
Designing Computer Systems

Introduction to Computer Design

08:31:15 PM 4 June 2013 IT-1 © Scott & Linda Wills

Designing Computer Systems

Introduction to Computer Design

Our world is full of computer-based systems: smartphones, laptops, tablets. And

new, useful and attractive products are appearing regularly. How are they

designed? What are they made of? Today's high tech products contain dozens of

subsystems, each composed of many components. Some are specialized, like a color

display or a wireless transceiver. But the computing in a computing system is

general and programmable. Interestingly, while computing provides the system

“smarts”, it is built using two very simple components: switches and wire.

So how does one create a smart product out of dumb components? First, these

components are extremely versatile. Wire-connected switches can be used to build

functional elements (e.g., perform arithmetic operations), memory elements (e.g.,

store values and program instructions), and control elements (e.g., sequence

program instructions in a execution datapath). These elements can for a

programmable computer that can exhibit a very smart behavior.

Second, technology offers the ability to integrate millions or even billions of wire-

connected switches in an extremely compact integrated circuit (IC). This large

number of switches supports the construction of a powerful programmable

computer and sophisticated real-world interfaces. The low cost of these devices

allows them to be incorporated in a wide range of products.

Designing systems with millions of components is a challenge. A successful strategy

is a design hierarchy. Use several simple elements to produce a more complex

component. Then design the next level using these more complex components. The

design hierarchy below spans from switches and wire to assembly programming.

Assembly Language

Instruction Set

Memory Datapath Controller

Storage Functional Units State Machines

Building Blocks

Gates

Switches and Wire

08:31:15 PM 4 June 2013 IT-2 © Scott & Linda Wills

While there are other ways to describe the organization of programmable

computers, this hierarchy illustrates the design path presented in the following

chapters. Some chapters address specific levels of the hierarchy (designing with

switches). Others focus on design techniques (simplification) and mathematics

(Boolean algebra). All chapters emphasize design; how do you build a computer

system.

Chapters

1. Introduction to Computer Design

2. Switches and Wire

3. Boolean Algebra

4. Gate Design

5. Simplification

6. Building Blocks

7. Number Systems

8. Arithmetic

9. Latches and Registers

10. Counters

11. State Machines

12. Memory

13. Datapath

14. Controller and Instruction Set

15. Assembly Programming

CompuCanvas: There is a free, open-source tool that can help you try out many of

the ideas and techniques describe in these chapters. It is written in the Python

programming language (available at www.python.org); so it runs on almost

everything. Find out more about it at the CompuCanvas website

www.compucanvas.org.

08:31:15 PM 4 June 2013 IT-3 © Scott & Linda Wills

http://www.python.org/
http://www.compucanvas.org/

Designing Computer Systems

Switches and Wire

08:30:29 PM 4 June 2013 SW-1 © Scott & Linda Wills

Designing Computer Systems

Switches and Wire

Despite their apparent complexity, digital computers are built from simple

elements, namely switches and wire. To see how switches and wire can perform

computations, consider the circuit below. The battery on the left is connected to

the bulb on the right through the switch labeled A.

A

The battery will light the bulb if there is a complete path for current to flow from

one side of the battery to the other. If the switch is open, no current can flow so

the light is off. If the switch is closed, current flows and the light is on. The

behavior of this simple circuit can be expressed using a table.

switch light

open off

closed on

This type of table has been given the lofty name Truth Table. A more meaningful

name would be behavior table since it describes the behavior of the circuit. Truth

tables list all possible inputs to a system on the left and resulting outputs on the

right. A truth table specifies how a system should behave. It does not specify how

it should be implemented; this can be done in many ways.

Sometimes an icon is used to show connected nodes without drawing a wire. In the

circuit below, the triangular symbols below the battery and bulb represent ground.

We can imagine that all points attached to ground icons are connected together. So

this circuit behaves identically to the circuit above.

08:30:29 PM 4 June 2013 SW-2 © Scott & Linda Wills

A

Here’s a system with two switches in series.

A B

Because each switch can be in one of two states (open or closed) and there are two

switches, the truth table has four rows. It’s not so important how we list the input

combinations so long as all cases are included exactly once.

switch A switch B light

open open off

closed open off

open closed off

closed closed on

In this circuit, the light is on when switch A is closed AND switch B is closed. This

illustrates an important point; series switches produce AND behavior. Using

words like open/closed and on/off to describe system behavior is verbose. We can

assign the value 0 to an open switch and 1 to a closed switch. Further we can assign

the value 0 to an off (dark) bulb and 1 to an on (lit) bulb. Sometimes we’ll refer to

1 as true and 0 as false. Now the truth table becomes more compact.

A B Out

0 0 0

1 0 0

0 1 0

1 1 1

The next system has two switches in parallel.

08:30:29 PM 4 June 2013 SW-3 © Scott & Linda Wills

A

B

Here the output is true if switch A is closed OR switch B is closed. This illustrates

another important point; parallel switches produce OR behavior. Here’s the truth

table.

A B Out

0 0 0

1 0 1

0 1 1

1 1 1

We might call this an “OR circuit” (in contrast to the previous “AND circuit”)

because its output is true when either A is true OR B is true. Defining a system’s

behavior by when its output is true is call positive logic. This contrasts with

negative logic where a system’s behavior is defined when its output is false. We

have to pick one convention; positive logic seems more intuitive.

The last circuit is more complex.

B

C
A

The truth table has eight rows to capture all input combinations of the switches.

In general, if a system has N binary inputs (i.e., each input can be in one of two

states), there are 2N entries in the truth table. This circuit behavior is accurately,

if not clearly, described in the truth table.

08:30:29 PM 4 June 2013 SW-4 © Scott & Linda Wills

A B C Out

0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 1

0 1 1 0

1 1 1 1

A more concise description of the behavior is derived from the series and parallel

arrangement of the switches. By starting at the outer-most connections, switch A

is in series with a second switch combination, switch B in parallel with switch C.

Therefore, the output is true when A AND (B OR C).

The parentheses are significant since AND has higher precedence than OR, just as

multiplication has higher precedence than addition. The arithmetic expression A ·

(B + C) differs from (A · B) + C that results if the parentheses are removed.

Similarly, A AND (B OR C) differs from (A AND B) OR C. The second expression

would be implemented as the following, non-equivalent circuit.

B

C

A

Designing systems with these switches has one major limitation. The input to the

switch is a mechanical activator (your finger). But the output of the system is

optical (light). This prevents composing systems since the output of one system

cannot control the input of another. To remedy this problem, we’ll consider a

different kind of switch.

A voltage controlled switch fits our need since (A) most systems have a handy

voltage source from a power supply or batteries, (B) switches can easily connect to

either a high or low voltage to produce an output, and (C) controlling switches with

a voltage does not implicitly dissipate a lot of energy. The sources of high (1) and

low (0) voltages are show below.

08:30:29 PM 4 June 2013 SW-5 © Scott & Linda Wills

high
voltage

low
voltage

A battery is connected to the ground symbol to represent the low voltage source.

The other side of the battery is connected to a new symbol that resembles a “T”.

It is used to represent the high voltage source. These high and low supply symbols

are used throughout a design to provide necessary voltages needed to activate

voltage controlled switches. But only one battery is needed to generate them!

In order to build composable circuits (i.e., where the output of one circuit can

control the input of another), voltage controlled switches must connect an output

to either the high or low supply, as shown below. We’ll use networks of voltage

controlled switches to provide correct output values for each combination of

inputs.

pull up
network

pull down
network

output

N-Type Switch: The voltage controlled switch is called an N-type switch. It has

three places for wires to connect called terminals. The source and drain terminals

represent the ends of a switch that are connected when the switch is closed. The

gate terminal is the voltage controlled input that opens or closes the switch.

08:30:29 PM 4 June 2013 SW-6 © Scott & Linda Wills

source

drain

gate

gate switch

low (0) open

high (1) closed

If the voltage connected to the gate is low, the switch is open. If the voltage on

the gate is high, the switch is closed. N-type switches are called an active high.

low gate
voltage

source

drain

open
switch high gate

voltage

source

drain

closed
switch

A low gate voltage opens the switch A high gate voltage closes the switch

P-Type Switch: As one might expect in a binary world, there is also a P-type

switch (note the bubble drawn on the gate terminal). It behaves just like an N-type

switch, except that the source-drain switch closes when the gate voltage is low.

source

drain

gate

gate switch

low (0) closes

high (1) open

Since the switch closes when the gate voltage is low, a P-type switch is called

active low.

low gate
voltage

source

drain

closed
switch high gate

voltage

source

drain

open
switch

A low gate voltage closes the switch A high gate voltage opens the switch

Designing Logic: Building logical circuits with voltage controlled switches begins

like the battery and light designs. Only now a complimentary circuit must be

08:30:29 PM 4 June 2013 SW-7 © Scott & Linda Wills

created to connect the output to the high voltage sometimes and the low voltage

other times. Errors in the design process can lead to unfortunate consequences.

Consider this simple two input circuit.

A

B

Output

open

closed

A B Out

0 0

1 0

0 1

1 1 0

When A and B are both high, the N-type switch is closed connecting the output to

the low voltage. Since the P-type switch is open, it does not participate.

A

B

Output

open

closed

A B Out

0 0 1

1 0

0 1

1 1 0

When A and B are both low, the P-type switch is closed connecting the output to

the high voltage. Since the N-type switch is open, it does not participate.

A

B

Output

open

open

A B Out

0 0 1

1 0 float

0 1

1 1 0

When A is high and B is low, both the N-type and P-type switch are open. The

output is not connected to the high voltage or the low voltage. This undefined

state, often called a floating node, does not provide a valid output for controlling

other switches. For this reason, this condition should be avoided.

08:30:29 PM 4 June 2013 SW-8 © Scott & Linda Wills

A

B

Output

closed

closed

A B Out

0 0 1

1 0 float

0 1 short

1 1 0

When A is low and B is high, both the N-type and P-type switch are closed. This

condition is more serious than a floating output in that the high voltage is

connected to the low voltage. This is called a short. It is particularly bad since, in

addition to having an undefined output value, a lot of current flows, generating

heat that can damage the switches. Shorts should be eliminated in all designs!

NOT Gate Implementation: A NOT gate can be implemented using a variation of

this circuit. The two undesirable states (float and short) occur when A and B have

different values. If the two inputs are connected together as a single input (In),

unwanted output conditions are eliminated. This circuit implements a NOT gate.

In Out

In Out

0 1

1 0

Note that this circuit is controlled by a high or low voltage, and it produces a high

or low voltage output. These switches can be used to implement complex

expressions of AND and OR functions. But first we need to understand a few

things about switch technology.

See MOS Switches: These voltage-controlled switches are built out of silicon (Si).

This is a surprise since pure silicon and silicon dioxide (silica) are insulators. In

fact, most high voltage insulators are ceramics made from silicon. Si atoms have

four valance (outer-shell) electrons. When arranged in a crystal lattice, all of these

electrons are bound so charge carriers are not available for conduction (A). In

order to change things, atoms of other elements are embedded in the lattice

through ion implantation or diffusion. These elements, called dopants, have either

one more or one less valance electron. Phosphorus has an extra electron (five) (B);

Boron has one less (three) (C).

08:30:29 PM 4 June 2013 SW-9 © Scott & Linda Wills

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si

Si Si Si

P

Si Si Si

Si Si

Si Si Si

B

(A) (B) (C)

When these elements find themselves in the lattice, their extra electron

contributes a negative charge carrier (an electron) while their lacking electron

contributes a positive charge carrier (a hole). Introducing these charge carries

produces an interesting semiconductor material that can be controlled by an

electrical field.

Through clever processing of a silicon wafer, doped regions can form the

semiconducting channels of a switch. The basic structure is shown below in cross-

section. First a wafer of pure silicon is cut and polished to a smooth surface (1).

Then dopants are selectively implanted to form a channel (2). A small isolative layer

is grown above the channel (3). Then a layer of conductive polysilicon is selectively

formed over the channel to act as the gate (4). Additional dopant implantation

deepens the source and drain regions (5). Then wires (typically aluminum or copper)

are formed to contact and connect source, drain, and gate terminals of the formed

devices (6). The completed device is a Metal Oxide Semiconductor Field Effect

Transistor (MOSFET).

channel channel

(1) (2) (3)

gate
channel

gate

source
channel

drain

gate

source

wire wire

channel
drain

(4) (5) (6)

This selective processing is accomplished using photolithography. In this process, a

light sensitive material is used to pattern the layered structures on the silicon

surface. Because this fabrication process is performed on the entire wafer

surface, a couple hundred chips, each containing hundreds of millions of transistors

08:30:29 PM 4 June 2013 SW-10 © Scott & Linda Wills

can be fabricated at the same time. This dramatically reduces the cost for each

chip.

This semiconductor device can operate as a voltage controlled switch. When a

voltage is placed on the gate terminal, relative to the silicon around the device

(know as the substrate), a vertical electrical field is generated. This field can push

charge carries out of the channel, opening the switch (A). Or the field can attract

charge carries into the channel, closing the switch (B).

gate

source

wire wire

channel
drain

gate

source

wire wire

channel
drain

(A) (B)

These semiconducting switches come in two types. An N-type Field Effect

Transistor (NFET) closes (conducts) when a high voltage is placed on its gate. A P-

type Field Effect Transistor (PFET) opens (isolates) when a high voltage is placed

on its gate. The two switch types differ only in the dopant used and some early

preparation of the surrounding silicon so the substrate can be properly biased to

create the field. When these two types are used to implement a Boolean

expression, the resulting design is called Complementary Metal Oxide

Semiconductor or CMOS.

These switches have a critical limitation. When the voltage applied to the gate to

close the switch is also present at the source or drain, the generated horizontal

field will deplete the charge carriers at the opposite side of the channel, pinching
off channel conduction. As the source-drain voltage approaches a technology

specific threshold voltage, the opposite terminal will no longer be pulled towards

the supply voltage. Here’s an N-type switch connected to the high voltage.

gate

source

wire wire

drain
channel

pinch off

Vhigh

This means N-type switches cannot be used to pull the output high. Nor can a P-

type switch be used to pull the output low. Our switch design strategy, using

08:30:29 PM 4 June 2013 SW-11 © Scott & Linda Wills

networks of voltage controlled switches to produce an output voltage must

incorporate this technology limitation.

pull up
network

pull down
network

output

active low
P-type

switches

active high
N-type

switches

Time to Design: We’re now ready to implement Boolean expressions using N and P

type switches. We need to use ideas we’ve covered so far:

• Series switches produce the AND function.

• Parallel switches produce the OR function.

• P-type switches are active low and can pull high.

• N-type switches are active high and can pull low.

• An output should always be pulled either high or low.

Plus we must add a small but significant relationship called DeMorgan’s Theorem

that states:

• X AND Y = NOT(NOT X OR NOT Y)

• X OR Y = NOT(NOT X AND NOT Y)

Boolean expressions quickly become awkward when written this way. We can use

symbols from arithmetic · and + to represent AND and OR functions. We can also

use bars to represent the NOT operation. So DeMorgan’s Theorem becomes:

• X⋅Y=XY

• XY=X⋅Y

This means an AND and OR operations can be exchanged by complementing their

inputs and output. This will come in handy in switch design.

08:30:29 PM 4 June 2013 SW-12 © Scott & Linda Wills

Suppose we want to implement a Boolean expression composed of AND and OR

operations applied to binary inputs (in their true and complemented form). Here’s

an example.

Out = A · B + C

We’ll need to design a pull high network of P-type switches, and a pull low network

of N-type switches (1). The output should be high when A is high AND B is low OR

when C is high. The first part of this OR expression should connect the output to

the high supply when A is high AND B is low. This is accomplished by a series

combination of switches. But with active low P-type switches, we must complement

the inputs (2). So when A is high, A is low closing the active low P-type switch. If B

is also low (B is high), then this low input will close the other P-type switch,

completing the connection between the output and the high supply. The second part

of the OR pulls the output high if C is high. OR is implemented by a parallel

connection of switches. Again, C must be complemented so that when C is high, the

active low P-type switch will close pulling the output high (3).

Out

A

B

Out

A

B

C

Out

(1) (2) (3)

Now we must design a pull low network that connects the output to the low supply

whenever it is not being pulled high. DeMorgan’s Theorem shows that ANDs and

ORs can be swapped if inputs and outputs are complemented. Using N-type rather

than P-type switches complements all inputs. Pulling low rather than high

complements the output. So we can exchange AND and OR by exchanging series

and parallel switch arrangements. We must begin with the outermost operation, in

this case the OR. In the first part of the OR, A and are in series in the pull up

network. So they are in parallel in the pull down network (4). Since A · B are in

08:30:29 PM 4 June 2013 SW-13 © Scott & Linda Wills

parallel with C on in the pull up network, they will be in series in the pull down

network (5).

A

B

C

A B

Out

A

B

C

A B

C

Out

(4) (5)

Here are a few more examples:

CB

Out

A

D

A

B

C

D

C

B

Out

A

D

A

B

C

D

A · (B + C) · D (A + B) · C + D

Not that parallel switches in the pull up network are in series in the pull down

network, and vise versa. Care must be exercised to work on the operations from

08:30:29 PM 4 June 2013 SW-14 © Scott & Linda Wills

the outside in. That is, the last evaluated operation in the expression is the

outermost combination of switching circuits.

Building Abstractions: Switch design allows direct implementation of a behavior

described in Boolean expression. It is often yields the fastest (in terms of delay)

and most efficient (in terms of switches required) solution. But sometimes a little

convenience is worth a slightly higher cost. People don't prepare all their food

from scratch even though it would be more healthy and less expensive. Engineers

don't write programs in the machine language of computers, even though the

executable file would be smaller and it would run faster. And when we are designing

a digital system with a couple hundred million transistors, we may prefer not to

implement all functions with switches.

So we do what all engineers do. We create larger, more complex functional

abstractions and then design with them. An automobile is a complex system.

Fortunately automobile designers combine already understood subsystems for

power, steering, braking, etc. and then adapt as necessary. Computer designers do

the same thing, but with different building blocks.

Basic Gates: Since we already express our designs using logical functions, a natural

choice for new, more complex abstractions would be logical gates. Here are the

basic gates used in digital design: NOT, NAND, NOR, AND, and OR. Consider a

gate with i inputs. inverting gates (gates that begin with "N") require 2i switches

for each input. Non-inverting gates (AND and OR) require 2i+2 switches.

