
significance. Here's the behavior assuming the carry in is zero (from before).

Cin

X

+ S
Y

Cout

X Y Cin Cout S
0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
1 1 0 1 0
0 0 1
1 0 1
0 1 1
1 1 1
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To handle the new cases where carry in is one, the result includes the sum of X, Y, 
and Cin.

Cin

X

+ S
Y

Cout

X Y Cin Cout S
0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
1 1 0 1 0
0 0 1 0 1
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

The first case (X = 0, Y = 0, Cin = 1) produces a sum of one. No carry out required. 
When (X = 1, Y = 0, Cin = 1), the sum is 10 (2). This results in Sum = 0 and Cout = 1. 
The same outputs occur when (X = 1, Y = 0, Cin = 1). But when (X = 1, Y = 1, Cin = 1), 
the sum is 11 (3). Carry out moves 10 (2) to the next bit position. The remaining one 
becomes the Sum output. So the results are Sum = 1 and Cout = 1.

This one-bit adder, also known as  a Full Adder, captures the behavior of binary 
addition. Multi-bit addition can be constructed from cascaded one-bit adders.

What's Inside a Full Adder?: The behavior of Sum (S) is expressed as odd parity 
(XOR) which is defined as “true when the number of high inputs is odd”. As X, Y, or 
Cin transitions between zero and one, the number of high inputs changes from even 
to odd, or odd to even. Independent of the carry out signal, a transition of an input 
(X, Y, or Cin) results in a transition of the resulting sum, S. Carry out, Cout, has an 
equally intuitive definition. If there is a one on less than two inputs (X, Y, and Cin), 
the resulting sum can be handled within the bit position. However if two or more 
inputs are one, the sum will exceed the bit position's maximum value and carry out 
must be asserted. This happens in four cases:

X⋅Y Y⋅C in X⋅C in X⋅Y⋅C in

The expression for carry out can be simplified to a sum of three product terms.  
The behavior of a full adder can be expressed with these two boolean expressions.

S=X⊕Y⊕C in Cout=X⋅YX⋅C inY⋅C in

The  implementation  is  straightforward.  Odd  parity  (a  checkerboard  K-map)  is 
difficult to simplify. The sum of products expression is implemented with NAND 
gates.
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Going Multi-Bit: Since each bit position follows the same operations, a multi-bit 
adder is created by connecting several replicated one bit adders. The carry in of 
the least significant bit is set to zero. If it is one, an extra one is added to the 
sum.  This  may come in  handy  later.  Each bit  position  is  implicit  relative  to its 
position. Here's a four bit adder:

1's place 0 + 1 = 1

2's place 1 + 1 = 0 (Cout)

4's place 1 + 0 + Cin = 0 (Cout)

8's place 0 + 0 + Cin = 1

In this example X = 0110 (6) and Y = 0011 (3), Each one bit adder handles one bit 
position. The collection performs the word addition yielding the correct solution 
1001 (9) … correct assuming an unsigned integer representation. But what about for 
other representations?

Fixed Point Arithmetic: A full adder works predictably for unsigned integers. It 
also  supports  unsigned  fixed  point  representations,  since  the  bit  position 
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relationship does not change. The carry in comes from a bit position that has half 
the  significance.  The  carry  out  goes  to  a  bit  position  that  has  twice  the 
significance. All that is required is a zero in the carry in to the least significant 
bit. For all unsigned representations, a carry out of the most significant bit in the 
representation  indicates  a  result  beyond  the  maximum  expressible  value. 
Otherwise the value is correct. If a fixed point is added in the middle of a four bit 
adder, its operation is unchanged. All that changes is the interpretation of the 
operands and the result. The operation adds 01.10 (1.5) and 00.11 (0.75) to produce 
10.01 (2.25). Here are more examples.

integer fixed point
7 + 1 = 8 0111 + 0001 = 1000 01.11 + 00.01 = 10.00 1.75 + 0.25 = 2.0

9 + 6 = 15 1001 + 0110 = 1111 10.01 + 01.10 = 11.11 2.25 + 1.5 = 3.75
4 + 12 = 0
overflow

0100 + 1100 = 0000 01.00 + 11.00 = 00.00 1.0 + 3.0 = 0.0 
overflow

In each of these examples, the same operand patterns are applied to the four bit 
adder, producing the same result. Only the representation differs. Note that for 
fixed  point  representations,  overflow  errors  occur  (or  not)  with  the  same 
operands, regardless of the position of the point. Fixed point is a scaling of the 
operands and the corresponding ranges of the representation.

