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Designing Computer Systems

Introduction to Computer Design

Our world is full of computer-based systems: smartphones, laptops, tablets. And 

new,  useful  and  attractive  products  are  appearing  regularly.  How  are  they 

designed? What are they made of? Today's high tech products contain dozens of 

subsystems, each composed of many components. Some are specialized, like a color 

display  or  a  wireless  transceiver.  But  the  computing in  a computing  system  is 

general  and  programmable.  Interestingly,  while  computing  provides  the  system 

“smarts”, it is built using two very simple components: switches and wire.

So how does one create a smart product out of dumb components? First, these 

components are extremely versatile. Wire-connected switches can be used to build 

functional elements (e.g., perform arithmetic operations), memory elements (e.g., 

store  values  and  program  instructions),  and  control  elements  (e.g.,  sequence 

program  instructions  in  a  execution  datapath).  These  elements  can  for  a 

programmable computer that can exhibit a very smart behavior.

Second, technology offers the ability to integrate millions or even billions of wire- 

connected switches in  an  extremely compact integrated circuit  (IC).  This  large 

number  of  switches  supports  the  construction  of  a  powerful  programmable 

computer and sophisticated real-world interfaces. The low cost of these devices 

allows them to be incorporated in a wide range of products.

Designing systems with millions of components is a challenge. A successful strategy 

is  a  design  hierarchy.  Use  several  simple  elements  to produce  a  more complex 

component. Then design the next level using these more complex components. The 

design hierarchy below spans from switches and wire to assembly programming.

Assembly Language

Instruction Set

Memory Datapath Controller

Storage Functional Units State Machines

Building Blocks

Gates

Switches and Wire
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While  there  are  other  ways  to  describe  the  organization  of  programmable 

computers, this hierarchy illustrates the design path presented in the following 

chapters. Some chapters address specific levels of the hierarchy (designing with 

switches).  Others  focus  on  design  techniques  (simplification)  and  mathematics 

(Boolean algebra).  All  chapters  emphasize  design;  how do  you build  a  computer 

system.

Chapters

1. Introduction to Computer Design

2. Switches and Wire

3. Boolean Algebra

4. Gate Design

5. Simplification

6. Building Blocks

7. Number Systems

8. Arithmetic

9. Latches and Registers

10. Counters

11. State Machines

12. Memory

13. Datapath

14. Controller and Instruction Set

15. Assembly Programming

CompuCanvas: There is a free, open-source tool that can help you try out many of 

the ideas and techniques describe in these chapters. It is written in the Python 

programming  language  (available  at  www.python.org);  so  it  runs  on  almost 

everything.  Find  out  more  about  it  at  the  CompuCanvas  website 

www.compucanvas.org.
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Designing Computer Systems

Switches and Wire

Despite  their  apparent  complexity,  digital  computers  are  built  from  simple 

elements, namely  switches and  wire.  To see how switches and wire can perform 

computations, consider the circuit below. The battery on the left is connected to 

the bulb on the right through the switch labeled A. 

A

The battery will light the bulb if there is a complete path for current to flow from 

one side of the battery to the other. If the switch is open, no current can flow so 

the light is off. If the switch is closed, current flows and the light is on. The 

behavior of this simple circuit can be expressed using a table.

switch light

open off

closed on

This type of table has been given the lofty name Truth Table. A more meaningful 

name would be behavior table since it describes the behavior of the circuit. Truth 

tables list all possible inputs to a system on the left and resulting outputs on the 

right. A truth table specifies how a system should behave. It does not specify how 

it should be implemented; this can be done in many ways.

Sometimes an icon is used to show connected nodes without drawing a wire. In the 

circuit below, the triangular symbols below the battery and bulb represent ground. 

We can imagine that all points attached to ground icons are connected together. So 

this circuit behaves identically to the circuit above.
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A

Here’s a system with two switches in series.