NOT NAND NOR

08:30:29 PM 4 June 2013 SW-15 © Scott & Linda Wills

AND OR

In the chapter on Gate Design, we'll see how designing with gates compares to the

switch design. But first we will visit the mathematics of digital design in Boolean

Algebra.

Summary: Switch design is at the heart of nearly every computer technology we

use today. Here are the key points.

• In contrast with human experience, computation is largely performed on

binary values (zeros and ones).

• The computing world is built with digital switches.

• These switches are voltage controlled, and are assembled in networks to

produce high or low voltage outputs.

• Series switches implement the AND function; Parallel switches implement

OR.

• NFETs are active high switches, and are preferred for pulling an output low.

• PFETs are active low switches, and are preferred for pulling an output high.

• Outputs that are not connected to the high or low voltage are floating

(undefined), and this is not good.

• Outputs are are connected to both the high and the low voltages result in a

short, and this is bad.

• Switches are actually MOSFETs, made from silicon with other dopant

elements that create free charge carriers.

• High integration of MOSFETs on a single chip provides many connected

switches for digital computation, at a low cost.

• Boolean expressions can be efficiently implemented using MOSFETs.

08:30:29 PM 4 June 2013 SW-16 © Scott & Linda Wills

Designing Computer Systems

Boolean Algebra

08:34:45 PM 4 June 2013 BA-1 © Scott & Linda Wills

Designing Computer Systems

Boolean Algebra

Programmable computers can exhibit amazing complexity and generality. And they
do it all with simple operations on binary data. This is surprising since our world is
full of quantitative computation. How can a computer complete complex tasks with
simple skills?

A Little Logic: Computers use logic to solve problems. Computation is built from
combinations of three logical operations: AND, OR, and NOT. Lucky for us, these
operations have intuitive meanings.

AND
In order to get a good grade in ECE 2030, a student should come to
class AND take good notes AND work study problems.

OR Today’s computers run Microsoft Windows 7 OR Mac OS X OR Linux.

NOT Campus food is NOT a good value.

Surprisingly, these three functions underlie every operation performed by today’s
computers. To achieve usefulness and generality, we must be able to express them
precisely and compactly. From an early age, we have used arithmetic expressions to
represent equations with multi-valued variables and values.

Cost = X · $2.00 + Y · $1.50

In the world of logic, all variables have one of two values: true or false. But
expressions can be written in the otherwise familiar form of an arithmetic
expression. We’ll use the “+” operator to represent OR and the “·” operator to
represent AND. The following is a simple example of a Boolean expression:

Out = A · B + C Out is true if A AND B are true OR C is true

Just like in arithmetic expressions, operation precedence determines the order of
evaluation. AND has higher precedence than OR just as multiplication has higher
precedence than addition. Parentheses can be used to specify precise operation
evaluation order if precedence is not right. Note that the expression below closely
resembles the previous example. But it has a different behavior (e.g., consider
each when A is false and C is true.)

Out = A · (B + C) Out is true if A is true AND (B OR C is true)

Is NOT enough?: NOT (also known as complement) is represented by a bar over a
variable or expression. So A is the opposite of A (i.e., if A is true, A is false and
vise versa). When a bar extends over an expression, (e.g., A+B) the result of the

08:34:45 PM 4 June 2013 BA-2 © Scott & Linda Wills

expression is complemented. When a bar extends over a subexpression, it implies
that the subexpression is evaluated first and then complemented. It’s like
parentheses around the subexpression.

Many years ago in the 1800s, the mathematics of these binary variables and logical
functions was described by a man named George Boole and a few of his colleagues.
Now we call this mathematics Boolean Algebra.

Operation Behavior: These logical functions have intuitive behaviors. An AND
expression is true if all of its variables are true. An OR expression is true if any of
its variables are true. A NOT expression is true if its single variable is false.

Sometimes a table is used to specify the behavior of a Boolean expression. The
table lists all possible input combinations of the right side and the resulting
outputs on the left side. This behavior specification is called a truth table. Because
“true” and “false” are hard to right compactly, we’ll use 1 and 0 to represent these
values. Here is a summary of AND, OR, and NOT behaviors using true tables.

A B A · B

0 0 0
1 0 0
0 1 0
1 1 1

A B A + B

0 0 0
1 0 1
0 1 1
1 1 1

A A

0 1
1 0

Truth tables can have more than two inputs; just so long as all combinations of
inputs values are included. If a combination was left out, then the behavior would
not be fully specified. If there are i inputs, then there are 2 i combinations. It is
also possible to have multiple outputs in a table, so long as all results are functions
of the same inputs. Here are several Boolean expressions with three variables:

A B C A · B · C A + B + C A · B + C A · (B + C)

0 0 0 0 0 0 0
1 0 0 0 1 0 0
0 1 0 0 1 0 0
1 1 0 0 1 1 1
0 0 1 0 1 1 0
1 0 1 0 1 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

Three variable AND and OR functions have expected behaviors. The AND output is
true if all of the inputs are true. The OR output is true if any of the inputs are
true. In the third expression, AND is higher precedence than OR. So the output is

08:34:45 PM 4 June 2013 BA-3 © Scott & Linda Wills

true if either A AND B are true OR C is true. In the last expression, A must be
true AND either B OR C (or both B and C) must be true for the output to be true.

There are a few basic properties of Boolean algebra that make it both familiar and
convenient (plus a few new, not-so-familiar properties).

property AND OR

identity A · 1 = A A + 0 = A

commutativity A · B = B · A A + B = B + A

associativity (A · B) · C = A · (B · C) (A + B) + C = A + (B + C)

distributivity A · (B + C) = (A · B) + (A · C) A + (B · C) = (A + B) · (A + C)

absorption A · (A + B) = A A + (A · B) = A

The identity, commutative, and associative properties are intuitive. Distributivity
of AND over OR makes sense. OR over AND is new (don’t try this with arithmetic
addition over multiplication; it doesn’t work!). Absorption is a new property of
Boolean algebra. It comes in handy for simplifying expressions.

Generally, working with Boolean expressions is a lot like working with arithmetic
expressions, with a few notable differences.

And that’s NOT all: The complement (NOT) function adds an interesting
dimension to the math. Where quantitative expressions have a rich range and
domain for inputs and outputs, binary expression are decidedly limited. Any
operation in a Boolean expression can have its inputs and/or its output
complemented. But results will still be either true or false.

In fact most Boolean expression design extends the set of logical functions with
NOTed AND (NAND) and NOTed OR (NOR). These functions are computed by
complementing the result of the core operation.

AND NAND OR NOR
A B A·B

0 0 0
1 0 0
0 1 0
1 1 1

A B A·B

0 0 1
1 0 1
0 1 1
1 1 0

A B A+B

0 0 0
1 0 1
0 1 1
1 1 1

A B A+B

0 0 1
1 0 0
0 1 0
1 1 0

Here’s where limited variable values and a small collection of basic operations leads
to one of the most significant relationships in computation … DeMorgan’s Theorem!

08:34:47 PM 4 June 2013 BA-4 © Scott & Linda Wills

Sometimes the most amazing concepts are easy to see, when you look in the right
way. In the table above, it’s clear that NAND is just AND with its output
complemented. All the zeros become ones and the one becomes zero. It’s also clear
that OR resembles NAND but for it being upside down. If all inputs to OR are
complemented, the table flips and it matches NAND.

Complementing the inputs or the output of a NAND reverses this transformation.
If inputs or an output is complemented twice, the function returns to its original
behavior, leaving it unchanged. This supports reversible transformations between
NAND and its left and right neighbors.

AND NAND OR
A B A·B

0 0 0
1 0 0
0 1 0
1 1 1

complement
output

A B

0 0 1
1 0 1
0 1 1
1 1 0

complement
inputs

A B A+B

0 0 0
1 0 1
0 1 1
1 1 1

Note that the transformations to obtain the NAND function can be employed for
any of the four logical functions. To determine the necessary neighbor functions,
consider cutting out the four function table above and wrapping it into a cylinder
where AND and NOR are now neighbors. Or better still, let’s draw the four
functions in a two dimensional table, shown below. This is DeMorgan’s square and it
shows how any logical function can be transformed into any other logical function
using NOT gates.

← complement output →
AND NAND

in
pu

ts
 →

A B A·B

0 0 0
1 0 0
0 1 0
1 1 1

A B

0 0 1
1 0 1
0 1 1
1 1 0

NOR OR

←
co

m
pl

em
en

t A B

0 0 1
1 0 0
0 1 0
1 1 0

A B A+B

0 0 0
1 0 1
0 1 1
1 1 1

08:34:47 PM 4 June 2013 BA-5 © Scott & Linda Wills

You can start with a logical function, and by complementing all its inputs and/or its
output, you can arrive at any other logical function. This has a profound effect on
digital system design. Let’s hear it for DeMorgan!

This principle can be applied to Boolean expressions as well. If you want to
transform an OR into an AND, just complement all the OR inputs and its output.
Let’s try this process on a few expressions.

original expression A⋅B A⋅BC  A⋅B⋅C

AND becomes OR AB ABC  ABC

complement inputs AB ABC  ABC

complement output AB A BC  ABC

equivalent expression AB A BC  ABC

In the first example, an AND function is turned into an OR function by
complementing the inputs and the output. The second example has the same
change, but one of the inputs to the AND is a subexpression. Note that when
inputs are complemented, this subexpression receives a bar, but is otherwise
unchanged. Just like this first input A, the subexpression is the input to the
original AND function. The third example has a three input AND, so all three
inputs must be complemented. Note also that the second input is already
complemented. When it is complemented again, it has double bars. But when any
variable or subexpression is complemented twice, the bars cancel out.

This DeMorgan transformation allows transformation of an OR to an AND using the
same steps. It can be applied to the last evaluated function, the first evaluated
function, or anything in between. It can even be applied to an entire expression (or
subexpression) all at once … although some care must be exercised.

original expression AB⋅C  AB ⋅CD  A⋅BCD

swap AND and OR A⋅BC  A⋅B C⋅D  AB ⋅C⋅D

complement inputs A⋅BC  A⋅BC⋅D AB ⋅C⋅D

complement output A⋅BC  A⋅BC⋅D AB ⋅C⋅D

equivalent expression A⋅BC  A⋅BC⋅D AB ⋅C⋅D

In the first example, both AND and OR functions are swapped. Then all inputs and
the output are complemented. One might ask why no bars are added on
subexpressions (e.g., over (B·C)). The reason is that each subexpression is both an
output for one function and an input for another. Since both are complemented,

08:34:47 PM 4 June 2013 BA-6 © Scott & Linda Wills

the two bars cancel out. Only the input variables (e.g., A, B, and C) and the last
function to be executed (the outermost function) will be complemented.

Note also that the function evaluation order is invariant throughout this process.
In the first example, B is first ANDed with C. Then the result is ORed with A.
After the transformation is complete, this is still the order. Often parentheses
must be added to preserve this order since AND and OR have different
precedence. Sometime parentheses can be dropped (like in the second example)
since the new function precedence implies the correct (original) evaluation order.

In the second example, an initial bar over the outermost function (AND) is
canceled when the entire expression is complemented. Note also that the bars over
inputs are reversed. In the third example, a bar over the earlier OR function
(A●B+C) remains unchanged through the transformation.

Eliminating Big Bars: Often implementation of Boolean expressions requires
transforming them to a required form. For example, switch implementation needs a
Boolean expression with complements (bars) only over the input variables (literals).
If an expression has complements over larger subexpressions (big bars),
DeMorgan’s theorem must be applied to eliminate them. Here’s an example.

Out=ABC⋅D expression with many big bars

1 AB⋅C⋅D replace final AND with OR, and

2 Out=AB⋅C⋅D complement inputs and output

3 Out= AB ⋅C⋅D remove double bars

4 AB ⋅CD replace first AND with OR, and

5 Out= AB ⋅CD complement inputs and output

6 Out= AB ⋅CD  remove double bars

When eliminating big bars, one should start with the outermost complemented
function. In this case, the OR in the center of the expression comes first. In step
1, it is replaced by an AND. The function's inputs and outputs are then
complemented. Then double bars are removed. Note that parentheses must be
added to maintain the same evaluation order. These first steps remove the big
bars from the initial expression; but a new big bar is created over C+D. So in step
4, this OR is replaced by an AND. Then its inputs and outputs are complemented.
Again parentheses must be added to preserve the original evaluation order. The
final expression (step 6) has an equivalent expression without big bars.

08:34:47 PM 4 June 2013 BA-7 © Scott & Linda Wills

DeMorgan's Theorem allows us to transform a Boolean expression into many
equivalent expressions. But which one is right? That depends on the situation. If
we are designing an implementation with switches, eliminating big bars is an
important step in the process. For gate design, we might want to use logical
operations that better match the implementation technology. Regardless of
implementation, we might just want to use a form of the expression that most
clearly expresses (to a fellow engineer) the function we require.

In most cases, we can choose the equivalent expression that fits our needs. But
how can we evaluate expressions for equivalence?

Standard Forms: There are two standard forms that offer a canonical
representation of the expression. Let's explore these forms starting with a
function's behavior in a truth table.

A B C Out

0 0 0 0

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 1

0 1 1 0

1 1 1 1

To correctly express this function, we must show where its output is true (1) and
where its output is false (0). We can accomplish this in two ways. Let's start with
the “easy” one, expressing when the output is true. There are four cases.

A B C Out

0 0 0 0

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 0

0 1 1 1

1 1 1 1

Consider the first case, when A is true and B is false and C is false. We can create
an expression to cover the case: A·B·C. If this were the only case where the output
is true, this would accurately describe the function. It is an AND expression that
contains all the inputs in their true (e.g., A) or complemented (e.g., B) form. This is
called a minterm. But there are three other cases. The output is true when A·B·C is

08:34:47 PM 4 June 2013 BA-8 © Scott & Linda Wills

true or when its the second case A·B·C or the third case A·B·C or the fourth case
A·B·C. This behavior forms an OR expression.

Out = A·B·C + A·B·C + A·B·C + A·B·C

Since this is an OR function applied to AND expressions, it's called a Sum Of
Products (SOP). All inputs are included in each product term (minterms). So this
becomes a canonical expression for the function's behavior: a sum of products
using minterms. Everyone starting with this behavior will arrive at the identical
Boolean expression.

If one works from bottom to top in the truth table, a different order of inputs can
be derived.

Out = C·B·A +C·B·A + C ·B·A + C·B·A

This is an identical expression (but for commutative ambiguity). It has the same
logical operations applied to the same forms of the inputs.

You might notice that when B and C are true, the output is true, independent of A.
The resulting expression becomes: Out = A·B·C + A·B·C + B·C. This is simpler, but
not canonical since it is not composed of minterms.

There's another way to express this function behavior that is rooted in the binary
world.

Popeye Logic: In the 1980 movie “Popeye”, the title character is in denial about his
father being the oppressive “Commodore” in their town, Sweet Haven (“My Papa
ain't the Commodore!”). This denial is present when he asks directions to the
Commodore's location (“Where ain't he?”). In our multivalued world, this is not so
easy. While “north” is unambiguous, “not north” could be any direction except
north. But in binary, things are different. We can state when something is true. Or
we can use “Popeye Logic” and state when it is NOT false. Let's try Popeye logic on
this behavior.

A B C Out

0 0 0 0

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 0

0 1 1 1

1 1 1 1

08:34:47 PM 4 June 2013 BA-9 © Scott & Linda Wills

Suppose the only false value was the second one, when A is false, B is true, and C is
false. If all the other outputs were true, we could express the function by stating
when its not this case (“when it ain't A·B·C ”). As in the real world, this is more
than one thing; it is all the truth table entries except for A·B·C. But binary makes
expressing all the cases easier. In the expression A·B·C, A is false. So whenever A
is true, the output is true. Or whenever B is false, the output is true. Or whenever
C is true, the output is true. In fact, the function behavior is true whenever A is
true or B is false or C is true (A+B+C). This expression does not describe when
A·B·C is true, rather it covers all other cases, when “A·B·C ain't true”. The term
A+B+C is an OR function of all inputs in their true or compliment form. This is a
maxterm. But this only works if the second case was the only case when the output
is false. What about when more than one case is false?

In this example, the output is false when A·B·C or A·B·C or A·B·C or A·B·C. So
showing when the output is true requires expressing when it is not any of these
cases. It is not A·B·C when A is true or B is true or C is true (A+B+C). It is not
A·B·C when A is true or B is false or C is true (A+B+C). It is not A·B·C when A is
true or B is true or C is false (A+B+C). It is not A·B·C when A is false or B is true or
C is false (A+B+C). But since the function output is only true when it is none of
these cases, A+B+C, A+B+C, A+B+C, and A+B+C must all be true for the function
output to be true. So we can express the function:

Out = (A+B+C)·(A+B+C)·(A+B+C)·(A+B+C)

Since this is an AND expression of OR terms, it is called a Product of Sums (POS).
Using maxterms makes this canonical, but different from the sum of products
using minterms. There is no direct way to transform a SOP using minterms
expression into a POS expression using maxterms or vice versa. Standard forms
provide a good way to clearly express a behavior.

Summary: Boolean algebra is the mathematics of digital computers. Here are the
key points:

• Variables have one of two values (0 or 1).

• Functions include AND, OR, and NOT.

• A Boolean expression containing these functions can be used to specify a
more complex behavior. Truth tables can also define this behavior.

• Boolean algebra exhibits many familiar and useful properties (plus some new
ones).

08:34:47 PM 4 June 2013 BA-10 © Scott & Linda Wills

• DeMorgan’s square shows how any logical operation can be transformed into
any other logical function by complementing the inputs and/or output.

• DeMorgan’s Theorem allows Boolean expressions to be transformed into an
equivalent expression that employs different logical functions.

• Standard forms provide a canonical expression in SOP and POS forms.

08:34:47 PM 4 June 2013 BA-11 © Scott & Linda Wills

Designing Computer Systems

Gate Design

08:42:29 PM 4 June 2013 GD-1 © Scott & Linda Wills

Designing Computer Systems

Gate Design

Logical functions that are specified in Boolean algebra, can be implemented with

switches and wire. The resulting designs are often the fastest and most efficient

implementations possible. But the time and effort required for design is often

greater. And switch design requires the manipulating the desired expression so

that only input variables are complemented (no big bars). Often after the design

process, the desired expression is lost. Is there a way to implement a Boolean

expression quickly, without distorting the expression?

Yes!

We can simplify the design process by using more powerful components. We'll work

with gates, building blocks that match the logical operations in our expression.

Wires still connect outputs to inputs. Data still is digital. In fact, we use switches

to implement these new gate abstractions.