Signed Arithmetic:  In  Number Systems,  there were many advantages to  two's 
complement representations for signed quantities: only one representation of zero, 
a simple negation, easy differentiation of positive and negative values. Here's one 
more reason to like two's complement: it employs the same rules for arithmetic. So 
the examples can be reconsidered as  two's complement.

unsigned integer two's complement integer
7 + 1 = 8 0111 + 0001 = 1000 0111 + 0001 = 1000 7 + 1 = -8 

overflow
9 + 6 = 15 1001 + 0110 = 1111 1001 + 0110 = 1111 -7 + 6 = -1
4 + 12 = 0
overflow

0100 + 1100 = 0000 0100 + 1100 = 0000 4 + -4 = 0.0 

In  both  representations,  the  same  four  bit  adder  performs  the  same  logical 
operations  producing  the  correct  result  when  the  answer  is  within  the 
representation's range. Different representations give different meanings to the 
operand  sequences.  And  different  ranges  produce  overflow errors  in  different 
places. The two's complement interpretation of the first example 7 + 1 = -8 results 
from the range of a four-bit  two's complement integer:  -8 to  +7. This is not an 
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error for the unsigned integer representation with a range of 0 to 15. In the third 
example, the result in the unsigned integer representation overflows its range. The 
two's complement representation does not.

The four  bit  adder  also  performs properly  for  signed  two's  complement fixed 
point. Since this is just scaling of the values (and ranges), this is expected.

unsigned fixed point two's complement fixed point
01.11 + 00.01 = 10.00 1.75 + 0.25 = 2.0 01.11 + 00.01 = 10.00 1.75 + 0.25 = -4.0 

overflow
10.01 + 01.10 = 11.11 2.25 + 1.5 = 3.75 10.01 + 01.10 = 11.11 -1.75 + 1.5 = -0.25

01.00 + 11.00 = 00.00 1.0 + 3.0 = 0.0 
overflow

01.00 + 11.00 = 00.00 1.0 + -1.0 = 0.0

The  carry  out  of  the  most  significant  bit  indicates  overflow  with  unsigned 
representations.  It  tells  nothing  about  overflow  in  two's  complement 
representations. So how can these errors be detected?

Overflow  in  Two's  Complement:  There  are  several  ways  to  detect  two's 
complement overflows. The most intuitive exploits the easy sign detection of the 
representation using only the most significant bit. If the MSB is zero, the value is 
positive.  If  the  MSB  is  one,  it  is  negative.  When  an  overflow  occurs,  the 
inexpressible  wraps around the range of the representation and ends up in the 
opposite signed values. In the first example, two positive numbers are added to 
produce a negative result. Because overflows wrap into the opposite sign, they can 
be detected using only the most significant bits of the operands and the result. 
Here are the eight cases when positive and negative values are added.

0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1
+ 0 0 1 1 + 0 1 1 0 + 1 1 0 0 + 1 1 0 0 + 0 1 1 0 + 0 1 0 1 + 1 0 1 0 + 1 0 1 1

0 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0
ok overflow ok ok ok ok overflow ok

Overflows occur in two cases: when two positive values are added with a negative 
result, and when two negative values are added with a positive result. Here are the 
corresponding decimal values:

2 2 6 2 -6 -6 -7 -3
+   3  +   6  +   -4  +   -4  +   6  +   5  +   -6  +   -5  

5 -8 2 -2 0 -1 3 -8
ok overflow ok ok ok ok overflow ok
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Two's  complements  overflows  for  addition  occur  when  two positives  produce  a 
negative sum, or two negatives produce a positive sum. This can be expressed as a 
boolean expression, where the “m” subscript indicates the most significant bit:

Overflow=Xm⋅Y m⋅Sm+ X m⋅Y m⋅Sm .

The same multi-bit adder can be used for unsigned and signed two's complement 
representations.  But  different  hardware  is  required  to  detect  overflows.  For 
unsigned addition, the carry out of the most significant bit indicates an overflow. 
For signed two's complement, hardware that implements this sum of products is 
needed. More of this hardware will follow an exploration of the next arithmetic 
operation, subtraction.

Giving and Taking Away: Subtraction is the converse of addition. But in addition, 
the early-learned rules of elementary school are directly applied, in subtraction, a 
more modern approach to borrowing is employed. Here's an example.

1      1  1      1  1      
4 0 5 8 4 0 5 8 4 0 5 8 4 0 5 8 4 0 5 8

  - 2 3 7 3   - 2 3 7 3   - 2 3 7 3   - 2 3 7 3   - 2 3 7 3
5 8 5 6 8 5 1 6 8 5

Like addition, one starts at the least significant bit. Here, 3 is subtracted from 8 
leaving  5.  But  in  the next digit,  the  ten's place,  7 is  subtracted from  5.  Like 
addition, sometimes the operation cannot be completed within the digit. Early on, 
one learns to search for the next non-zero digit, borrowing one in its place, and 
regrouping as needed. Here one would borrow from the 4 (4000). But this approach 
is expensive, since it requires a search though an indeterminate number of digits. A 
more efficient approach doesn't look for the needed value to borrow; it presumes 
it exists, passes a borrow signal to the next digit, and completes the operation. 
This closely resembles the modern approach to borrowing: one places a purchase on 
a credit card, and decides later whether needed funds are available. While this is 
an unsound fiscal policy, it works well in computer arithmetic.