A B

Because each switch can be in one of two states (open or closed) and there are two 

switches, the truth table has four rows. It’s not so important how we list the input 

combinations so long as all cases are included exactly once.

switch A switch B light

open open off

closed open off

open closed off

closed closed on

In this circuit, the light is on when switch A is closed AND switch B is closed. This 

illustrates  an  important  point;  series  switches  produce  AND behavior.  Using 

words like open/closed and on/off to describe system behavior is verbose. We can 

assign the value 0 to an open switch and 1 to a closed switch. Further we can assign 

the value 0 to an off (dark) bulb and 1 to an on (lit) bulb. Sometimes we’ll refer to 

1 as true and 0 as false. Now the truth table becomes more compact.

A B Out

0 0 0

1 0 0

0 1 0

1 1 1

The next system has two switches in parallel.
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A

B

Here the output is true if switch A is closed OR switch B is closed. This illustrates 

another important point; parallel switches produce OR behavior. Here’s the truth 

table.

A B Out

0 0 0

1 0 1

0 1 1

1 1 1

We might call  this  an  “OR circuit”  (in  contrast  to the previous  “AND circuit”) 

because its output is true when either A is true OR B is true. Defining a system’s  

behavior  by  when  its  output  is  true  is  call  positive  logic.  This  contrasts  with 

negative logic where a system’s behavior is defined when its output is false. We 

have to pick one convention; positive logic seems more intuitive.

The last circuit is more complex.

B

C
A

The truth table has eight rows to capture all input combinations of the switches. 

In general, if a system has N  binary inputs (i.e., each input can be in one of two 

states), there are 2N entries in the truth table. This circuit behavior is accurately, 

if not clearly, described in the truth table.
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A B C Out

0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 1

0 1 1 0

1 1 1 1

A more concise description of the behavior is derived from the series and parallel 

arrangement of the switches. By starting at the outer-most connections, switch A 

is in  series with a second switch combination, switch B in  parallel with switch C. 

Therefore, the output is true when A AND (B OR C).

The parentheses are significant since AND has higher precedence than OR, just as 

multiplication has higher precedence than addition. The arithmetic expression A · 

(B + C) differs from (A ·  B) + C that results if the parentheses are removed.  

Similarly, A AND (B OR C) differs from (A AND B) OR C. The second expression 

would be implemented as the following, non-equivalent circuit.

B

C

A

Designing systems with these switches has one major limitation. The input to the 

switch is a mechanical activator (your finger).  But the output of the system is 

optical (light). This prevents composing systems since the output of one system 

cannot  control  the  input  of  another.  To  remedy  this  problem,  we’ll  consider  a 

different kind of switch.

A voltage controlled switch fits our need since (A) most systems have a handy 

voltage source from a power supply or batteries, (B) switches can easily connect to 

either a high or low voltage to produce an output, and (C) controlling switches with 

a voltage does not implicitly dissipate a lot of energy. The sources of high (1) and 

low (0) voltages are show below.
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high
voltage

low
voltage

A battery is connected to the ground symbol to represent the low voltage source. 

The other side of the battery is connected to a new symbol that resembles a “T”. 

It is used to represent the high voltage source. These high and low supply symbols 

are used throughout a design to provide necessary voltages needed to activate 

voltage controlled switches. But only one battery is needed to generate them! 

In order to build composable circuits (i.e.,  where the output of one circuit can 

control the input of another), voltage controlled switches must connect an output 

to either the high or low supply, as shown below. We’ll  use networks of voltage 

controlled  switches  to  provide  correct  output  values  for  each  combination  of 

inputs.

pull up
network

pull down
network

output

N-Type Switch: The voltage controlled switch is called an N-type switch. It has 

three places for wires to connect called terminals. The source and drain terminals 

represent the ends of a switch that are connected when the switch is closed. The 

gate terminal is the voltage controlled input that opens or closes the switch.
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source

drain

gate

gate switch

low (0) open

high (1) closed

If the voltage connected to the gate is low, the switch is open. If the voltage on 

the gate is high, the switch is closed. N-type switches are called an active high.