Suppose we want to implement the expression Out = (A + B) · C. Using switches,

details of the implementation technology (e.g., P-type switches are active low and

pull high) are visible and affect the design. Using gates, technology details are

hidden and the desired expression is easily discerned. Unfortunately this gate

design is twice as slow and uses twice as many switches. Convenience has a cost!

Of course, gate design can be improved if the choice of implementation

components is not tied to the desired expression. For CMOS technology, NAND

and NOR gates require fewer switches than AND and OR. So in this example, the

OR and AND gates can be replaced by NOR gates. Unfortunately, this requires

DeMorgan transformations of the desired expression. This distorts the

08:42:29 PM 4 June 2013 GD-2 © Scott & Linda Wills

expression, increases design time, and increases the possibility for errors. Why

can't we leave the expression alone?

We can. DeMorgan's square suggests that all gate types have two equivalent

representations. One is built on an AND body. The other employs an OR body.

At first this duplicity may seem a complication. But it can be productively used to

separate specification from implementation. Here's how.

When a desired expression is derived, AND and OR functions provide the

relationship between binary variables. The choice of gate types can improve the

implementation efficiency and performance. But it should not distort the meaning

of the desired expression.

Since each gate function can be drawn with either an AND or OR body, a desired

logical function can be realized using any gate type by simply adding a bubble to the

inputs and/or output. Unfortunately, a bubble also changes the behavior by

inverting the signal. But bubble pairs (bubbles at both ends of a wire) cancel out

and the behavior is unchanged.

So we can draw a gate design using the logical functions in the desired expression.

Then we can then add bubble pairs to define the implementation gate type without

changing the gate body (i.e., distort the expression being captured).

Here's an example: Out = A · B + C · D

08:42:29 PM 4 June 2013 GD-3 © Scott & Linda Wills

using AND and OR using NAND

If we draw the circuit directly using AND and OR gates, the expression is clear.

But the implementation cost is high (18 switches). If we preserve the gate bodies,

but add bubble pairs, the behavior is unchanged. But the implementation cost is

lowered (12 switches).

A bar over an input or subexpression indicates that an inversion is required. This

bar is part of the desired expression and should be preserved along with gate

bodies. But the implementation must include, in some way, the required inversion of

the signal. Again, bubble pairs can help.

Let's add bars to our gate design, not as active devices, but as a notational

reminder that a real signal inversion is needed. Then during implementation, we'll

place exactly one bubble on the bar. Bubble pairs are added to change the

implementation without changing the behavior. If one bubble in a bubble pair does

not actually cause a real inversion (because it is a notation), the signal will be

inverted (by the other bubble).

Consider the expression Out = (A + B) · C.

First let's draw the expression as a circuit.

Bars are added where they appear in the

expression. This is not an implementation.

Now suppose we want to use NOR gates for the

implementation. This is partially accomplished

by adding a bubble pair between the gates. But

the bubble on the lower input of the AND gate

is unmatched.

We can put the matching bubble on the bar,

indicating that we really do want the inversion.

The bubbled bar does not actually do anything;

it's just notation. The bubble on the AND input

does the required inversion.

08:42:29 PM 4 June 2013 GD-4 © Scott & Linda Wills

We also need a buhhle on the A input. But we

can't add the matching bubble to the OR gate

body without changing its implementation.

Instead let's add a buffer on the A input.

Now we can add a bubble pair between the

buffer and bar. The implementation gate type

is NOR, all bubbles are matched, and all bars

have exactly one bubble. This implementation is

complete.

The gate implementation of this example requires ten switches. That's two more

than the switch design. But it is six less that the original gate implementation.

Note that by ignoring bubble pairs and buffers, we still see the desired

expression, graphically displayed. Specification and implementation are now

decoupled.

We can also implement the design using OR or AND gates. DeMorgan's

equivalence allows any gate body to be implemented in any multi-input gate

type. In CMOS technology, OR and AND implementations requires more

switches (18 for this design).

Here's another example: Out=A⋅BCDE⋅F

We start with the expression as a graph using gates and bars. It captures the

function. But its not an implementation.

Now we select a good implementation gate. One doesn't always need to use one

gate type for a design. The technology may favor an implementation approach. In

CMOS, inverting gates (NAND and NOR) use fewer switches than non-inverting

08:42:29 PM 4 June 2013 GD-5 © Scott & Linda Wills

gates (AND and OR). In this case, we use NAND gates. Bubble pairs are added to

gate bodies to transform the implementation.

Buffers are added where bubbles pairs are still needed for bars.

Finally bubbles pairs are added to complete the implementation.

Desired Expression: This gate design technique is called mixed logic. Its name is

derived from the fact the implementation combines positive (active true) and

negative (active false) logic. A key advantage is the ability to preserve the desired

expression (i.e., the expression the designer specified) in an implementation. For

example, the circuit below is built with NAND gates.

To see the desired expression, ignore the bubbles and buffers and read the

expression from the gate bodies and bars.

08:42:29 PM 4 June 2013 GD-6 © Scott & Linda Wills

This expression is Out=A⋅B⋅CDE

If we wish to reimplement it, say using NOR gates, we just move around bubble

pairs, adding and removing buffer bodies as needed.

Note that the desired expression has not changed.

Common Subexpressions: Often in design, a logical expression is required for

multiple outputs. It would be wasteful to build multiple copies. We can just use a

computed value in multiple places. This is called fanout since a single gate output

fans out to multiple gate inputs. Consider these two equations.

OutX=A⋅BCDE OutY=CDE⋅F

Both expressions require the subexpression CDE so it can used in creating

both outputs.

During implementation, here using NOR gates, special attention is needed for fan

out connections. In order to ignore a bubble on an output, there must be a bubble

on each input that uses it. The bubble pair on the output of the subexpression

becomes a bubble trio.

08:42:29 PM 4 June 2013 GD-7 © Scott & Linda Wills

Propagation Delay

When considering the speed of circuits, one must look at underlying technology –

here, switches and wire. The two parameters that dominate delay are resistance
and capacitance.

Resistance is an abundance of charge carriers. It is proportional to the availability

of charge carriers brought in by the electronic field on the gate. It is proportional

to the charge carrier mobility. Metals are a charge carrier gas. They have clouds

of electrons that are easy to acquire. A semiconductor has more bound charge

carriers that are harder to acquire and more difficult to move around with a field,

leading to higher resistance to pull a node to a high voltage or to a low voltage.

The charge it takes to reach a high or low voltage is proportional to a node's

capacitance C. Capacitance forms automatically when two insulated conductors are

near one another separated by a dielectric material. The higher the dielectric

constant, the higher capacitance. Dislike charges attract to form an electric field

when the insulated conductive dislike charges appear on the conducting surfaces

(for example, the polysilicon gate oxide on the switch).

The bigger the switch, the more charge carriers are needed to charge the switch

voltage to the On level, which is a product of the switch resistance R and the gate

capacitance C. RC is proportional to the propagation delay through the switch.

CompuCanvas models delay as unit delay, which assumes a fixed constant delay

through each gate.

Energy

Energy is proportional to the product of induced voltage on a node and channel

conductance, which is the inverse of the resistance through a conducting channel

of a turned on switch. This resistance is proportional to the major charge carrier

mobility. Conductors have an electron cloud of free electrons that can be easily

08:42:29 PM 4 June 2013 GD-8 © Scott & Linda Wills

moved by a field. Doped silicon has limited charge carrier mobility that limits

conductance and energy.

Summary: Gate design of Boolean expression is a fast and clean alternative to

switch design.

• Gate design is easier to understand than switches and is independent of

implementation technology.

• Gate implementations often require more switches than direct switch

implementations, but designs can still be optimized.

• DeMorgan's gate equivalence allows specification and implementation to be

separated using mixed logic design.

• Mixed logic design also preserves the designer's desired expression.

08:42:29 PM 4 June 2013 GD-9 © Scott & Linda Wills

Designing Computer Systems

Simplification

0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D

08:43:29 PM 4 June 2013 SP-1 © Scott & Linda Wills

Designing Computer Systems

Simplification

Using DeMorgan's theorem, any binary expression can be transformed into a

multitude of equivalent forms that represent the same behavior. So why should we

pick one over another? One form provides a canonical representation. Another

provides a clear representation of the desired function. As engineers, we want

more than functionality. We crave performance and efficiency!

So what improves an expression? … fewer logical functions. Every logical function

requires computational resources that add delay and/or cost energy, switches,

design time, and dollars. If we can capture the desired behavior with fewer logical

operations, we are building the Ferrari of computation; or maybe the Prius?

Simplify Your Life: There are many techniques to simplify Boolean expressions.

Expression reductions (e.g., X + X · Y X + Y) is good. But it's not obvious what to→

reduce first, and it's hard to know when you're finished. An intuitive method can

be seen in a truth table … sometimes. Here's an example. Consider the expression:

Out = A·B·C + A·B·C + A·B·C

In truth table form, one might notice that the red and green terms suggest that

when B is false (zero) and C is true (one), Out is true (one) no matter what state A

is in. The blue and green terms express a similar simplification. If A is true and B

is false, Out is true independent of C. A simplified expression Out = B·C + A·B

expresses the same behavior with three dyadic (two input) logical operations

versus eight for the original expression.

A B C Out

0 0 0 0

1 0 0 1

0 1 0 0

1 1 0 0

0 0 1 1

1 0 1 1

0 1 1 0

1 1 1 0

08:43:29 PM 4 June 2013 SP-2 © Scott & Linda Wills

This simplification is intuitive. In all cases when a subexpression (e.g., B·C) is true,

the output is true, then including extra qualifying terms is unnecessary.

Unfortunately, truth tables lack uniform adjacency of these simplifying groupings.

For a small number of variables, a Karnaugh Map (K-map) displays the same

behavior information in a different way. A K-map are composed of a two-

dimensional map displaying the output for every combination of input values. But

these combinations are arranged so that horizontal or vertical movement results in

exactly one variable changing. Here's the K-map for the function being considered.

In this map, the top row includes all input combinations where A is false. The

second row includes all combinations where A is true. The left two columns include

input combinations where B is false. The right two columns cover when B is true.

The outermost columns include input combinations where C is false. The middle two

columns include cases where C is true.

In this arrangement, adjacent ones (true outputs) suggests an opportunity for

simplification. The red and green ones can be grouped into a single term covering

all combinations where B is zero and C is one (B·C). The adjacent blue and green

ones are grouped to cover where A is one and B is zero (A·B). Since a simplified

expression must cover all cases when the output is one, these terms can be

08:43:29 PM 4 June 2013 SP-3 © Scott & Linda Wills

0 1 0 0

1 1 0 0A

A

B B

C
C C

0 1 0 0

1 1 0 0A

A

B B

C
C C

combined to express the function's behavior: Out = B·C + A·B, a simplified sum of

products expression.

Two-dimensional K-maps accommodate two-, three-, and four-variable expressions.

Larger K-maps (five- and six-variable) are possible in three dimensions. But they

are error prone and better simplification techniques exist.

Just like a truth table, the K-map describes a function's behavior by giving the

output for every combination of the inputs. But adjacency in a K-map also indicates

opportunities for expression simplification. Here's a four-variable K-map.

The behavior represented by this K-map could be represented as a truth table.

Adjacent ones are opportunities for simplification. The size of groupings are given

as (width x height). So a (2x1) grouping is two squares wide and one square high.

08:43:29 PM 4 June 2013 SP-4 © Scott & Linda Wills

A

A

B B

C

C

C

D
D D

A

A

B B

C
C C

A

A

B B

0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D

The second row grouping (2x1) represents all cases where A is false, B is false, and

C is true (A·B·C). The bottom row (4x1) is all cases where A is true and C is false

(A·C). Larger groupings lead to smaller terms. But the grouping has to be

describable as all cases where variables have a certain value.

The first column contains three adjacent ones. In this candidate grouping, B and D

are zero. But it is not all cases where B and D are zero. A (1x3) grouping is not a

describable grouping. Instead these adjacent ones are cover by two overlapping

(1x2) groupings: C·D and A·D. Overlapping groups are okay, so long as one grouping

is not subsumed by another grouping. Groupings of ones always have power of two

dimensions (1, 2, 4).

08:43:29 PM 4 June 2013 SP-5 © Scott & Linda Wills

0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D

0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D

Adjacency extends at the K-map edges. The one in the third column of the top row

can be grouped with the corresponding one in the bottom row. This grouping

represents all cases where B is true, C is false, and D is true (B·C·D). Here are all

legal groupings in this K-map.

Note that while groupings overlap, no grouping falls completely within another. The

grouped terms: A·B·C, A·C, C·D, A·D, and B·C·D, represent all candidate terms in the

simplified expression. But are all terms necessary?

The objective is to correctly define the behavior by expressing all cases when the

output is one. This means selecting groupings that cover all true outputs in the K-

map. Sometimes this requires all groupings. Sometimes not. In this K-map, three

groupings, A·B·C, A·C, and B·C·D, include a true not covered by any other grouping.

08:43:29 PM 4 June 2013 SP-6 © Scott & Linda Wills

0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D

0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D

This makes them essential for the simplified expression. If they are not included,

the behavior is not accurately defined. But in the example, these essential

groupings don't cover all the ones in the K-map. Additional groupings are needed.

Two groupings C·D and A·D, are not essential (non-essential) but cover the missing

one in the behavior (A·B·C·D). Since they have the same number of variables, and

the same cost to implement, either will provide an equivalently simplified

expression.

Out = A·B·C + A·C + C·D + B·C·D Out = A·B·C + A·C + A·D + B·C·D

These two simplified expressions are significantly less expensive to implement than

the canonical sum of products expression.

Out = A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D

Parlance of the Trade: Due to its arithmetical origin, these groupings are named

Prime Implicants. PIs for short. Essential prime implicants are always included in

the simplified expression because they exclusively contain one of the grouped

elements. Non-essential PIs may or may not be needed, depending on whether

essential PIs cover the selected outputs. Formally, this simplification process is

defined as minimally spanning the selected outputs.

But aren't the selected outputs always true? Not always. More on this later.

Here's another example.

1 0 1 1

0 0 1 1

1 1 0 0

1 1 0 1
A

A

B B

C

C

C

DD D

Two (2x2) PIs stand out: all cases where A is false and B is true (A·B), and all cases

where A is true and B is false (A·B). But how to group the remaining true outputs?

08:43:29 PM 4 June 2013 SP-7 © Scott & Linda Wills

1 0 1 1

0 0 1 1

1 1 0 0

1 1 0 1
A

A

B B

C

C

C

DD D

The final (2x2) PI groups the four corners, covering all cases where C and D are

zero (C·D). The edges of a K-map connected; there's just no good way to draw it on

a two-dimensional plane. If the vertical edges are joined, the map becomes a

cylinder. If the ends of the cylinder are joined, it becomes a donut (torus). In two-

dimensions, one must look for connections on the edges of K-maps.

Since all PIs are essential and necessary to span true outputs in the behavior, the

simplified sum or products expression is Out = A·B + A·B + C·D

Here's another example.

0 0 0 0

0 1 1 1

1 1 0 1

0 0 0 0
A

A

B B

C

C

C

DD D

This example contains six overlapping PIs: A·B·C, B·C·D, A·C·D, A·B·C, B·C·D, and

A·C·D. What makes them interesting is that none are essential. Sometimes there is

an urge to ignore non-essential PIs when simplifying a K-map. This example

08:43:29 PM 4 June 2013 SP-8 © Scott & Linda Wills

demonstrates the need to record all legal PIs before considering minimal spanning.

There are two, equally simplified sum of products expressions for this behavior.

Out = A·B·C + A·C·D + B·C·D Out = B·C·D + A·B·C + A·C·D

Incomplete listing of PIs might not expose both of these expressions due to false

appeasement of essentialness. It might even yield a less simplified result.

SoP versus PoS: Boolean Algebra explains the duality where a function's behavior

can be defined by stating where the output is true (sum of products) or by stating

where the function is not false (product of sums). This applies in K-maps. In the

first case (SoP), product terms define a group of true outputs (a PI). A spanning

set of these groupings is ORed together to form the simplified expression. In the

second case (PoS), groupings represent where the output is not true, but false.

Since the simplified expression must still represent where the behavior is true, a

grouping (PI) must express states not in the grouping. Here's the same example,

targeting a simplified product of sums expression.

0 0 0 0

0 1 1 1

1 1 0 1

0 0 0 0
A

A

B B

C

C

C

DD D

The largest grouping of zeros (false) covers the cases where C is false. As in the

SoP process, a (4x2) grouping is drawn. But labeling this group C is not helpful,

since the goal is expressing when the behavior is true. This grouping include many

of the false outputs and none of the true outputs. So the PI should represent when

it is not in this grouping, namely C. Being outside the red PI C is not enough;

additional Pis are required to guarantee a true output.

08:43:29 PM 4 June 2013 SP-9 © Scott & Linda Wills

0 0 0 0

0 1 1 1

1 1 0 1

0 0 0 0
A

A

B B

C

C

C

DD D

Just as ones where grouped in SoP, here zeros are grouped. A (1x2) grouping of

false outputs represents when A is true and B is true and D is true. But the PI for

this grouping represents cases not in this grouping. That occurs when A is false OR

B is false OR D is false (A+B+D). It is ORed because the output is not in this

grouping if any of the variables are false. Again, this doesn't mean the output is

true, its just not in this grouping of zeros.

Another (1x2) grouping of false outputs occurs when A is false and B is false and D

is false. This PI is expressed as A is true or B is true or D is true (A+B+D). These

are all cases not in the green grouping.

So how does the simplified expression show when the behavior is true? By showing

when it it is not false! Each of the PIs represents cases that are not in one of the

groups of zeros. If the PIs span all false outputs, and all terms are true, the

output must be true. In this example, all PIs are essential (i.e., they contain a false

output not included in any other PI). So the simplified product of sums expression

is:

Out = C · (A+B+D) · (A+B+D)

Note that this simplified PoS expression has no obvious relationship to the

equivalent simplified SoP expressions:

Out = A·B·C + A·C·D + B·C·D = B·C·D + A·B·C + A·C·D

This PoS example has unusual symmetries in its PIs. Here's a different example.

08:43:29 PM 4 June 2013 SP-10 © Scott & Linda Wills

0 0 0 0

1 1 0 0

1 1 0 1

0 1 0 1
A

A

B B

C

C

C

DD D

The groupings of false outputs mirror the SoP technique for true outputs. Only

here the PI is labeled for cases outside its group. The (4x1) in the top row contains

cases where A and C are false. The PI is labeled (A+C). The (1x4) in the third

column includes cases where B and D are true. The PI is labeled (B+D). The upper

right quadrant (2x2) is selected when A is false and B is true. The PI is (A+B). The

(1x2) in the first column is cases where B, C and D are all false. The PI is (B+C+D).