In this example, the process assumes the additional 10 (100) is available to regroup 
the 5 (50) as 15 (150). Then the 7 (70) is subtracted leaving 8 (80). A borrow out 
signal is passed to the next digit, the hundred's place. Here, 3 (300) is subtracted 
from  0. The the borrow in does not add, it subtracts as a  1 (100) in this digit. 
Again, the total of  4 (400) that is subtracted. So borrow out is asserted to the 
thousand's place. This provides 10 (1000) that the 4 (400) can be subtracted from. 
The operation in the  thousand's place concludes with  2 (2000) being subtracted 
along with the borrow value 1 (1000) from the 4 (4000), leaving 1 (1000) remaining.
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Binary subtraction follows this decimal example just as binary addition did.

1 1 1 1 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

 - 0 1 1 0  - 0 1 1 0  - 0 1 1 0  - 0 1 1 0  - 0 1 1 0
1 1 1 0 1 1 0 0 1 1

In this example, barrow out is asserted when the operation cannot be completed 
with the bit position. 

Subtraction Hardware: Subtraction logic resembles a full adder. Only it computes 
the difference, and it accepts borrow in and generate borrow out. In subtraction, 
the difference output (D) is computed as X = Y – Bin since both Y and Bin have the 
same significance. Here's the behavior of a full subtractor.

Bin

X

- S
Y

Bout

X Y Bin Bout D
0 0 0 0 0
1 0 0 0 1
0 1 0 1 1
1 1 0 0 0
0 0 1 1 1
1 0 1 0 0
0 1 1 1 0
1 1 1 1 1

It is interesting to note that difference (D) is exactly the same as sum (S) in 
addition: odd parity. This makes sense when one considers that, from a single bit 
position's  standpoint,  adding  one  has  the  same  effect  as  subtracting  one.  The 
result toggles. The borrow out expression differs from carry out.

D=X⊕Y⊕Bin Bout=X⋅YX⋅BinY⋅Bin
The hardware implementation resembles the full adder, but for a small difference 
in the borrow out circuit.
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Two for One: Full subtracters can be replicated to form a multiple bit subtractor. 
But that's not how it's done. The hardware cost for subtraction would match the 
cost of addition. What if there were a way to get both operations using only one 
multi-bit arithmetic unit? How can an adder subtract? The answer comes from a 
little math and the magic of two's complement.

Z = X - Y Z = X + (-Y)
These  two  expressions  compute  the  same  result.  So  subtraction  can  be 
accomplished by adding the negation of the subtracted value. Negation is easy in 
two's complement. Just invert (complement) each bit and add one. The complement 
is done with inverters. The added one occurs by setting the carry in of the least 
significant bit to one. This “feature” was noted in the multi-bit adder.

Suppose the desired subtraction is 1001 – 0110. The result, 0011, can be computed 
using either full subtracters or full adders (with negation logic).

A multi-bit adder/subtracter can employ the adder hardware to perform addition 
and subtraction. A single control line  ADD/SUB determines which operation is to 
be performed. This rather unusual signal label declares that the signal is an active 
low  add signal  combined with an active high  subtract signal.  Since the signal  is 
either low (zero)  or  high (one),  the circuit  is  either adding or  subtracting.  To 
construct this, the inverters are replaced with selective inverters introduced in 
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Building Blocks, implemented as XOR gates. The ADD/SUB signal also controls the 
carry in of the least  significant  bit  of the adder.  When high,  it  adds the one 
needed to  negate  the  second  operand  being  subtracted.  The  adder/subtractor 
implementation  is shown below in both operation modes.

What  About  Overflows?:  The  signed  overflow  detection  logic  handles  two's 
complement representations with this design. For unsigned, the carry out indicates 
addition overflow with a high value (One). Subtraction overflows are represented 
with a low value (zero) on carry out. The negation of the subtracted value wraps 
non-overflowing results into the unsigned overflow domain. Ironically, subtracted 
numbers larger than the first operand become small in negation and do not reach 
the unsigned overflow domain.

Summary:

• Addition and subtraction follow the rules learned for decimal, but with a few 
small changes. One does not assume unlimited digits. And subtraction uses 
borrowing on credit to simplify protracted borrowing.

• Binary  addition  and  subtraction  are  defined  bit-wise,  leading  to  the 
definition and construction of a full adder and a full subtractor. They are 
implemented using XOR and NAND gates.

• Overflows  occur  due  to  a  bound  word  size.  Error  detection  is 
straightforward and differs for unsigned and signed representations.

• An  adder/subtractor  can  be  constructed  using  a  multi-bit  adder  and 
selectable negation circuitry for the second operand.
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