low gate
voltage

source

drain

open
switch high gate

voltage

source

drain

closed
switch

A low gate voltage opens the switch A high gate voltage closes the switch

P-Type Switch:  As one might expect in a binary world,  there is also a  P-type 

switch (note the bubble drawn on the gate terminal). It behaves just like an N-type 

switch, except that the source-drain switch closes when the gate voltage is low.

source

drain

gate

gate switch

low (0) closes

high (1) open

Since the switch closes when the gate voltage is low, a P-type switch is called 

active low.

low gate
voltage

source

drain

closed
switch high gate

voltage

source

drain

open
switch

A low gate voltage closes the switch A high gate voltage opens the switch

Designing Logic:  Building logical circuits with voltage controlled switches begins 

like  the  battery  and  light  designs.  Only  now  a  complimentary  circuit  must  be 
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created to connect the output to the high voltage sometimes and the low voltage 

other times. Errors in the design process can lead to unfortunate consequences. 

Consider this simple two input circuit.

A

B

Output

open

closed

A B Out

0 0

1 0

0 1

1 1 0

When A and B are both high, the N-type switch is closed connecting the output to 

the low voltage. Since the P-type switch is open, it does not participate.

A

B

Output

open

closed

A B Out

0 0 1

1 0

0 1

1 1 0

When A and B are both low, the P-type switch is closed connecting the output to 

the high voltage. Since the N-type switch is open, it does not participate.

A

B

Output

open

open

A B Out

0 0 1

1 0 float

0 1

1 1 0

When A is high and B is low, both the N-type and P-type switch are open. The 

output is not connected to the high voltage or the low voltage.  This undefined 

state, often called a floating node, does not provide a valid output for controlling 

other switches. For this reason, this condition should be avoided.
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A

B

Output

closed

closed

A B Out

0 0 1

1 0 float

0 1 short

1 1 0

When A is low and B is high, both the N-type and P-type switch are closed. This 

condition  is  more  serious  than  a  floating  output  in  that  the  high  voltage  is 

connected to the low voltage. This is called a short. It is particularly bad since, in 

addition to having an undefined output value,  a lot of current flows,  generating 

heat that can damage the switches. Shorts should be eliminated in all designs!

NOT Gate Implementation: A NOT gate can be implemented using a variation of 

this circuit. The two undesirable states (float and short) occur when A and B have 

different values. If the two inputs are connected together as a single input (In), 

unwanted output conditions are eliminated. This circuit implements a NOT gate.

In Out

In Out

0 1

1 0

Note that this circuit is controlled by a high or low voltage, and it produces a high 

or  low  voltage  output.  These  switches  can  be  used  to  implement  complex 

expressions of AND and OR functions.  But first we need to understand a few 

things about switch technology.

See MOS Switches: These voltage-controlled switches are built out of silicon (Si). 

This is a surprise since pure silicon and silicon dioxide (silica) are insulators. In 

fact, most high voltage insulators are ceramics made from silicon. Si atoms have 

four valance (outer-shell) electrons. When arranged in a crystal lattice, all of these 

electrons are bound so charge carriers are not available for conduction (A).  In 

order  to  change  things,  atoms  of  other  elements  are  embedded in  the  lattice 

through ion implantation or diffusion. These elements, called dopants, have either 

one more or one less valance electron. Phosphorus has an extra electron (five) (B); 

Boron has one less (three) (C). 
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Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si

Si Si Si

P

Si Si Si

Si Si

Si Si Si

B

(A) (B) (C)

When  these  elements  find  themselves  in  the  lattice,  their  extra  electron 

contributes a negative charge carrier (an electron) while their  lacking electron 

contributes a positive charge carrier (a hole).  Introducing these charge carries 

produces  an  interesting  semiconductor material  that  can  be  controlled  by  an 

electrical field.