0 0 0 0

1 1 0 0

1 1 0 1

0 1 0 1
A

A

B B

C

C

C

DD D

All PIs are essential. So the simplified PoS expression is:

Out = (A+C) · B+D · (B+C+D)

Here's another example.

08:43:29 PM 4 June 2013 SP-11 © Scott & Linda Wills

0 1 1 0

0 0 1 1

0 0 1 0

1 1 1 0
A

A

B B

C

C

C

DD D

The PIs include the following: (B+C), (A+B+D), (A+C+D), (B+C+D), (A+B+D), (A+C+D).

0 1 1 0

0 0 1 1

0 0 1 0

1 1 1 0
A

A

B B

C

C

C

DD D

Only (B+C) is essential. No other PI exclusively contains a false output. But this

simplified expression is not ambiguous. The minimal span of zeros yields:

Out = (B+C) · (A+C+D) · (A+B+D)

Six of One; A Half Dozen of Another: Some folks find it advantageous to place

the input variables in the upper left corner of a K-map and assign truth table row

numbers to each square. While truth table/K-map correspondences are never

row/column sequential, the numbering can have some semi-sequential ordering. In

our examples, it looks like this:

08:43:29 PM 4 June 2013 SP-12 © Scott & Linda Wills

0 8 10 2

4 12 14 6

5 13 15 7

1 9 11 3
A

A

B B

C

C

C

DD D

AC

BD

So what difference does it make? In terms of simplification, none. Reordering the

input variables scrambles the K-map cells. But any proper ordering, where vertical

and horizontal movements change exactly one variable, yields the same PIs and the

same simplified expression.

Simplifying Boolean Expression: This ordering helps simplify Boolean expressions.

Suppose a behavior, defined as a Boolean expression, is to be simplified.

Out = A·B·D + A·B·C·D + B·C·D + A·B·C + A·B·D

In this SoP expression, each product term represents a grouping of true outputs.

The ungrouped cases represent false outputs. Here's the mapping of each term.

0 1 0 0

1 1 1 1

1 1 0 1

0 1 0 0
A

A

B B

C

C

C

DD D

08:43:29 PM 4 June 2013 SP-13 © Scott & Linda Wills

Once the expression's behavior is defined, it can be simplified as either a SoP or

PoS expression. In SoP simplification, there are four PIs (B·D, A·C, C·D, B·C), three

of which are essential and span the true outputs.

Out = B·D + A·C + C·D

0 1 0 0

1 1 1 1

1 1 0 1

0 1 0 0
A

A

B B

C

C

C

DD D

In PoS, false outputs are grouped. Here three PIs are identified. All are essential.

Out = (C+D) · (B+C) · (A+B+D)

0 1 0 0

1 1 1 1

1 1 0 1

0 1 0 0
A

A

B B

C

C

C

DD D

Both simplified expressions require fewer dyadic logical operations than the

original expression (five for SoP, six for PoS versus 15 for original).

08:43:29 PM 4 June 2013 SP-14 © Scott & Linda Wills

Here's a PoS expression to be simplified. Each term represents potentially true

outputs outside a grouping of known false values. So zeros can be added for each

term. Finally, the ungrouped cases are assigned a true value (one).

Out = (A+B+C) · (A+B+D) · (B+C+D) · (A+B+D) · (A+C+D) · (A+B+C+D)

0 0 1 0

1 0 0 0

1 1 0 0

0 1 1 0
A

A

B B

C

C

C

DD D

The PoS simplification produces six PIs: (C+D), (B+C), (A+B+C), (A+B+D), (A+C+D),

(B+D), two of which are essential: (C+D), (B+C). One non-essential is require to span

false outputs: (A+B+D).

Out = (C+D) · (B+C) · (A+B+D)

0 0 1 0

1 0 0 0

1 1 0 0

0 1 1 0
A

A

B B

C

C

C

DD D

08:43:29 PM 4 June 2013 SP-15 © Scott & Linda Wills

This behavior also can be simplified to a SoP expression. It produces five PIs:

B·C·D, A·B·C, A·B·D, A·C·D, B·C·D, two are essential: B·C·D, B·C·D. One non-essential

PI is required to cover true outputs: A·B·D.

Out = B·C·D + B·C·D + A·B·D

0 0 1 0

1 0 0 0

1 1 0 0

0 1 1 0
A

A

B B

C

C

C

DD D

Again, simplification reduced implementation cost from 18 logical operations

(original) to six (PoS) and eight (SoP). It's clear from these examples that there is

no direct translation of a product term to a sum term, or vice versa.

Simplification Nightmare: Is there an unsimplifiable behavior? Yes. Here's odd

parity (XOR).

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0
A

A

B B

C

C

C

DD D

08:43:29 PM 4 June 2013 SP-16 © Scott & Linda Wills

Odd and even parity (XOR and XNOR) toggle their outputs with every horizontal or

vertical movement. Exactly one variable is changing. So the number of ones also

toggles between odd and even. For this reason, there are no adjacent true or false

outputs. SoP terms are always minterms and PoS terms are always maxterms.

Parity is a useful function. But it is relatively costly.

What If You Don't Care?: Sometimes a function's behavior is unimportant for

certain combinations of the inputs. Maybe it cannot occur. Or when a combination

of the inputs occurs, the output is not used. This is recorded in the truth table as

an “X” for the output. When an “X” occurs in a K-map, it can be defined as either a

zero or one to improve the simplification process. Here's an example.

1 1 0 0

1 X 0 0

1 0 0 X

1 0 0 0
A

A

B B

C

C

C

DD D

For two combinations of inputs: A·B·C·D and A·B·C·D, the output is unspecified and

listed as don't care “X”. This underspecification of the behavior permits the don't

cares to be specified to reduce implementation cost.

08:43:29 PM 4 June 2013 SP-17 © Scott & Linda Wills

1 1 0 0

1 X 0 0

1 0 0 X

1 0 0 0

1

0

A

A

B B

C

C

C

DD D

To simplify this behavior to a SoP expression, the don't cares must be specified.

For the first case, the choice of a true output doesn't add additional PIs. Rather it

increases a PI from a (2x1) A·B·C to a (2x2) A·B. This eliminates a logical operation

from the simplified expression. In the second case, a false output is selected to

eliminate the need for an additional PI: A·C·D, to cover it. The simplified

expression is found:

Out = A·B + B·D

Sometimes specifying don't cares can take some thought. Here's another example.

X 0 1 X

1 1 X 1

1 0 X X

0 0 0 1
A

A

B B

C

C

C

DD D

Suppose a simplified PoS expression is required. Don't cares are specified to

maximize the size of false output PIs while minimizing the number of PIs.

08:43:29 PM 4 June 2013 SP-18 © Scott & Linda Wills

Here, the don't cares a specifies false to create two (2x2) PIs: (B+C), (A+D). The

remaining don't cares are specified as true and don't contribute to groupings. The

simplified expressing is:

Out = (B+C) · (A+D)

X 0 1 X

1 1 X 1

1 0 X X

0 0 0 1
A

A

B B

C

C

C

DD D

0

0

1

1

1

✮�✁e than Four Variables?: How does handle more complex behaviors with over

four variables. Other simplification techniques, like the Quine–McCluskey

algorithm, are not limited in the number of variables. They are less intuitive to

humans. But they are more amenable to computers and can be programmed into

design tools like Espresso.

Summary: This chapter addresses methods for Boolean expression simplification

using Karnaugh maps.

• Term reduction is possible when all combinations of a subexpression have a

true (or false) output.

• A Karnaugh map specifies a behavior where vertical and horizontal movement

changes exactly one variable.

• For a simplified sum of products expressions, true outputs are grouped. For

product of sums expression, false outputs are grouped.

• A prime implicant is a group of adjacent true or false outputs that are of

power of two (1, 2, 4) dimensions, and not enclosed in a larger grouping.

• A product PI lists where the output is true. A sum PI lists where the output

is not in a specified grouping of false outputs.

• Boolean expressions and behaviors with don't cares can be simplified.

08:43:29 PM 4 June 2013 SP-19 © Scott & Linda Wills

http://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm
http://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm
http://en.wikipedia.org/wiki/Espresso_heuristic_logic_minimizer

Designing Computer Systems

Building Blocks

08:44:28 PM 4 June 2013 BB-1 © Scott & Linda Wills

Designing Computer Systems

Building Blocks

A logic gate employs many switches to achieve a more complex behavior. Now we’ll

use gates to build an even more specialized, more powerful set of building blocks.

Encoders / Decoders: A binary digit or bit is the fundamental representational

element in digital computers. But a bit by itself is limited to two states: O and 1.

Fortunately, many bits can be grouped to form more interesting strings. This can

be done in different ways. For example, three bits in a car might indicate whether

(A) the door is open (B) the headlights are on, and (C) the seatbelt is fastened.

These conditions are independent and can occur in any combination. So each bit in

the string has a simple coding:

A door B headlights C seatbelt

0 open 0 off 0 unfastened

1 closed 1 on 1 fastened

In the transmission, three bits might represent its operation state:

C B A state

0 0 0 neutral

0 0 1 1st gear

0 1 0 2nd gear

0 1 1 3rd gear

1 0 0 4th gear

1 0 1 5th gear

1 1 0 fault

1 1 1 reverse

In this case, only one state can exist at a time. So rather than having eight

separate bits to represent the transmission’s state, three bits are used to encode
one of the eight possible states. This requires additional decoding when this

information is used. In order to illuminate the “reverse” indicator on the dash

board (and turn on the backup lights), all three bits are required to generate the

control signal. A different set of values for A, B, and C indicates a different state.

The Boolean expression for two of these states are:

Reverse = A · B · C 1st gear= A · B · C

The logic to decode these conditions from the three bits is shown below.

08:44:28 PM 4 June 2013 BB-2 © Scott & Linda Wills

Encoding things in this ways reduces the number of bits to be stored and

communicated (a good thing). But it requires logic to decode a condition from that

signal. Let’s explore a more common type of decoder: a multi-bit binary decoder.

N-to-M Binary Decoder: In many systems, it is useful to encode one of several

states as a multi-bit binary number. In the transmission example, we used a three

number value to represent on of eight conditions. More generally we can use N bits

to represent 2N unique states. Although we can use logic to decode each state

independently, we can envision a generic decoder that takes an N bit binary number

as input, and produces M separate outputs. Here's a N to M decoder.

I
0

I
1

I
n-1

...

N-bit

binary

number N
 t

o
M

d
ec

od
e r

...

O1

O0

O2

O3

O4

O5
O6

Om

O7

M binary

outputs

The value of the input, 0 to (2N – 1) causes the corresponding output to be asserted

(set true), while the other outputs remain false. If the input is “101”, O5 is high

while all other outputs are low. Because there are times when the input data may

not be valid, an enable input controls when the decoding process takes place. When

this is low, the input binary number is ignored and all outputs are low.

Here are the behaviors of several binary decoders: 1 to 2, 2 to 4, and 3 to 8. Note

that I2, I1, I0 form a one, two, or three bit binary number whereas O0 – O7 are just

outputs labeled with a number. The input binary number determines which output is

asserted.

08:44:28 PM 4 June 2013 BB-3 © Scott & Linda Wills

I2 I1 I0 En O0 O1 O2 O3 O4 O5 O6 O7

X X X 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 1 0 0 0 0 0

0 1 1 1 0 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0 1 0 0 0

1 0 1 1 0 0 0 0 0 1 0 0

1 1 0 1 0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 0 0 1

Implementing a decoder with gates is straightforward. Since each output is high in

only one case, a sum of products expression contains a single minterm. For a 2 to 4

decoder (the blue truth table), the output expressions are easily expressed and

implemented.

O0= I
1
⋅I

0
⋅En EnIIO ⋅⋅=

01
1 EnIIO ⋅⋅=

01
2 EnIIO ⋅⋅=

01
3

BCD to 7 Segment Decoder: Not all decoders assert one of M outputs. Sometimes

the decoded outputs have a different requirement. For example, many numerical

displays use a seven segment display to show a decimal digit. The digits are labeled

a, b, c, d, e, f, and g. Any decimal digit (0-9) can be created by turning on different

combination of these named segments. A four bit binary coded decimal (BCD) can

be used as input to a decoder than switches on the proper segments for the

corresponding digit character. When enable is low, all segments are switched off,

blanking the display.

08:44:30 PM 4 June 2013 BB-4 © Scott & Linda Wills

a

b

c

d

e

f

g

I3 I2 I1 I0 En Oa Ob Oc Od Oe Of Og

X X X X 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 0

0 0 0 1 1 0 1 1 0 0 0 0

0 0 1 0 1 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 1 0 0 1

0 1 0 0 1 0 1 1 0 0 1 1

0 1 0 1 1 1 0 1 1 0 1 1

0 1 1 0 1 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 0 1 1

Here multiple outputs are asserted for each code. But the gate implementation is

still direct. Each of the seven outputs can be expressed and simplified as a

function of the four bit binary number and enable.

Decoders extract the coded information in a binary string to assert one or more

outputs. They are a widely used building block. But how do we get the encoded word

in the first place? Perhaps by using an encoder !

Encoders: If the job of decoders is to turn an N-bit coded binary string into M

uncoded outputs, then an encoder must perform the reverse process: turning an

asserted input into a coded binary string (a N-bit binary number). This is more

complicated than is sounds.

08:44:30 PM 4 June 2013 BB-5 © Scott & Linda Wills

O
0

O
1

O
n-1

...

N-bit

binary

number

M
 t

o
N

en
co

d
e r

...

I1

I0

I2

I3

I4

I5
I6

Im

I7

M binary

inputs

Consider the behavior of a 2 to 4 encoder.

I0 I1 I2 I3 O1 O0

1 0 0

1 0 1

1 1 0

1 1 1

O
0

O
1

4
 t

o
2

en
co

d
e r

I1

I0

I2

I3

When a single input is asserted, the output string corresponds to the number of

the asserted input. For example, when I2 is asserted, the output string is “10”

which represents a binary “2”. An ambiguity occurs when no inputs are asserted.

What should the output be. Since all 2N output values already have a defined

meaning (i.e., the number of the asserted input), what remains to indicate no

asserted inputs? Its time to add a new output: Valid.

I0 I1 I2 I3 V O1 O0

0 0 0 0 0 X X

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

O
0

O
1

4
 t

o
2

en
co

d
e r

I1

I0

I2

I3
Valid

The valid output (V) indicates that an input is asserted and an valid encoded output

is available. If no inputs are asserted, the valid signal is low and the outputs are

08:44:30 PM 4 June 2013 BB-6 © Scott & Linda Wills

undefined. When using an encoder, the outputs should only be sampled when V is

high. If V is low, no inputs are asserted to encode.

What's your priority?: But what happens when more than one input is asserted?

In this case, the inputs require a priority scheme so that the highest priority input

is encoded into a binary output value. Input priority can be used to expand the five

case behavior table (show above) into the full 16 cases that can occur. That assume

a simple priority scheme:

I3 > I2 > I1 > I0

Under this scheme, if I3 is asserted, the state of the other inputs is of no

concern. I3 will be encoded as output 11. If I3 is zero, but I2 is asserted, the

output will reflect this encoding: 10. If I1 is the asserted value being encoded

(because I3 and I2 are zero), the output becomes 01. Finally, if only I0 is asserted,

the output value is 00.

I0 I1 I2 I3 V O1 O0

0 0 0 0 0 X X

1 0 0 0 1 0 0

X 1 0 0 1 0 1

X X 1 0 1 1 0

X X X 1 1 1 1

This leads to a implementation by simplifying the output behaviors as Boolean

expression. Normally Karnaugh Maps are needed. But this behavior has obvious

expressions.

V=I0 I1 I2 I3

O
1
=I3 I2

O
0
= I3I1⋅I2

If the input priorities are changed, the Xs and 0s can be easily changed to reflect

the new behavior. The rows are processed in a different order. But the same

process is applied. In order for a given row to represent the encoded input, all

higher priority inputs must be 0 while all lower priority inputs are ignored (don't

cared). Here's another example.

08:44:30 PM 4 June 2013 BB-7 © Scott & Linda Wills

I1 > I3 > I0 > I2

I0 I1 I2 I3 V O1 O0

0 0 0 0 0 X X

1 0 X 0 1 0 0

X 1 X X 1 0 1

0 0 1 0 1 1 0

X 0 X 1 1 1 1

Summary: In general, decoders and encoders transform N-bit binary numbers into

assertions of one of M outputs, and back. They change the how the value is

represented.

Steering Logic: Sometimes the goal is not to transform data but rather to move it

from one place to another. Wire, optical, and wireless channels do a good job of

transporting data. But sometimes logic is required to steer data into and out of

these channels. For example, we might want to connect multiple sensors that

collect information to multiple controllers that process the data. Rather than

connecting dedicated wires between each sensor and controller, we can multiplex

the data (in time) on a single wire.

S

S

S

S

C

C

C

C

S

S

S

S

C

C

C

CI0

I1

I2

I3

S1 S0

O0

O1

O2

O3

S1 S0

two bit
binary
select

two bit
binary
select

There are many uses for a digital block that can steer one of many inputs into an

output (a multiplexer). Steering a single input to one on many outputs (a

demultplexer) is also valuable. Let's explore their design.

08:44:30 PM 4 June 2013 BB-8 © Scott & Linda Wills

Two familiar gates, seen a new way: Before we start, let's revisit the functions

of our more fundamental gates. Imagine a block that can pass or block an input

signal depending on a control signal.

In Out

C

In C Out

X 0 0

A 1 A

If the control signal is high, the input is passed on to the output. If the control

signal is low, the output is masked. In binary, we only have two proper states: 0 and

1. So we'll define “masking” as setting to zero regardless of the input's value.

The implementation of this masking function can be seen by expanding the truth

table of its behavior. A masking gate is really an AND gate.

In Out

C

In C Out

0 0 0

1 0 0

0 1 0

1 1 1

Now imagine a block that can take two or more binary inputs where exactly one of

the inputs contains a value A, and all other inputs are zero. A four input version of

the function would like like this:

In0

OutIn1

In2

In3

In0 In1 In2 In3 Out

A 0 0 0 A

0 A 0 0 A

0 0 A 0 A

0 0 0 A A

Regardless of which input receives the single, if A is zero, so is the output. If A is

one, the output is one. This is the OR function since A + 0 = 0 + A = A. It serves as

a combining gate for a single value and many zeros.

Multiplexer: A multiplexer or mux steers one of many inputs to the output. The

input is selected by a binary number S. For example, a 4 to 1 mux uses a two bit

binary number to steer one of four inputs to the output. Here's its behavior.

08:44:30 PM 4 June 2013 BB-9 © Scott & Linda Wills

In0

OutIn1

In2

In3

S1 S0

4 to 1
Mux

In0 In1 In2 In3 S1 S0 Out

A B C D 0 0 A

A B C D 0 1 B

A B C D 1 0 C

A B C D 1 1 D

Note that the binary number represented by S1 and S0 controls which input value is

passed through to the output. The behavior can be realized using a 2 to 4 decoder

and the masking and combining gates described above.

In0

Out

In1

In2

In3

S1 S0

2 to 4
Decoder En

O0 O1 O2 O3

Each input is connected to a masking (AND) gate controlled by the corresponding

decoder output. So only the input decoded from the binary input S will be passed

through to the combining (OR) gate. All other inputs will be masked to zero. The

combining gate ignores zeros, outputting the one passed input.

This behavior can also be expressed as Boolean expressions.

Out= In0⋅S
1
⋅S

0
In1⋅S

1
⋅S

0
 In2⋅S

1
⋅S

0
In3⋅S

1
⋅S

0

It can be implemented using AND and OR gates as shown below. Note that the four

input OR gate can be broken into a combination of two input ORs.

08:44:30 PM 4 June 2013 BB-10 © Scott & Linda Wills

Here S1 and S0 contain the value 01 (shown on the left). I1's high value (red) is

passed forward while all other masking gates are blocking inputs. The combining OR

gates then pass this value forward to the output. If S is changed to the value 11,

I3 becomes the signal that is steered to the output (shown on the right).

If the selected input happened to have a low value (I2, shown as blue on left), the

output would be zero. However if I2 changes to a high value, this change is also be

seen at the output (shown on right).

To reduce implementation cost, these AND and OR gates can be transformed to

NAND gates using mixed logic. If three and four input gates are available (they

are in VLSI), the implementation can be reduced to four 3-input NAND, one 4-

input NAND, and two inverters for a total of 24 + 8 + 4 = 26 transistors. because

of the inversions, this implementation is less easy to follow an input to the output.

But it still works!

08:44:31 PM 4 June 2013 BB-11 © Scott & Linda Wills

Demultiplexer: So what is the device that performs the reverse operation. A

demultiplexer or demux takes a single input and, under control of a binary number,

steers it to one of many outputs. The fundamental operation is easy to understand.

Out0

In Out1

Out2

Out3

S1 S0

1 to 4
Demux

In S1 S0 O0 O1 O2 O3

A 0 0 A

A 0 1 A

A 1 0 A

A 1 1 A

However deciding the status of unselected outputs (off-diagonal values)

dramatically affects the implementation and use of a demux. Suppose unselected

outputs are don't cared. After all, they're not selected. In this case, the

implementation can be extremely inexpensive!

In S1 S0 O0 O1 O2 O3

A 0 0 A X X X

A 0 1 X A X X

A 1 0 X X A X

A 1 1 X X X A

This is fanout. It is cheap and useful. Fanout is simply taking a value (in CMOS, a

value is a high or low voltage), and connecting it to multiple inputs. Since using an

input, or ignoring it does not affect the value, there is no obstacle to fanout (aside

from parasitic loading that affects the wire's speed). But it marginally deserves

the title “demux”.

08:44:32 PM 4 June 2013 BB-12 © Scott & Linda Wills

Unselected outputs can also be defined as zero. This could be useful since the

input value is ”masked” from unselected outputs. This is useful when multiple

components produce a signal that must travel on the same wire (not at the same

time). Unselected outputs can be combined with a signal (using an OR gate) without

affecting the OR gate's output. The OR identity states that X + 0 = X.

In S1 S0 O0 O1 O2 O3

A 0 0 A 0 0 0

A 0 1 0 A 0 0

A 1 0 0 0 A 0

A 1 1 0 0 0 A

Here the implementation is more complex and expensive; it costs 28 transistors

for the the one to four demux. This added cost is only required to prevent a

unselected output from interfering an OR gate combining many signals. There is a

better way...

Pass Gates: Just when you thought you'd seen every gate, another one comes along

… and this one is amazing! So far, all gates have been regenerative; they use input

signals to control switches that connect the output to either the high or low

voltage source. This is a good idea to insure signal integrity. But suppose we just

want to pass a signal through, or not. This would be far simpler and less expensive.

If only there was an ideal switch that could connect a high or low signal.

Unfortunately, P and N type switches can only do half the job. Let's use them both

to create a pass gate (also known as transmission gate or T-Gate).

A B

C

C

A B

C

C

08:44:32 PM 4 June 2013 BB-13 © Scott & Linda Wills

Two switches are connected at their switch points (source and drain) and opened

or closed together. With this construction, a P-type switch is available to pull high

while a N-type can pull low. With both switches closed, the signal level at A can be

high or low and the most capable switch is there to connect the signal to B.

Sometimes folks think that only one switch needs to be closed, depending on the

signal being passed. But by closing both switches together, it really doesn't matter

if the signal is high, low, or changing back ands forth!

Interestingly, this switch really doesn't have an input and an output. Instead it has

two terminals (A and B) that can be connected together when the control signal C

is high. When C is low, the terminals A and B are isolated. This component acts as

an “ideal switch” and its extremely useful. It's gate icon looks like two overlapping

buffers showing how signals can be passed bidirectionally. The control signals C and

C arrive that mid point of the two buffers. The bubble indicates the active low

control. Look carefully at the pass gate and its icon show side by side above. The

icon is on the left; the implementation (using one P-type switch and one N-type

switch) is on the right.

A Demux Using Pass Gates: We can use a couple of pass gates to create a demux

with a twist.

In S O0 O1

A 0 A Z0

A 1 Z0 A

Here the input value is passed to the selected output via a closed pass gate. The

cyan bar on the pass gate indicates the gate is closed; it is not part of the icon.

This output is like our previous demux implementations. However the unselected

output isn't zero, it isn't connected to anything, Its floating. This condition is

indicated in the truth table with the somewhat cryptic symbol Z0 which means high

impedance. But this is just a fancy way to say “floating”. Because its floating, it can

be connected to another signal with no risk of contention (and no OR gate

required). If we want more outputs on our demux, we can replicate this demux in a

binary tree.

08:44:32 PM 4 June 2013 BB-14 © Scott & Linda Wills

In S1 S0 O0 O1 O2 O3

A 0 0 A Z0 Z0 Z0

A 0 1 Z0 A Z0 Z0

A 1 0 Z0 Z0 A Z0

A 1 1 Z0 Z0 Z0 A

Here S1 is low so the input travels through the top pass gate. Since S0 is high, the

bottom pass gate of each 2 to 1 demux is closed. But only the uppermost 2 to 1

demux has an input to connect to the output. So all but the selected output, O1,

have floating outputs. O1 will follow In.

The function of this implementation is similar to the gate implementation. However,

this version has floating unselected outputs (a good thing) and a lower

implementation cost: 16 versus 28 switches (an even better thing).

A Mux Using Pass Gates: What's good for demuxes is also good for muxes. Here's

a 2 to 1 and a 4 to 1 implemented using pass gates.

These muxes also enjoys a low implementation cost (6 and 16 switches respectively)

and they behave exactly as the gate version. These implementations employ binary

08:44:33 PM 4 June 2013 BB-15 © Scott & Linda Wills

tree construction. To double the number of inputs, just replicate the current mux

and then add one more on the end. An 8 to 1 mux would stack two 4 to 1 muxes and

then add an extra 2 to 1 mux (controlled by S2) to choose between their outputs.

Using pass gates, muxes are as easy to build as demuxes … hey wait a minute.

Mirror Twins: Regarding the switch contacts, pass gates don't have inputs and

outputs like other gates. Either terminal can pull the other. So muxes and demuxs

built as binary trees of pass gates are the same thing, but for switching inputs and

outputs. In fact they are mirror images of each other.

Summary: Building blocks provide a new abstraction for digital design. What

decoders and muxes loss in the generality of gates, they gain in functionality. Its

important to remember that, while they have similar appearances, they accomplish

different objectives.

• Decoders and encoders perform translation between binary numbers and

less compact, but valuable presentations (e.g., selecting one of eight outputs

to be high).

• Muxes and demuxes are all about steering signals in and out of shared

channels. They can also select a value, or help multiple components share a

communications medium. They are controlled by a binary value. But they still

just connect an input to an output.

• Pass gates are the ideal switch we wish we had all along. It can pull high and

low. But it requires a control signal and its complement. It connect to wires.

Or it can leave then floating. An most amazingly, it provide bidirectional

connections for flexibility not achieved with other gates.

08:44:33 PM 4 June 2013 BB-16 © Scott & Linda Wills

Designing Computer Systems

08:46:15 PM 4 June 2013 NS-1 © Scott & Linda Wills

Designing Computer Systems

Number Systems

Most concepts are easier to learn when you're already familiar with them. But a
few concepts are more difficult to learn because you know them so well. In our
early childhood, we learn that abstract symbols represent real things in our world.
The word “candy” represents something that tastes sweet. The word “bedtime”
means you're about to leave the party. A symbol and its meaning are locked
together in our brain.

This is especially true for qualitative symbols. Here we see the symbol “5”
represents the quantity five. In fact, its difficult to describe the symbol with
implying its meaning.

5 =
symbol meaning

But for computers, a symbol has no implicit meaning. It is a string of ones and
zeros. Only when we instruct the computer on how to process a symbol does it have
meaning. In many programming languages, you must declare the type of a variable,
(i.e., an integer, a floating point, or a character string) before you can perform
operations on it. This allows the compiler to assign the correct instruction for that
interpretation of the variable's value.

Number systems separates a symbol and its meaning into two distinct concepts: a
notation and a representation. Notations determine how symbols can be created
using strings of characters from a given alphabet. Representations show how to
assign real world meaning to a given string.

08:46:15 PM 4 June 2013 NS-2 © Scott & Linda Wills

Native Notations: Humans around the world favor decimal (base 10) notation. An
anthropologist might suggest this is because we have ten fingers. People define ten
characters (0,1,2,3,4,5,6,7,8,9) to represent quantities. These characters form a
notation alphabet. We use this alphabet to create multi-character strings, which
provide a limitless number of intuitive, unique symbols. In base 10, a N character
string can provide 10N unique strings.

A computer also has a native notation. It uses binary (base 2) notation because the
limited multiplicity of its “fingers” maintain digital states: 1 or 0, high or low, true
or false. It also builds strings out of its two character alphabet (0 and 1). An N
character binary string provides 2N unique symbols.

Binary, requires longer strings to achieve the same number of symbols. A three
character decimal string can represent 1000 symbols (000 – 999). It takes ten
character binary string to achieve the same number of strings (0000000000 –
1111111111). To keep the length of written symbols manageable, we often use power
of two bases octal (base 8) and hexadecimal (base 16).

The table below shows the ordered sequences in each notation. Notice that each
digits counts through the base's alphabet. When a digit reaches the last
character, it wraps back to zero and the next digit position is advanced. In all
notations, leading zeros are implied, but not drawn.

decimal binary octal hexadecimal

0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3

4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7

8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B

12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

16 10000 20 10

Notational Conversion: Since all notations begin with zeros, strings on a row in the
table are the same sequence number. Since we use the sequences in order,
notational conversion of a string in one notation is accomplished by finding the

08:46:15 PM 4 June 2013 NS-3 © Scott & Linda Wills

corresponding position in another notation. For example, the string 11 in decimal is
1011 in binary, 13 in octal, and B in hexadecimal. This conversion takes no position
on the meaning of the string. Rather it shows string equivalence.

Since binary, octal, and hexadecimal are all power of two bases, they are more
easily translated because they each can be represented as a whole number of
binary digits or bits. Converting from one power of two notation to another is
simply a matter of regrouping the bits. Here are a few examples:

10101110 (binary) = 010 101 110 = 256 (octal) = 1010 1110 = AE (hexadecimal)

153 (octal) = 001 101 011 = 1101011 (binary) = 0110 1011 = 6B (hexadecimal)

68A (hexadecimal) = 0110 1000 1010 = 0110 1000 1010 (binary) = 011 010 001 010 = 3212 (octal)

A conversion between a power of two bases (e.g., binary) and decimal is more
complicated. A decimal digit is approximately three and a third bits, so bit
regrouping will not work. Notational conversion between binary and decimal is
accomplished by finding the string sequence position (how many strings is it from
all zeros) and then converting the number between binary and decimal.

In an arbitrary base B, a N character string provides BN unique symbols. The first
digit on the right is the one's place. The second digit is the B's place, the third
digit is the (B2)'s place, the fourth digit is the (B3)'s place etc. The familiar
decimal places are 1s, 10s, 100s, 1000s, … In binary, the places 1s, 2s, 4s, 8s, 16s, …
are less familiar, but more useful powers of two.

Powers of Two: When you work with computers, you must know the powers of two.
Bad news: we have to memorize a few of them. Good news: we don't need to know
very many. Here are the ones to learn:

20 = 1 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32
26 = 64 27 = 128 28 = 256 29 = 512 210 = 1024 = ~1K

Memorizing can be difficult ... but not here. Most folks can compute through 24 in
your head. 26 is 64. The sixes go together. 28 is 256. Eight bits is a byte so 256
shows up all the time. 25, 27, and 29 are either twice or half an easy one. And 210 is
the vehicle for all other powers of two! It is approximately 1000 (1K).

To find larger powers of two, recall that exponents can be reduced like this:
BX+Y = BX · BY

We can break larger powers of two into groups in the table above. Exponent
multiples of ten can be grouped to become 1000. Here are a few examples.

216 = 26 x 210 = 64 x 1K = 64K 224 = 24 x 210 x 210 = 16 x 1K x 1K = 16M

225 = 25 x 210 x 210 = 32 x 1K x 1K = 32M 232 = 24 x 210 x 210 x 210 = 4 x 1K x 1K x 1K = 4G

241 = 21 x 210 x 210 x 210 x 210 = 2 x (1K)4 = 16T 2-18 = 2-8 x 2-10 = 1 / (256 x 1K) = 1 / 256K

08:46:15 PM 4 June 2013 NS-4 © Scott & Linda Wills

Binary to Decimal: Using powers of two, binary numbers can be converted using
the place values. Here's an example:

64's 32's 16's 8's 4's 2's 1's

1 1 1 1 0 0 1
In a base, the order of a string in a notation is found by summing the products of
each character and its respective digit's significance. In binary, the digit values
are powers of two. Since characters are either 0 or 1, multiplication is easy. In this
example, the corresponding decimal string is computed as:

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 0 x 2 + 1

64 + 32 + 16 + 8 + 1

80 + 40 + 1

 121 (decimal)

Note that many of the powers of two sum to form multiples of ten. Here are a few
more examples. The bases are indicated here with subscript.

1101102 = 32 + 16 + 4 + 2 = 5410 101010102 = 128 + 32 + 8 + 2 = 17010

1000010002 = 256 + 8 = 26410 11112 = 8 + 4 + 2 + 1 = 1510

A string of ones always sums to next place value minus one.

Decimal to Binary: Notational conversion from decimal to binary is similar. Only
here you subtract away powers of two until you reach zero.

7810 16510 50010

- 64 1000000 - 128 10000000 - 256 100000000
14 37 244
– 8 + 1000 – 32 + 100000 – 128 10000000
6 5 116

- 4 + 100 - 4 + 100 - 64 1000000
2 1 52
– 2 + 10 – 1 + 1 – 32 100000
0 10011102 0 101001012 20

- 16 10000
4

- 4 100
0 1111101002

Often there are tricky ways to do things. Sometimes they help. Sometimes they
don't. For decimal to binary conversion, one can simply perform a series of halvings
(dividing by two). If the number being halved is an even number, list a “0”. If the

08:46:15 PM 4 June 2013 NS-5 © Scott & Linda Wills

number being halved is odd, subtract one and list a “1”. When you reach zero, the
list of ones and zeros is the binary notation. Let's try 78 and 165 this way.

78 39 38 19 18 9 8 4 2 1 0

0 10 110 1110 01110 001110 10011102

165 164 82 41 40 20 10 5 4 2 1 0

1 01 101 0101 00101 100101 0100101 101001012

This trick works by deconstructing the decimal value from its binary components,
from least significant to most significant. It gives the right result; but it
sometimes requires more calculations and it is harder to double check the result.

It may appear that integer values are being translated between different bases.
But we are only finding corresponding strings in different bases. Notations do not
imply meaning.

Get to the Point: Sometimes strings include a point (a decimal point in base 10) as
part of the notation. This point divides the string into two parts, a substring to the
left of the point and a substring to the right. When performing notation
conversion, start at the point and work left and then right. This addresses
unwritten leading and trailing zeros. Let's try a few power of two conversion
examples.

10100101.0110112 = 1010 0101 . 0110 1100 = A5.6C16

1101001.11112 = 001 101 001 . 111 100 = 151.748

26.BC16 = 0010 0110 . 1011 1100 = 101 110 . 101 111 = 56.578

46.268 = 100 110 . 010 110 = 0010 0110 . 0101 1000 = 26.5816

Sometimes leading and trailing zero are adding and subtracted to form necessary
bit groupings. But notice that they always work out, left and right, from the point.
Binary to decimal conversions with a point is the same, only the bit positions are
fractions.

4's 2's 1's 1/2's 1/4's

1 0 1 . 1 1

4 + 1 + .5 + .25 = 5.75

8's 4's 2's 1's 1/2's 1/4's 1/8's 1/16's

1 0 1 0 . 0 1 0 1

8 + 2 + .25 + .0625 = 10.3125

8's 4's 2's 1's 1/2's 1/4's 1/8's 1/16's

1 1 0 1 . 1 0 1 1

8 + 4 + 1 + .5 + .125 + .0625 = 13.6875

08:46:17 PM 4 June 2013 NS-6 © Scott & Linda Wills

Representations - Finding Meaning in a Digital World: Although the use of a
point has implications to a sequence's value, the focus thus far has been on
notational conversion. A given sequence is composed of a specified numbers of
characters (N) in a given base (B) offering BN unique codes. How those codes are
used is dependent on representations.