Through  clever  processing  of  a  silicon  wafer,  doped  regions  can  form  the 

semiconducting channels of a switch. The basic structure is shown below in cross-

section. First a wafer of pure silicon is cut and polished to a smooth surface (1). 

Then dopants are selectively implanted to form a channel (2). A small isolative layer 

is grown above the channel (3). Then a layer of conductive polysilicon is selectively 

formed over the channel  to act as the gate (4).  Additional  dopant implantation 

deepens the source and drain regions (5). Then wires (typically aluminum or copper) 

are formed to contact and connect source, drain, and gate terminals of the formed 

devices (6). The completed device is a Metal Oxide Semiconductor Field Effect 

Transistor (MOSFET).

channel channel

(1) (2) (3)

gate
channel

gate

source
channel

drain

gate

source

wire wire

channel
drain

(4) (5) (6)

This selective processing is accomplished using photolithography. In this process, a 

light sensitive material is used to pattern the layered structures on the silicon 

surface.  Because  this  fabrication  process  is  performed  on  the  entire  wafer 

surface, a couple hundred chips, each containing hundreds of millions of transistors 
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can be fabricated at the same time. This dramatically reduces the cost for each 

chip.

This  semiconductor  device  can  operate  as  a  voltage  controlled switch.  When a 

voltage is placed on the gate terminal,  relative to the silicon around the device 

(know as the substrate), a vertical electrical field is generated. This field can push 

charge carries out of the channel, opening the switch (A). Or the field can attract 

charge carries into the channel, closing the switch (B). 

gate

source

wire wire

channel
drain

gate

source

wire wire

channel
drain

(A) (B)

These  semiconducting  switches  come  in  two  types.  An  N-type  Field  Effect 

Transistor (NFET) closes (conducts) when a high voltage is placed on its gate. A P-

type Field Effect Transistor (PFET) opens (isolates) when a high voltage is placed 

on its gate. The two switch types differ only in the dopant used and some early 

preparation of the surrounding silicon so the substrate can be properly biased to 

create  the  field.  When  these  two  types  are  used  to  implement  a  Boolean 

expression,  the  resulting  design  is  called  Complementary  Metal  Oxide 

Semiconductor or CMOS.

These switches have a critical limitation. When the voltage applied to the gate to 

close the switch is also present at the source or drain, the generated horizontal 

field will deplete the charge carriers at the opposite side of the channel, pinching 
off channel  conduction.  As  the  source-drain  voltage  approaches  a  technology 

specific  threshold voltage, the opposite terminal will no longer be pulled towards 

the supply voltage. Here’s an N-type switch connected to the high voltage.

gate

source

wire wire

drain
channel

pinch off

Vhigh

This means N-type switches cannot be used to pull the output high. Nor can a P-

type  switch be  used  to  pull  the  output  low.  Our  switch  design  strategy,  using 
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networks  of  voltage  controlled  switches  to  produce  an  output  voltage  must 

incorporate this technology limitation.

pull up
network

pull down
network

output

active low
P-type

switches

active high
N-type

switches

Time to Design: We’re now ready to implement Boolean expressions using N and P 

type switches. We need to use ideas we’ve covered so far:

• Series switches produce the AND function.

• Parallel switches produce the OR function.

• P-type switches are active low and can pull high.

• N-type switches are active high and can pull low.

• An output should always be pulled either high or low.

Plus we must add a small but significant relationship called DeMorgan’s Theorem 

that states:

• X AND Y = NOT(NOT X OR NOT Y)

• X OR Y = NOT(NOT X AND NOT Y)

Boolean expressions quickly become awkward when written this way. We can use 

symbols from arithmetic · and + to represent AND and OR functions. We can also 

use bars to represent the NOT operation. So DeMorgan’s Theorem becomes:

• X⋅Y=XY

• XY=X⋅Y

This means an AND and OR operations can be exchanged by complementing their 

inputs and output. This will come in handy in switch design.
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Suppose we want to implement a Boolean expression composed of AND and OR 

operations applied to binary inputs (in their true and complemented form). Here’s 

an example.