Unsigned Integers: A representation begins with a requirement: what needs to be
represented. Suppose a digital system is counting objects being manufactured in a
factory. The counting numbers (0, 1, 2, …) are needed to maintain a tally. These
unsigned integers can be associated with notational sequences in an intuitive way.

sequence meaning sequence meaning

0000 “0” 1000 “8”
0001 “1” 1001 “9”
0010 “2” 1010 “10”
0011 “3” 1011 “11”
0100 “4” 1100 “12”
0101 “5” 1101 “13”
0110 “6” 1110 “14”
0111 “7” 1111 “15”

Perhaps this is too intuitive, since this looks like notational conversion from binary
to decimal. But here the quoted value really does mean a quantity (remember the
fingers). A four bit binary sequence is used to represent a quantity between “0”
and “15”. In general, when representing unsigned integers, an N-bit binary
sequence can represent quantities between “0” and “2N -1”. So an eight bit unsigned
integer can represent quantities between “0” and “255”; a 16 bit unsigned integer
can represent “0” to “65,535” (around 64K), and a 32 bit unsigned integer can
represent “0” to “4 billion”. This process is nothing more than a uniform value
sequence assignment. An integer value is assigned to each sequence.

Signed Integers: Some applications require negative as well as positive integers.
While it doesn't have to be this way, a signed representation typically offers an
equal number of positive and negative quantities.

signed sequence unsigned signed sequence unsigned

“0” 0000 “0” “-8” 1000 “8”
“1” 0001 “1” “-7” 1001 “9”
“2” 0010 “2” “-6” 1010 “10”
“3” 0011 “3” “-5” 1011 “11”
“4” 0100 “4” “-4” 1100 “12”
“5” 0101 “5” “-3” 1101 “13”
“6” 0110 “6” “-2” 1110 “14”
“7” 0111 “7” “-1” 1111 “15”

08:46:17 PM 4 June 2013 NS-7 © Scott & Linda Wills

Since half of the sequences are used to represent negative values, there are not as
many to represent positive quantities. Here the 16 sequences represent “-8” to
“+7”. In general, this N-bit signed integer representation can represent quantities
from “-2(N - 1)” to “2(N - 1) – 1”. A eight bit signed integer can represent “-128” to
“+127”. A 16-bit signed integer can represent “-32,678” to “+32,767” (±32K). A 32-
bit signed integer can represent “±2 billion” (±32G). Why isn't it symmetric?
Because zero has to go somewhere (and use a sequence). Here it is counted as a
positive value. This signed representation is called two's complement.

There are many choices for signed representations. But only one, two's complement
is widely used, and for good reasons. As number systems and arithmetic are
explored, two's complement has many significant advantages other other signed
representations.

• Sign and Magnitude: This signed representation (used in floating point)
employs all but one bits for an unsigned magnitude. The remaining bit
indicates the sign. It problems include complex arithmetic logic (since
addition sometimes becomes subtraction and vice versus) and two
representations of zero (+0 and -0). This may seem like a small matter. But
comparison to zero is the most commonly performed conditional operation.
If there are two values representing zero, this operation become more
complex.

• One's Complement: This signed representation has a simple negation:
complement each bit. So +1 (0001) is negated to -1 (1110). This
representation also introduces complexity is arithmetic. And it has two
values for 0 (0000) and (1111).

Two's complement is related to one's complement. Negation involves complementing
each bit in the representation. But then one is added: one's complement + one =
two's complement. It only has one representation of zero (negating zero give zero).
Sign is easy to determine; the most significant bit of the representation indicates
the sign (0 = positive, 1 = negative). But it is not a sign bit. And arithmetic using
two's complement couldn't be easier (one can ignore sign). Two's complement also
works well with non-integer representations, which come next.

Fixed Point: Integer representations have a fixed step size, the value one. All
adjacent sequences differ by the integer value one. This is its resolution and it is
fixed. This step size can assume any value, depending on the position of the point
(which separates whole and fractional parts of the representation). So if the point
is fixed one bit position to the left of integers, the step becomes 0.5 instead of
one. This four-bit, fixed point representation offers a different set of values.

08:46:17 PM 4 June 2013 NS-8 © Scott & Linda Wills

signed sequence unsigned signed sequence unsigned

“0.0” 000.0 “0.0” “-4.0” 100.0 “4.0”
“0.5” 000.1 “0.5” “-3.5” 100.1 “4.5”
“1.0” 001.0 “1.0” “-3.0” 101.0 “5.0”
“1.5” 001.1 “1.5” “-2.5” 101.1 “5.5”
“2.0” 010.0 “2.0” “-2.0” 110.0 “6.0”
“2.5” 010.1 “2.5” “-1.5” 110.1 “6.5”
“3.0” 011.0 “3.0” “-1.0” 111.0 “7.0”
“3.5” 011.1 “3.5” “-0.5” 111.1 “7.5”

For both unsigned and signed representations, there are the same number of
sequences. With a smaller resolution (0.5 versus 1), the representation has a
smaller range. In general, an N bit fixed point representation with K bits to the
right of the binary point has a step size of 1/2K and a range of -2(N – 1)/2K to (2(N - 1) –
1)/2K. The range is divided by the step size.

If the fixed point is set two bits from the left, the step size and range change. A
smaller step, 0.25, yields higher resolution, but a smaller range.

signed sequence unsigned signed sequence unsigned

“0.0” 00.00 “0.0” “-2.0” 10.00 “2.0”
“0.25” 00.01 “0.25” “-1.75” 10.01 “2.25”
“0.5” 00.10 “0.5” “-1.5” 10.10 “2.5”

“0.75” 00.11 “0.75” “-1.25” 10.11 “2.75”
“1.0” 01.00 “1.0” “-1.0” 11.00 “3.0”

“1.25” 01.01 “1.25” “-0.75” 11.01 “3.25”
“1.5” 01.10 “1.5” “-0.5” 11.10 “3.5”

“1.75” 01.11 “1.75” “-0.25” 11.11 “3.75”

Fixed point does not require a change to the arithmetic. It is only a matter of
interpretation of the operands and the result. Fixed point is the presentation of
choice for the financial world. All calculations must be accurate to the penny,
regardless of the amount. This fixed resolution limits the range. Science and
engineering often need something else.

Floating Point: Fixed point presentations have a problem in that their accuracy (the
number of significant figures) is dependent on the magnitude of the represented
value. The integer value 23,415,823 may have eight significant figures. But 16 has
only two. Floating point has a different, more complex approach. Use a certain
number of bits to represent the magnitude (the significant figures) of a value.
Then use addition bits to scale it to the correct value. Most people have used this
approach in scientific notation. The magnitude 6.022 is scaled by 1023 to express
the number of molecules in a mole. This value would be difficult to express using a
fixed point representation.

08:46:17 PM 4 June 2013 NS-9 © Scott & Linda Wills

Floating point breaks the bits of the representation into fields: sign, mantissa, and
exponent.

sign mantissa exponent

The sign field is a one bit field indicating the sign of the mantissa. This sign and
magnitude representation makes sense when scaling the value. The mantissa is the
largest field and contains the bits that provide the accuracy (significant figures)
to the value being represented. Since the mantissa does not need to provide the
scaling, its range is between zero and one. The exponent field is a signed integer
that scales the mantissa to the proper value. In binary, the exponent is raised to a
power of two, not ten. In general, a floating point value is computed as:

sign x mantissa x 2exponent

where the sign is ±1, the mantissa is an unsigned fixed point value with the binary
point at the right end of the sequence (K = N), and the exponent is a signed
integer. Typical field lengths for an IEEE single precision floating point value is
sign = one bit, mantissa = 23 bits, and exponent = 8 bits. This means that the
unscaled step size is 1/8M of the mantissa. To find the equivalent decimal
significant figures, consider the mantissa range (0 to 8,000,000). The first six
digits can assume any value (0-9). The seventh decimal digit can assume 0-8. So
this mantissa maintains between six and seven decimal significant figures. In
general, every ten bits of mantissa provides three decimal significant figures.

The exponent field is a signed (two's complement) integer. Like scientific notation,
it scales the mantissa to the proper value. It doesn't change the bits, rather it
moves the binary point. Moving it right by one bit multiples the value by two.
Moving right two bits multiples by four. Moving right by I bits multiples by 2I.
Moving left is similar, except it divides by 2I. Because of this exponential scaling, a
modest range in the exponent field can have an enormous effect on the value. An
eight bit exponent has a range of -128 to +127. Since the mantissa is between zero
and one, the final value an be as large as 2127 or as minuscule as 1/2128.

Floating points representations can assume smaller and larger number of bits. IEEE
double precision floating point employs 64 bits including an eleven bit exponent and
a 52 bit mantissa for approximately 15 significant figures. A 16 bit floating points
might have a 10 bit mantissa (three significant figures) and a five bit exponent for
values from 215 (32K) to 1/216 (1/64K).

Arithmetic operations in floating are more complicated since exponents must be
adjusted before simple addition and subtraction can be performed in the mantissa.
Afterwards, a process called normalization must be performed where the mantissa

08:46:17 PM 4 June 2013 NS-10 © Scott & Linda Wills

and exponent are adjusted to keep a one in the most significant bit of the
mantissa. This is necessary to maintain the full accuracy of the value.

In floating point, all values have a fixed accuracy (significant figures), but a
varying resolution (step size). This contrasts with fixed point that has a fixed
resolution, and a varying accuracy. Fixed point works for financial calculations.
Floating point works for science and engineering. Both are important.

Full Disclosure: Floating point standards have many subtle complexities that are
not covered here. For example, since normalization maintains a one on the most
significant bit of the mantissa, it can be assume to effectively add a bit. Other
field combinations are used for rare but important values like NaN (Not a
Number). If interested, check out http://grouper.ieee.org/groups/754/.

Symbolic Values: Speaking of not a number, there is a large class of
representation that don't represent quantities. Take this document, for example.
Each character represents a letter of the alphabet, and sequences are strings of
letters forming words, sentences, and paragraphs. One of the oldest and most
common symbolic representation is ASCII (American Standard Code for
Information Interchange). This seven bit representation includes the characters
that appear on a keyboard: A-Z, 0-9, a-z, characters for punctuation, special
symbols, etc. Plus some obsolete control characters like bell, ACK/NAK, etc. that
date back to an era when mechanical teletypes were used to display text. This
standard was latter expanded to eight bits (256 symbols) for CP/M, MS-DOS, etc.
but it still lives on.

One limitation of ASCII is its inability to expand to international character sets. A
modern alternative is Unicode, a 16-bit character code that embraces the diversity
of symbols from around the world. While its larger 16 bits versus eight bits, its
ability to international character sets justifies the extra storage. Still, ASCII is
far from gone. It still is the primary representation used in text files under
today's operating systems including Microsoft Windows, Mac OS X, and Linux.

Other Representations: There are hundreds of other representations to
represent images (e.g., JPEG), videos (e.g., XviD), audio (e.g., mp3), vector graphics
(e.g., postscript), and many other things. However the notations used generate the
same patterns of sequences.

Summary: In digital computers, information is expressed in one of several
notations, and its meaning is defined by one of many representations.

• Today's notations include binary, decimal, and hexadecimal. Powers of two
fit the binary technology being used. Decimal fits ten fingered humans.

08:46:17 PM 4 June 2013 NS-11 © Scott & Linda Wills

http://grouper.ieee.org/groups/754/

• Quantitative representations include signed and unsigned fixed point
representations integers is a special case). For signed representations, two's
complement is the representation of choice. Fixed point has a fixed step
size (resolution), but varying accuracy. Floating point is a more complex
representation with fixed accuracy, but a varying step size. Both
representations have their place in digital systems.

• Symbolic representations are widely used in digital systems. ASCII is an old
but widely used standard. Unicode allow representation of international
characters.

ASCII Codes

0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70

0x0 NUL DLE SP 0 @ P ` p

0x1 SOH DC1 ! 1 A Q a q

0x2 STX DC2 " 2 B R b r

0x3 ETX DC3 # 3 C S c s

0x4 EOT DC4 $ 4 D T d t

0x5 ENQ NAK % 5 E U e u

0x6 ACK SYN & 6 F V f v

0x7 BEL ETB ' 7 G W g w

0x8 BS CAN (8 H X h x

0x9 HT EM) 9 I Y i y

0xA LF SUB * : J Z j z

0xB VT ESC + ' K [k {

0xC FF FS , < L \ l |

0xD CR GS - = M] m }

0xE SO RS . > N ^ n ~

15 SI US / ? O _ o DEL

08:46:17 PM 4 June 2013 NS-12 © Scott & Linda Wills

Designing Computer Systems

Arithmetic

1 1

1 1 0

+ 0 1 1

1 0 0 1

08:47:33 PM 4 June 2013 AR-1 © Scott & Linda Wills

Designing Computer Systems

Arithmetic

Arithmetic in digital systems involves a few familiar operations (addition,

subtraction, multiplication, and division) on quantitative representations described

in Number Systems. Everyone knows what the answer should be. The challenge is

making hardware that performs these operations, and detecting when the

representation cannot capture the result (overflow). This chapter combines

Number Systems and Gate Design to define and implement addition and

subtraction.

Addition: Addition is a simple dyadic operation in that operates on two operands,

the addends, to produce a result, a sum. The rules of addition were first learned in

an early grade on decimal values.

1 1 1 1 1

6 8 3 6 8 3 6 8 3 6 8 3 6 8 3

 + 3 6 5 + 3 6 5 + 3 6 5 + 3 6 5 + 3 6 5

8 4 8 0 4 8 1 0 4 8

When adding these values, one starts at the least significant digit. Adding three

and five is easy. The result, eight is expressible within the significance of this

digit (the one's place). So this place is done. The next digit, in the ten's place is

more complicated. The sum of eight (80) and six (60) is 14 (140). But this cannot be

expressed fully in the tens place. So the six (60) is recorded and the ten (100) is

carried to the next place, the hundreds place. The sum of six (600), three (300),

and the carried in one (100) sums to one thousand. Again, this cannot be captured

in the hundred's place. So it is carried to the next digit, the thousand's place. This

leads to a habit that humans have, but digital systems cannot support: The

presumption of unlimited bit resolution. Humans assume that if there is space in

the result line, it can be used to fully, and accurately express the result.

Unfortunately digital systems must live within the available bits in the

representation. If the representation if three decimal digits, 000 to 999, it cannot

represent 1048. So there is an overflow error.

Moving to binary addition is simply a matter of employing a binary notation.

1 1 1 1 1

1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

 + 0 1 1 + 0 1 1 + 0 1 1 + 0 1 1 + 0 1 1

1 0 1 0 0 1 1 0 0 1

08:47:34 PM 4 June 2013 AR-2 © Scott & Linda Wills

Zero added to one results in one. There are fewer characters in the alphabet so

this happens less frequently. Note also that places here are not powers of ten (1,

10, 100) but are instead powers of two (1, 2, 4, 8). When one (2) is added to one

(2), the result, 10 (4) cannot be represented in the two's place. So zero is

recorded and 10 (4) is carried to the next bit position, the 4's place. This 10 (4) is

added to the one (4) and zero already in this place to produce a result 10 (8). The

zero remains in the 4's place, and the 10 (8) is carried to the 8's place.

But as before, digital systems may not always have an extra bit position (here in

the 8's place) to hold the one carried out of the 4's place. If it's available, 110 (6)

added to 011 (3) results in 1001 (9). Otherwise the result is 001 (1), which is

incorrect, at least for unsigned integers. Interestingly, in a three bit two's

complement representation, 110 (-2) added to 011 (3) is 001 (1)! So overflow errors

are dependent on the representation. More on this later.

Addition Hardware: The goal is to build hardware to perform arithmetic. It is

important to note that the operation of binary addition is invariant to bit position.

It's the same operation with respect to given inputs used to compute outputs

regardless of whether it is performed in the 1's place, 2's place, etc. So building a

one-bit adder is the place to start. Here's an adder for two one-bit binary

operands, X and Y. The result is S.

X

+ S

Y

X Y S

0 0 0

1 0 1

0 1 1

1 1 10

Again, the rules of addition are applied in binary. 0 + 0 = 0, 1 + 0 = 1, 0 + 1 = 1, 1 + 1 =

10. Only this is a one-bit adder. So 10 (2) cannot be represented in this place. An

additional output is added to carry this value to the next bit position. This is called

Carry Out (Cout). When the sum of X and Y exceeds one, this output signals that

the bit position capacity exceeded, and a carry out takes excess output to the

next bit position. When X and Y are one, the output is two and carry out transfers

this excess. For all other addition cases, the sum can be represented in this bit

position so carry out is zero.

08:47:34 PM 4 June 2013 AR-3 © Scott & Linda Wills

X

+ S

Y

Cout

X Y Cout S

0 0 0 0

1 0 0 1

0 1 0 1

1 1 1 0

This output is drawn on the bottom rather than the left side of the adder icon

because it is used as an input for another one-bit adder. Since the next bit position

must process this carry out signal, the adder also needs another input.

Two for You is One for Me: When a two in one bit position is carry into the next,

what is it worth? Moving from least significant to most significant bit positions,

each bit is twice the significance of the bit before it. So the two's place is twice

the significance of the one's place. The four's place is twice the two's place. The

eight's place is twice the four's place. In general, the i+1's place is twice the

significance of i's place. So when two is carried out of the i's place, it becomes one

in the i+1's place. So a carry out (two) from the lesser significant neighboring bit

becomes one as a carry in.

This simplifies the behavior when a Carry In (Cin) is added. Now, rather than

adding X and Y, the adder is adding X + Y + Cin. All three inputs have the same

significance. Here's the behavior assuming the carry in is zero (from before).

Cin

X

+ S

Y

Cout

X Y Cin Cout S

0 0 0 0 0

1 0 0 0 1

0 1 0 0 1

1 1 0 1 0

0 0 1

1 0 1

0 1 1

1 1 1

08:47:34 PM 4 June 2013 AR-4 © Scott & Linda Wills

To handle the new cases where carry in is one, the result includes the sum of X, Y,

and Cin.

Cin

X

+ S

Y

Cout

X Y Cin Cout S

0 0 0 0 0

1 0 0 0 1

0 1 0 0 1

1 1 0 1 0

0 0 1 0 1

1 0 1 1 0

0 1 1 1 0

1 1 1 1 1

The first case (X = 0, Y = 0, Cin = 1) produces a sum of one. No carry out required.

When (X = 1, Y = 0, Cin = 1), the sum is 10 (2). This results in Sum = 0 and Cout = 1.

The same outputs occur when (X = 1, Y = 0, Cin = 1). But when (X = 1, Y = 1, Cin = 1),

the sum is 11 (3). Carry out moves 10 (2) to the next bit position. The remaining one

becomes the Sum output. So the results are Sum = 1 and Cout = 1.