Out = A · B + C

We’ll need to design a pull high network of P-type switches, and a pull low network 

of N-type switches (1). The output should be high when A is high AND B is low OR 

when C is high. The first part of this OR expression should connect the output to 

the high supply when A is high AND B is low. This is accomplished by a series 

combination of switches. But with active low P-type switches, we must complement 

the inputs (2). So when A is high, A is low closing the active low P-type switch. If B 

is  also  low (B is  high),  then  this  low  input  will  close  the  other P-type  switch, 

completing the connection between the output and the high supply. The second part 

of  the  OR pulls  the  output  high if  C  is  high.  OR is  implemented by  a  parallel 

connection of switches. Again, C must be complemented so that when C is high, the 

active low P-type switch will close pulling the output high (3). 

Out

A

B

Out

A

B

C

Out

(1) (2) (3)

Now we must design a pull low network that connects the output to the low supply 

whenever it is not being pulled high. DeMorgan’s Theorem shows that ANDs and 

ORs can be swapped if inputs and outputs are complemented. Using N-type rather 

than  P-type  switches  complements  all  inputs.  Pulling  low  rather  than  high 

complements the output. So we can exchange AND and OR by exchanging series 

and parallel switch arrangements. We must begin with the outermost operation, in 

this case the OR. In the first part of the OR, A and  are in series in the pull up  

network. So they are in parallel in the pull down network (4).  Since A ·  B are in 
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parallel with C on in the pull up network, they will  be in series in the pull down 

network (5).

A

B

C

A B

Out

A

B

C

A B

C

Out

(4) (5)

Here are a few more examples:

CB

Out

A

D

A

B

C

D

C

B

Out

A

D

A

B

C

D

A · (B + C) · D (A + B) · C + D

Not that parallel  switches in the pull up network are in series in the pull  down 

network, and vise versa. Care must be exercised to work on the operations from 
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the  outside  in.  That  is,  the  last  evaluated  operation  in  the  expression  is  the 

outermost combination of switching circuits.

Building Abstractions:  Switch design allows direct implementation of a behavior 

described in Boolean expression. It is often yields the fastest (in terms of delay) 

and most efficient (in terms of switches required) solution. But sometimes a little 

convenience is worth a slightly higher cost.  People don't prepare all  their food 

from scratch even though it would be more healthy and less expensive. Engineers 

don't  write  programs  in  the  machine  language  of  computers,  even  though  the 

executable file would be smaller and it would run faster. And when we are designing 

a digital system with a couple hundred million transistors, we may prefer not to 

implement all functions with switches.

So  we  do  what  all  engineers  do.  We  create  larger,  more  complex  functional 

abstractions  and  then  design  with  them.  An  automobile  is  a  complex  system. 

Fortunately  automobile  designers  combine  already  understood  subsystems  for 

power, steering, braking, etc. and then adapt as necessary. Computer designers do 

the same thing, but with different building blocks.

Basic Gates: Since we already express our designs using logical functions, a natural 

choice for new, more complex abstractions would be logical gates. Here are the 

basic gates used in digital design: NOT, NAND, NOR, AND, and OR. Consider a 

gate with i inputs. inverting gates (gates that begin with "N") require 2i switches 

for each input. Non-inverting gates (AND and OR) require 2i+2 switches.

NOT NAND NOR
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AND OR

In the chapter on Gate Design, we'll see how designing with gates compares to the 

switch design. But first we will visit the mathematics of digital design in Boolean 

Algebra.

Summary: Switch design is at the heart of nearly every computer technology we 

use today. Here are the key points.

• In  contrast  with  human  experience,  computation  is  largely  performed on 

binary values (zeros and ones).

• The computing world is built with digital switches.

• These switches are voltage controlled,  and are assembled in networks to 

produce high or low voltage outputs.