This one-bit adder, also known as a Full Adder, captures the behavior of binary

addition. Multi-bit addition can be constructed from cascaded one-bit adders.

What's Inside a Full Adder?: The behavior of Sum (S) is expressed as odd parity

(XOR) which is defined as “true when the number of high inputs is odd”. As X, Y, or

Cin transitions between zero and one, the number of high inputs changes from even

to odd, or odd to even. Independent of the carry out signal, a transition of an input

(X, Y, or Cin) results in a transition of the resulting sum, S. Carry out, Cout, has an

equally intuitive definition. If there is a one on less than two inputs (X, Y, and Cin),

the resulting sum can be handled within the bit position. However if two or more

inputs are one, the sum will exceed the bit position's maximum value and carry out

must be asserted. This happens in four cases:

X⋅Y Y⋅C
in

X⋅C
in

X⋅Y⋅C
in

The expression for carry out can be simplified to a sum of three product terms.

The behavior of a full adder can be expressed with these two boolean expressions.

S=X⊕Y⊕C
in

C
out

=X⋅YX⋅C
in
Y⋅C

in

The implementation is straightforward. Odd parity (a checkerboard K-map) is

difficult to simplify. The sum of products expression is implemented with NAND

gates.

08:47:34 PM 4 June 2013 AR-5 © Scott & Linda Wills

Going Multi-Bit: Since each bit position follows the same operations, a multi-bit

adder is created by connecting several replicated one bit adders. The carry in of

the least significant bit is set to zero. If it is one, an extra one is added to the

sum. This may come in handy later. Each bit position is implicit relative to its

position. Here's a four bit adder:

1's place 0 + 1 = 1

2's place 1 + 1 = 0 (Cout)

4's place 1 + 0 + Cin = 0 (Cout)

8's place 0 + 0 + Cin = 1

In this example X = 0110 (6) and Y = 0011 (3), Each one bit adder handles one bit

position. The collection performs the word addition yielding the correct solution

1001 (9) … correct assuming an unsigned integer representation. But what about for

other representations?

Fixed Point Arithmetic: A full adder works predictably for unsigned integers. It

also supports unsigned fixed point representations, since the bit position

08:47:34 PM 4 June 2013 AR-6 © Scott & Linda Wills

relationship does not change. The carry in comes from a bit position that has half

the significance. The carry out goes to a bit position that has twice the

significance. All that is required is a zero in the carry in to the least significant

bit. For all unsigned representations, a carry out of the most significant bit in the

representation indicates a result beyond the maximum expressible value.

Otherwise the value is correct. If a fixed point is added in the middle of a four bit

adder, its operation is unchanged. All that changes is the interpretation of the

operands and the result. The operation adds 01.10 (1.5) and 00.11 (0.75) to produce

10.01 (2.25). Here are more examples.

integer fixed point

7 + 1 = 8 0111 + 0001 = 1000 01.11 + 00.01 = 10.00 1.75 + 0.25 = 2.0

9 + 6 = 15 1001 + 0110 = 1111 10.01 + 01.10 = 11.11 2.25 + 1.5 = 3.75

4 + 12 = 0

overflow

0100 + 1100 = 0000 01.00 + 11.00 = 00.00 1.0 + 3.0 = 0.0

overflow

In each of these examples, the same operand patterns are applied to the four bit

adder, producing the same result. Only the representation differs. Note that for

fixed point representations, overflow errors occur (or not) with the same

operands, regardless of the position of the point. Fixed point is a scaling of the

operands and the corresponding ranges of the representation.

Signed Arithmetic: In Number Systems, there were many advantages to two's

complement representations for signed quantities: only one representation of zero,

a simple negation, easy differentiation of positive and negative values. Here's one

more reason to like two's complement: it employs the same rules for arithmetic. So

the examples can be reconsidered as two's complement.

unsigned integer two's complement integer

7 + 1 = 8 0111 + 0001 = 1000 0111 + 0001 = 1000 7 + 1 = -8

overflow

9 + 6 = 15 1001 + 0110 = 1111 1001 + 0110 = 1111 -7 + 6 = -1

4 + 12 = 0

overflow

0100 + 1100 = 0000 0100 + 1100 = 0000 4 + -4 = 0.0

In both representations, the same four bit adder performs the same logical

operations producing the correct result when the answer is within the

representation's range. Different representations give different meanings to the

operand sequences. And different ranges produce overflow errors in different

places. The two's complement interpretation of the first example 7 + 1 = -8 results

from the range of a four-bit two's complement integer: -8 to +7. This is not an

08:47:34 PM 4 June 2013 AR-7 © Scott & Linda Wills

error for the unsigned integer representation with a range of 0 to 15. In the third

example, the result in the unsigned integer representation overflows its range. The

two's complement representation does not.

The four bit adder also performs properly for signed two's complement fixed

point. Since this is just scaling of the values (and ranges), this is expected.

unsigned fixed point two's complement fixed point

01.11 + 00.01 = 10.00 1.75 + 0.25 = 2.0 01.11 + 00.01 = 10.00 1.75 + 0.25 = -4.0

overflow

10.01 + 01.10 = 11.11 2.25 + 1.5 = 3.75 10.01 + 01.10 = 11.11 -1.75 + 1.5 = -0.25

01.00 + 11.00 = 00.00 1.0 + 3.0 = 0.0

overflow

01.00 + 11.00 = 00.00 1.0 + -1.0 = 0.0

The carry out of the most significant bit indicates overflow with unsigned

representations. It tells nothing about overflow in two's complement

representations. So how can these errors be detected?

Overflow in Two's Complement: There are several ways to detect two's

complement overflows. The most intuitive exploits the easy sign detection of the

representation using only the most significant bit. If the MSB is zero, the value is

positive. If the MSB is one, it is negative. When an overflow occurs, the

inexpressible wraps around the range of the representation and ends up in the

opposite signed values. In the first example, two positive numbers are added to

produce a negative result. Because overflows wrap into the opposite sign, they can

be detected using only the most significant bits of the operands and the result.

Here are the eight cases when positive and negative values are added.

0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1

+ 0 0 1 1 + 0 1 1 0 + 1 1 0 0 + 1 1 0 0 + 0 1 1 0 + 0 1 0 1 + 1 0 1 0 + 1 0 1 1

0 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0

ok overflow ok ok ok ok overflow ok

Overflows occur in two cases: when two positive values are added with a negative

result, and when two negative values are added with a positive result. Here are the

corresponding decimal values:

2 2 6 2 -6 -6 -7 -3

+ 3 + 6 + -4 + -4 + 6 + 5 + -6 + -5

5 -8 2 -2 0 -1 3 -8

ok overflow ok ok ok ok overflow ok

08:47:34 PM 4 June 2013 AR-8 © Scott & Linda Wills

Two's complements overflows for addition occur when two positives produce a

negative sum, or two negatives produce a positive sum. This can be expressed as a

boolean expression, where the “m” subscript indicates the most significant bit:

Overflow=Xm⋅Ym⋅Sm+ X m⋅Ym⋅Sm .

The same multi-bit adder can be used for unsigned and signed two's complement

representations. But different hardware is required to detect overflows. For

unsigned addition, the carry out of the most significant bit indicates an overflow.

For signed two's complement, hardware that implements this sum of products is

needed. More of this hardware will follow an exploration of the next arithmetic

operation, subtraction.

Giving and Taking Away: Subtraction is the converse of addition. But in addition,

the early-learned rules of elementary school are directly applied, in subtraction, a

more modern approach to borrowing is employed. Here's an example.

1 1 1 1 1

4 0 5 8 4 0 5 8 4 0 5 8 4 0 5 8 4 0 5 8

 - 2 3 7 3 - 2 3 7 3 - 2 3 7 3 - 2 3 7 3 - 2 3 7 3

5 8 5 6 8 5 1 6 8 5

Like addition, one starts at the least significant bit. Here, 3 is subtracted from 8

leaving 5. But in the next digit, the ten's place, 7 is subtracted from 5. Like

addition, sometimes the operation cannot be completed within the digit. Early on,

one learns to search for the next non-zero digit, borrowing one in its place, and

regrouping as needed. Here one would borrow from the 4 (4000). But this approach

is expensive, since it requires a search though an indeterminate number of digits. A

more efficient approach doesn't look for the needed value to borrow; it presumes

it exists, passes a borrow signal to the next digit, and completes the operation.

This closely resembles the modern approach to borrowing: one places a purchase on

a credit card, and decides later whether needed funds are available. While this is

an unsound fiscal policy, it works well in computer arithmetic.

In this example, the process assumes the additional 10 (100) is available to regroup

the 5 (50) as 15 (150). Then the 7 (70) is subtracted leaving 8 (80). A borrow out

signal is passed to the next digit, the hundred's place. Here, 3 (300) is subtracted

from 0. The the borrow in does not add, it subtracts as a 1 (100) in this digit.

Again, the total of 4 (400) that is subtracted. So borrow out is asserted to the

thousand's place. This provides 10 (1000) that the 4 (400) can be subtracted from.

The operation in the thousand's place concludes with 2 (2000) being subtracted

along with the borrow value 1 (1000) from the 4 (4000), leaving 1 (1000) remaining.

08:47:34 PM 4 June 2013 AR-9 © Scott & Linda Wills

Binary subtraction follows this decimal example just as binary addition did.

1 1 1 1 1

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

 - 0 1 1 0 - 0 1 1 0 - 0 1 1 0 - 0 1 1 0 - 0 1 1 0

1 1 1 0 1 1 0 0 1 1

In this example, barrow out is asserted when the operation cannot be completed

with the bit position.

Subtraction Hardware: Subtraction logic resembles a full adder. Only it computes

the difference, and it accepts borrow in and generate borrow out. In subtraction,

the difference output (D) is computed as X = Y – Bin since both Y and Bin have the

same significance. Here's the behavior of a full subtractor.

Bin

X

- S

Y

Bout

X Y Bin Bout D

0 0 0 0 0

1 0 0 0 1

0 1 0 1 1

1 1 0 0 0

0 0 1 1 1

1 0 1 0 0

0 1 1 1 0

1 1 1 1 1

It is interesting to note that difference (D) is exactly the same as sum (S) in

addition: odd parity. This makes sense when one considers that, from a single bit

position's standpoint, adding one has the same effect as subtracting one. The

result toggles. The borrow out expression differs from carry out.

D=X⊕Y⊕B
in

B
out

=X⋅YX⋅B
in
Y⋅B

in

The hardware implementation resembles the full adder, but for a small difference

in the borrow out circuit.

08:47:34 PM 4 June 2013 AR-10 © Scott & Linda Wills

Two for One: Full subtracters can be replicated to form a multiple bit subtractor.

But that's not how it's done. The hardware cost for subtraction would match the

cost of addition. What if there were a way to get both operations using only one

multi-bit arithmetic unit? How can an adder subtract? The answer comes from a

little math and the magic of two's complement.

Z = X - Y Z = X + (-Y)

These two expressions compute the same result. So subtraction can be

accomplished by adding the negation of the subtracted value. Negation is easy in

two's complement. Just invert (complement) each bit and add one. The complement

is done with inverters. The added one occurs by setting the carry in of the least

significant bit to one. This “feature” was noted in the multi-bit adder.

Suppose the desired subtraction is 1001 – 0110. The result, 0011, can be computed

using either full subtracters or full adders (with negation logic).

A multi-bit adder/subtracter can employ the adder hardware to perform addition

and subtraction. A single control line ADD/SUB determines which operation is to

be performed. This rather unusual signal label declares that the signal is an active

low add signal combined with an active high subtract signal. Since the signal is

either low (zero) or high (one), the circuit is either adding or subtracting. To

construct this, the inverters are replaced with selective inverters introduced in

08:47:35 PM 4 June 2013 AR-11 © Scott & Linda Wills

Building Blocks, implemented as XOR gates. The ADD/SUB signal also controls the

carry in of the least significant bit of the adder. When high, it adds the one

needed to negate the second operand being subtracted. The adder/subtractor

implementation is shown below in both operation modes.

What About Overflows?: The signed overflow detection logic handles two's

complement representations with this design. For unsigned, the carry out indicates

addition overflow with a high value (One). Subtraction overflows are represented

with a low value (zero) on carry out. The negation of the subtracted value wraps

non-overflowing results into the unsigned overflow domain. Ironically, subtracted

numbers larger than the first operand become small in negation and do not reach

the unsigned overflow domain.

Summary:

• Addition and subtraction follow the rules learned for decimal, but with a few

small changes. One does not assume unlimited digits. And subtraction uses

borrowing on credit to simplify protracted borrowing.

• Binary addition and subtraction are defined bit-wise, leading to the

definition and construction of a full adder and a full subtractor. They are

implemented using XOR and NAND gates.

• Overflows occur due to a bound word size. Error detection is

straightforward and differs for unsigned and signed representations.

• An adder/subtractor can be constructed using a multi-bit adder and

selectable negation circuitry for the second operand.

08:47:35 PM 4 June 2013 AR-12 © Scott & Linda Wills

Designing Computer Systems

Latches and Registers

Designing Computer Systems

08:58:22 PM 4 June 2013 LR-1 © Scott & Linda Wills

Latches and Registers

The potential to design functional blocks using switches and wire appears limitless.

The analog quantities of our world can be represented using multi-bit words.

Operations on these values, defined a Boolean expressions, can be constructed as

combinational logic of unbound complexity. So what is missing? … history.

Combinational

Logic

...
O1

O0

O2

O3

O4

O5
O6

Om

O7

Outputs

...

I1

I0

I2

I3

I4

I5
I6

In

I7

Inputs

No matter how complex the implemented function is, it has no memory of previous

values or results. All data to be processed must be presented to the combinational

logic as inputs. Combinational logic has no state.

Building even the simplest digital system is impossible without state. Consider a

basic four function calculator (a four banger). Although it can process big numbers

rapidly, how can it solve a simple expression “5 + 3 =” without state? It would

require the input keys “5”, “+”, “3”, and “=” to be held simultaneously while the

answer is displayed. Multi-digit math is out of the question.

One Bit Store: For useful digital computing systems, a simple block is needed that

can store a bit of data for an extended period of time. That way data available now

will persist, and can be used later. To best exploit the technology, this bit store

must be built with switches and wire. And since many bits are needed, it must be

implemented simply. Here's a starting point:

It certainly is simple, only two inverters (four switches). But why would somethings

this simple have the ability to store data? The wire looping from the output to the

08:58:22 PM 4 June 2013 LR-2 © Scott & Linda Wills

input is unusual: its uses its own output as an input. Analyzing this simple block is a

challenge since, although it has only two nodes, it has no input values. So what are

the nodes values?

Surprisingly, there are two answers. The output could be low (0) with the short

wire between the inverters high (1). Or the output could be high with the short

wire low. Which is right? They both are! This circuit is stable in two states; its bi-
stable. Since a one bit store maintains one of two states, this simple block is ideal

… except it has no input.

RS Latch: In order to use this bit store, it needs inputs that can set the output

high, or reset the output low. But it still must retain the ability to hold a state,

high or low, for an indefinite period. Cross-coupled inverting gates, where the

output of each inverting gate is an input to the other, provides bi-stability. But

inputs are need to Reset and Set it to a known state.

Consider a familiar gate, seen in a new way: a two input NOR. Assume one of the

gate's input is a boolean variable In. The other is a control variable C.

C = 0 C = 1

The control signal C determines whether output is related to In. If C is low, the

output is the complement of In (i.e., it is an inverter). If C is high, the output is low

no matter what the value of In is.

IN C Out

A 0 A Out = In

X 1 0 Out = 0

This is just what is needed. The heart of a bit store is two cross-coupled inverters.

To force the output into one of two states, the inverter can be preempted. Using

cross-coupled NOR gates, the control inputs turn off one of the two inverters,

creating a known output (low or high).

When both R (reset) and S (set) are low, both NOR gates act as inverters. Their

other input is complemented to become the output. So when Reset and Set are low,

08:58:22 PM 4 June 2013 LR-3 © Scott & Linda Wills

cross-coupled NOR gates become cross-coupled inverters used in the previous bit

store implementation.

When either the Reset or Set inputs is temporary asserted (set high), it turns off

an inverters, forcing the output into a known state. When Reset is high, Out is low

independent of the first NOR gate's output. Since Out is low, the first NOR gate

(acting as an inverter) makes the ignored input to the second NOR gate high. So

when Reset returns low, and the second NOR gate becomes an inverter, Out

remains low.

When Set is asserted (with Reset low), the output of the first NOR gate is low.

With Reset low, the first NOR gate's output is inverted by the second NOR gate,

setting Out high. Since this also sets the other input of the first NOR gate, the

gates retain this state when Set is deasserted (set low).

Meta-Stability: Reset and Set can be asserted individually to force the RS latch

into one of its two stable states. When both Reset and Set are low, this stable

state remains unchanged. But what happens when Reset and Set are asserted

simultaneously? Both NOR gates have low outputs. While this is logically correct, it

can lead to an unpredictable state when Reset and Set are deasserted

simultaneously. Which of the two stable states will it become? This condition is call

meta-stable because the state of the latch is unknowable. It is also not knowable

how long it will take for the latch to return to one of the two states.

“stable” “meta-stable”

To appreciate the difference between stable and meta-stable, consider a ball in a

valley versus a ball balanced in a peak. Small forces on the stable ball will not

change its state. In contrast, a small force applied to the meta-stable ball will

cause a significant state change. Needless to say, meta-stability should be avoided

08:58:22 PM 4 June 2013 LR-4 © Scott & Linda Wills

when predictable storage is desired. So Reset and Set are only asserted

individually.

R S Out

0 0 Qo hold

1 0 0 reset

0 1 1 set

1 1 0 avoid

The hold state employs a new symbol: Qo to represent a previously defined state.

It can be either 0 or 1, depending on whether Reset or Set was last asserted.

Transparent Latch: An RS latch can provide needed state. But it requires specific

control signals to define and hold the storage. When a 0 is being stored, Reset is

asserted and Set remains low. When a 1 is being stored, Set is asserted while R is

low. When the value is held, neither Reset nor Set are asserted. This can be

generated from an input In and an enable En that allows the input to be captured.

assert R assert S hold

Before connecting this circuity, the RS latch must be rearranged.

Combining both circuits produces a transparent latch. This transparent latch,

shown below, can be in one of four different cases. Two are completely defined by

the inputs: storing 0 and storing 1. Two are defined by En and the internal state:

holding 0 and holding 1. In the second two cases, IN is ignored; it doesn't matter

whether its one or zero because its masked by the AND gates.

08:58:22 PM 4 June 2013 LR-5 © Scott & Linda Wills

storing 0 storing 1

holding 0 holding 1

Here's the functional behavior of a transparent latch.

IN En Out

X 0 Qo latch

A 1 A transparent

When enable is asserted, the output follows the input so the latch becomes

transparent. When enable is not asserted, the latch maintains the stored state on

the output, independent of the input. Its value was defined at the last moment of

transparency.

Implementation Costs: When implemented with switches and wire, this transparent

latch requires two NOR gates (2 x 4 switches), two AND gates (2 x 6 switches),

and one inverter (2 switches) for a total of 22 switches. Not bad. But digital

systems require a lot of storage bits. Is there a cheaper implementation of this

behavior using switches and wire?

Some tricks from mixed logic can help. If the bubbles on the NOR gates slide

arround to the inputs and an extra pair of bubbles is added between the AND and

OR, this implementation is transforms from two NOR and two AND gates to four

NAND gates. Here the Set and Reset signal become active low (they are asserted

when low, unasserted when high). Generating these signals requires the inverter to

move down. But this latch implementation realizes the transparent latch behavior

08:58:22 PM 4 June 2013 LR-6 © Scott & Linda Wills

with four NAND gates (4 x 4 switch) and one inverter (2 switches) for a total of

18 switches.

But can the count still be lowered? Let's go back to basics. Two cross coupled

inverters are capable of storing a bit, but lack an input. Suppose pass gates are

used to selective configure these inverters into either a transparent mode (where

the the input is connected and the feedback pass is removed), or a hold mode

(where the feedback path is connected and the input is removed). These pass gates

serve as a two to one mux. It may be easier to understand when drawn as a mux.

transparent mode hold mode

This implementation employs three inverters (2 x 2 switches) and two pass gates

(2 x 2 switches) for a total of 10 switches. It is called a ten transistor latch and is

the significant storage element in digital computation. Can we do better than ten

transistors? Yes, but at a cost in speed, and only in dense arrays. More on this

follows in the memory chapter.

Latch Limitations: Latches can store a single bit of data, but with limitations.

Consider a parallel to serial shift register. This is a device that can take parallel

08:58:22 PM 4 June 2013 LR-7 © Scott & Linda Wills

word (in this case, four bits), and shift it down a serial wire in an orderly way. We

use these devices to transfer data between our digital products. USB is short for

“Universal Serial Bus”. SATA means “Serial Advanced Technology Attachment”.

Strange as it may seem, serial buses often transfer data faster than parallel

buses. So the need to load a parallel word into a clocked serial bus interface is

widespread. Here's a first attempt.

Notice we are using latches to hold the word (I3:I0) when the Load signal is high.

Then we use a simple clock to move bits along to Out.

What is a Clock: In physics, the most used clock signal is a sinusoidal waveform. But

in the digital world, everything is a one or a zero. A clock is a square wave that

alternates between high and low at a defined period. A timing diagram shows the

behavior as the load signal goes low and the data move serially through the latches.

Time advances from left to right. Each signal is stacked with high and low values

indicated by the red and blue marks. Note clock alternates between zero and one.

The problem occurs when the clock goes high (after Load goes low). All the enables

on all of the latches go high and all latches become transparent. The stored data

does travel to the output, but not in an orderly fashion. Instead bit race through

08:58:22 PM 4 June 2013 LR-8 © Scott & Linda Wills

the latches independent of the clock. Not good. There is no way to capture and

reconstruct the parallel word on the other end of the serial bus.

Two Phase, Non-Overlapping Clock: The problem with a latch is that is has no

storage when its transparent. It can't hold an old value and accept a new value at

the same time. To do accomplish this, there needs to be two latches and a special

clocking scheme that allows one latch to hold the current value while a new value is

being captured. The clocking scheme must allow each latch to be transparent

independently, with a brief period in between where both latches are holding their

value. Here's the clock that produces this behavior:

Both clocks have the same shape, including a small asymmetry of being low longer

than being high. But the second clock is phase shifted by 180 degrees. Note also

that the two clock are never high at the same time. This creates a two phase, non-

overlapping clock. The clock signals are often named phi1 (Φ1) and phi2 (Φ2). It is

widely used in digital computation where phase periods are set large enough to

accommodate the gate depth x gate delay, and non-overlap periods are large

enough to accommodate anticipated clock skew. This scheme will help create a

workable shift register.

After data is loaded, it is advanced in the shift register in time with the clock

frequency. This orderly movement is defined as the latch alternate between

transparent and hold modes. During Φ1, the first latch is transparent while new

data is sampled. The falling edge of Φ1 defines the sample point. Then on the rising

08:58:22 PM 4 June 2013 LR-9 © Scott & Linda Wills

edge of Φ2, this new value moves forward through the second (now transparent)

latch.

sample

input

new value

to output

Φ1

Φ2

These two critical moments (the falling edge of Φ1 and the rising edge of Φ2) define

this clock scheme behavior. Here's the timing diagram of this functional shift

register:

Note the movement of ones and zeros through the monitor points A, B, C and Out.

Of course, this four latch shift register can only maintain two bits. Half of the

latches are transparent and cannot hold values.

Register: Two latches, plus the multiplexer form the core of a register.

IN WE Clk Out

X 0 →↓ Q0

A 1 ↑↓ A

By connecting the output through a 2 to 1 mux to the input of the first latch, the

ability to selectively write (or preserve) a register's value can be controlled. Like

08:58:22 PM 4 June 2013 LR-10 © Scott & Linda Wills

the enable signal on the transparent latch, the write enable (WE) signal either

selects a new input, or recycle the current output as the input. However this is a

synchronous behavior in that the changing or preserving of a stored value is in sync

with the clock signals. This selective write is call a write port.

Read Port: What would a read port be? Writing means changing the register state.

Reading (or not) has no effect on its value. So what does a read port accomplish?

Often registers are read onto a shared bus. Since only one value can be read onto

the bus, a read port is a method of passing the register's contents onto a write (or

not). This has been explored in demultiplexers, and is efficiently accomplished

using a pass gate.

WE = RE = 1 WE = RE = 0

The register on the left is being written and read. The register on the right is

holding a value that is not being read (Out is floating). The behavior of this widely

used storage element is shown below. Note that read and write are independent

operations. Even when the register is not read (the output is floating), write

operations can be performed. And when neither write or read operations are

performed, a bit is still be stored.

IN WE RE Clk Out

X 0 0 →↓ Z0 hold

A 1 0 ↑↓ Z0 write

X 0 1 ↑↓ Q0 read

A 1 1 ↑↓ A write & read

Word-Wide Register: Once a one bit register is designed, it can be replicated to

create a word wide register to store multi-bit values. These parallel registers are

stored and loaded using multiple bit values. In this example, the word size is four

bits. Control signals and clocks to read and write the register are shared.

Individual lines for each input and out bit position are connected separately. Read

08:58:22 PM 4 June 2013 LR-11 © Scott & Linda Wills

and write operations can be performed independently, something latches cannot do.

In this example, the stored value of the register (0101) is unchanged in the four

examples.

read & write read write hold

Summary: Here's a summary of key points in digital storage:

• Storage is needed for digital systems. It can created using simple cross-

coupled inverting gates in a circuit that is bi-stable.

• A Transparent Latch is can store a bit of data, but it cannot hold data when

a new bit is being stored. The 10T latch is the workhorse in digital systems.

• A Register can simultaneously be read and written. It is built of two latches,

one to hold the current value while the other receives the new value.

• A two-phase non-overlapping clock provides necessary timing for digital

systems. Its parameters (depth and non-overlap delay) determine

performance of the digital system.

• A shift register shifts parallel words over a serial bus, often at high speeds.

Serial interfaces are widely used in digital systems (USB, SATA, etc.).

• A timing diagram shows how sequential systems evolve in time. Behavioral

tables cannot fully capture this information.

08:58:22 PM 4 June 2013 LR-12 © Scott & Linda Wills

Designing Computer Systems

Counters

08:50:07 PM 4 June 2013 CT-1 © Scott & Linda Wills

Designing Computer Systems

Counters

A register has a critical role to play in digital computing systems. Its stores data

so it can be used in the future. Its singular purpose is to accurately preserve a

value for an indeterminate period.

register

“735”

write

register

“735”

read

time

A value 735 is stored (written) in a register. Later, the register is read and the

value 735 is obtained. The register's value is changed only when a new value is

written or if the power source is removed.

Another form of storage is widely used in digital systems. It is constructed using

similar components, but it has a different objective. Ironically, if it behaves like a

register, it is deemed faulty.

counter

“7:35”

write

counter

“7:41”

read

time

This storage is, of course, a counter and it is used for many purposes including time

keeping. Here the clock is more than just a periodic sequencer of storage access.

It also provides the time base that defines the counting interval. A counter is a

multiple-bit storage element that follows a binary sequence in sync with a clock. It

can also be described as counting the intervals of time defined by the clock's

period. With a one Hertz clock, a counter counts seconds.

08:50:07 PM 4 June 2013 CT-2 © Scott & Linda Wills

Stopwatch 101: Despite clocks being a prevalent example of counters in our world,

its fraught with the peculiarities of time conventions. Time begins at 12:00. Then

at 12:59, it advances to 1:00. Ante Meridian (AM) ends at 11:59 followed by 12:00

Post Meridian (PM). Who made this system up?

Stopwatches employ similar counter principles, but with more clarity. It begins at

0:00 when the clear button is pressed. When the start/stop button is pressed, the

counter starts (or stops) measuring the passage of time. The lap button displays an

interval while the counter continues.

Remember the Register: Before exploring the construction of a counter, let's

review the register. Because the counter must retain its current value while it is

updated with its new value, it is based on a two latch cell that is similar to the

register.

Latch

I O

E

Latch

I O

E

2 to 1

Mux

I0 O

S
I1

Phi1 Phi2WE

In

Out

Latch

I O

E

Latch

I O

E

2 to 1

Mux

I0 O

S
I1

Phi1 Phi2WE

In

Out

hold write

The 2-to-1 mux selects one of two values for the first latch's input: copy the

current value from the second latch (right), or a new value from In (left). Because

a register's roll is to preserve a value until it is overwritten, this is a good

selection.

Counters need to count. In a binary world, a one-bit counter is rather dull: 0, 1, 0,

1, 0 ,1 , … this is well-described as toggling. But sometimes a one-bit counter needs

to hold a value (1 or 0) for multiple cycles 0, 0, 0, … or 1, 1, 1, … The hold mode

already exists in the register design. In this mode, on the left, the output value

loops back to the input to hold the state. The toggling mode, on the right, is almost

the same, except the complement of the output loops back to the input to toggle

the state.

hold toggle

08:50:07 PM 4 June 2013 CT-3 © Scott & Linda Wills

Since a cell will sometimes hold its value and sometime toggle its value, it must be

able to do both, controlled by an input toggle enable (TE). This new input will

control a selective inverter, otherwise known as a XOR gate (odd parity).

In C Out

A 0 A

A 1 A

When the control input is low, A is passed through unchanged. When the control

input is high, A is inverted A. This gate can be used to create a cell that can toggle

its output on each cycle of the clock (right). Or it can hold a value unchanged

through a clock cycle (left).

TE Clk Out

0 →↓ Qo

1 ↑↓ Qo

hold toggle

What State Am I: This cell has an essential feature, to selectively toggle. But it

lacks definition. How can the state be set to a known value? The stopwatch must be

able to be cleared, forcing all bits of the counter to zero. The current value must

be masked. So an AND gate is used.

clear toggle

The Clr signal is active low, indicated by the bar over the signal name. When the

clear signal is asserted (low), the current value, toggled or held, is masked to zero.

When the Clr signal is deasserted (high), the AND gate passes the toggled or held

state from the second latch. In this example, it is toggled.

This design represents a one bit toggle cell. It can operate in three modes, clear,

hold, and toggle. It is the foundation of multiple-bit counters. A simple icon is used

to capture this implementation.

08:50:07 PM 4 June 2013 CT-4 © Scott & Linda Wills

TE Clr Clk Out

X 0 →↓ 0 clear

0 1 ↑↓ Qo hold

1 1 ↑↓ Qo toggle

A stopwatch has two external controls. Count Enable (CE) allows the counter to

advance with time. When it is not asserted, the counter is frozen at the current

value. Clear (Clr) resets the counter value to zero. In both cases, the assertion of

these signals is not immediate. The effect of these signals is seen at the counter's

outputs at the end of each cycle. This is called synchronous operation since

behavior is synchronized with the system clock.

N-bit Counter: A multi-bit counter begins with a single toggle cell connected to

the external signals. The external count enable controls the toggle cell's toggle

enable. The external clear controls the counter's clear; but it must be inverted to

be active low. A one-bit counter is nothing more than a toggle cell.

08:50:07 PM 4 June 2013 CT-5 © Scott & Linda Wills

But when counting is enabled and the device is not being cleared, it counts with the

system clock, its output toggling on each cycle. The timing diagram shows the one

bit counter's output. The vertical dashed lines represent the system clock.

O0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Because is toggles once per clock cycle, its cycle period is twice the system clock

period, and its frequency is half the system clock. For this reason, a one bit

counter is sometimes called a divide by two counter since it outputs a clock that is

half the system clock frequency.

A two bits counter begins with two toggle cells. The first cell is connected

directly to the external count enable and clear (as in the one bit counter). But the

second toggle cell must be connected differently or it will toggle (count) identically

to the first cell. For the second cell, it should toggle when the external count

enable is asserted and the output of the first toggle cell is high.

08:50:07 PM 4 June 2013 CT-6 © Scott & Linda Wills

Since this is only true on half the cycles, the second cell will toggle every other
cycle. Since the first output is already half the system clock, the second output is

a divide by 4 (one fourth the system clock frequency).

O0

O1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 01 01 01 01 01 1 01 0 1

A three bit counter adds a third toggle cell.

Whereas the first cell toggles every cycle, and the second toggle cell toggles every

other cycle, the third toggle cell toggles every fourth cycle, when all lesser

08:50:07 PM 4 June 2013 CT-7 © Scott & Linda Wills

significant bits are high. Its toggle enable is only high when O0 and O1 are high,

along with the external count enable. Since two of these signals are already

combined with an AND gate, its output can be ANDed with O1. The third output

(O2) is a divide by 8 (one eighth the system clock frequency).

O0

O1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 01 01 01 01 01 1 01 0 1

O2 0 0 0 1 01 01 0 10 1 1 010 1

A four bit counter follows the same extension process. A fourth toggle cell is

added and connected to toggle only when all lesser significant outputs are high,

along with the external count enable. The new output, O3, toggles every sixteenth

system clock cycle, as a divide by 16 counter. Here a decoder seven segment

display has been added to show the numeric counting process.

08:50:07 PM 4 June 2013 CT-8 © Scott & Linda Wills

This process can be extended to an i-bit counter that divides the system clock by

2i.

O0

O1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 01 01 01 01 01 1 01 0 1

O2 0 0 0 1 01 01 0 10 1 1 010 1

O3 0 0 0 10 10 10 10 1 1 010 1

Divide by N: These counter divide by a power of two (two raised to the number of

toggle cells). How would a counter count by an arbitrary value N? Since we live in

decimal word (with ten fingers), a decade counter (divide by ten) would be a handy

device. A four bit counter divides by 16, meaning it counts from '0' to '15' ('0' to

'F' in hexadecimal). A decade counter counts from '0' to '9' and then returns to

'0'. Its maximum count is nine; when it reaches that count, to should return to

zero on the next clock cycle. This can be accomplished using the max count

detector and the external clear signal.

The max count detector monitors the counter outputs, detecting the maximum

count. Normally, this would involve testing both high and low values in the maximum

count. But since this is a up counter (it starts at zero and counts to all all ones), a

more compact max count detector only compare high values in the max count.

Differentiating low bits in the max count is pointless since it will never reach a

high value; it will be cleared when it is low. A decade counter (divide by 10) has a

08:50:07 PM 4 June 2013 CT-9 © Scott & Linda Wills

maximum value of nine. So a max count detector will monitor O0 and O3. When

they are both high ('9'), the counter is cleared.

This method applies to an arbitrary value of N. For a divide by N counter, the

maximum count is N-1. An N-1 detector will clear the counter on the cycle following

the maximum count, restarting the counting sequence.

A Counting Flaw: This scheme works with single digit counters. But often multiple

counter is required. For example, a stopwatch uses a decade counter to count

seconds, and a divide by six counter to count tens of seconds. Note that the divide

by six counter only counts when decade count has reached its maximum count.

Using this technique will result in a counting flaw when it reaches '50'.

08:50:07 PM 4 June 2013 CT-10 © Scott & Linda Wills

Here the decade counter clears to zero to begin the next decade. But since the

divide by six counter has reached its maximum count, it automatically resets to

zero on the next sequence.

A multi-digit counter reaches its maximum count does not require an automatic

clear, since it can hold that maximum count until the next time it is incremented.

The counter clear should when it has reached its maximum count and it ready to

increment. Here's the correct divide by N counter. Note that the maximum count

is reached, but the count enable is low. So the toggle cell clear signal is not

asserted. Since the counter is frozen, the maximum count will remain until the

external count enable is again asserted. At that time, the counter clear will be

asserted and the counter will be cleared. Note also the external clear is not

dependent on the value of the external count enable. When the user wants to clear

the stopwatch, it is cleared imemdiately.

08:50:07 PM 4 June 2013 CT-11 © Scott & Linda Wills

Summary: This chapter has introduced a new type of storage device that changes

the stored value (in a predictable way) with time. Here are the main points:

• Counters are build from toggle cells that resemble the register cell used in

the last chapter. However they don't have an input. Rather hey have a toggle

enable (to count) and an active low clear (to reset them to a know value,

zero).

• Toggle cells can be cascaded to produce a N bit counter. The counter will

begin at zero and count to a maximum count of 2N – 1. These are called divide

by 2N counters since they divide the system clock (the two pahse non-

overlapping clock) by 2N.

• A divide by N counter can be built using a 2N counter and a max count

detector. The Max Count is N – 1. Since the counter starts at zero, only the

high values in the maximum count need to be tested. This can be done with

an AND gate.

• The Max Count signal can assert the Clear to reset the counter state. But

only when Count Enable is high, when the counter is being instructed to

counter higher than the maximum count.

08:50:07 PM 4 June 2013 CT-12 © Scott & Linda Wills

	Introduction
	Switches and Wire
	Boolean Algebra
	Gate Design
	Simplification
	Building Blocks
	Number Systems
	Arithmetic
	Latches and Registers
	Counters