• Series switches implement the AND function; Parallel  switches implement 

OR.

• NFETs are active high switches, and are preferred for pulling an output low.

• PFETs are active low switches, and are preferred for pulling an output high.

• Outputs  that  are  not  connected  to  the  high  or  low  voltage  are  floating 

(undefined), and this is not good.

• Outputs are are connected to both the high and the low voltages result in a 

short, and this is bad.

• Switches  are  actually  MOSFETs,  made  from  silicon  with  other  dopant 

elements that create free charge carriers.

• High  integration  of  MOSFETs  on  a  single  chip  provides  many  connected 

switches for digital computation, at a low cost.

• Boolean expressions can be efficiently implemented using MOSFETs.
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Designing Computer Systems

Boolean Algebra

Programmable computers can exhibit amazing complexity and generality. And they 
do it all with simple operations on binary data. This is surprising since our world is 
full of quantitative computation. How can a computer complete complex tasks with 
simple skills?

A Little Logic: Computers use logic to solve problems. Computation is built from 
combinations of three logical operations: AND, OR, and NOT. Lucky for us, these 
operations have intuitive meanings.

AND
In order to get a good grade in ECE 2030, a student should come to 
class AND take good notes AND work study problems.

OR Today’s computers run Microsoft Windows 7 OR Mac OS X OR Linux.

NOT Campus food is NOT a good value.

Surprisingly, these three functions underlie every operation performed by today’s 
computers. To achieve usefulness and generality, we must be able to express them 
precisely and compactly. From an early age, we have used arithmetic expressions to 
represent equations with multi-valued variables and values.

Cost = X · $2.00 + Y · $1.50

In  the  world  of  logic,  all  variables  have  one  of  two values:  true or  false.  But 
expressions  can  be  written  in  the  otherwise  familiar  form  of  an  arithmetic 
expression.  We’ll  use the “+” operator to represent OR and the “·” operator to 
represent AND. The following is a simple example of a Boolean expression:

Out = A · B + C Out is true if A AND B are true OR C is true

Just like in arithmetic expressions, operation precedence determines the order of 
evaluation. AND has higher precedence than OR just as multiplication has higher 
precedence than addition. Parentheses can be used to specify precise operation 
evaluation order if precedence is not right. Note that the expression below closely 
resembles the previous example.  But it has a different behavior  (e.g.,  consider 
each when A is false and C is true.)

Out = A · (B + C) Out is true if A is true AND (B OR C is true)

Is NOT enough?: NOT (also known as complement) is represented by a bar over a 
variable or expression. So A is the opposite of A (i.e., if A is true, A is false and 
vise versa). When a bar extends over an expression, (e.g.,  A+B) the result of the 
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expression is complemented. When a bar extends over a subexpression, it implies 
that  the  subexpression  is  evaluated  first  and  then  complemented.  It’s  like 
parentheses around the subexpression.

Many years ago in the 1800s, the mathematics of these binary variables and logical 
functions was described by a man named George Boole and a few of his colleagues. 
Now we call this mathematics Boolean Algebra.

Operation  Behavior:  These  logical  functions  have  intuitive  behaviors.  An  AND 
expression is true if all of its variables are true. An OR expression is true if any of 
its variables are true. A NOT expression is true if its single variable is false.

Sometimes a table is used to specify the behavior of a Boolean expression. The 
table  lists  all  possible  input  combinations  of  the  right  side  and  the  resulting 
outputs on the left side. This behavior specification is called a truth table. Because 
“true” and “false” are hard to right compactly, we’ll use 1 and 0 to represent these 
values. Here is a summary of AND, OR, and NOT behaviors using true tables.

A B A · B

0 0 0
1 0 0
0 1 0
1 1 1

A B A + B

0 0 0
1 0 1
0 1 1
1 1 1

A A

0 1
1 0

Truth tables can have more than two inputs; just so long as all combinations of 
inputs values are included. If a combination was left out, then the behavior would 
not be fully specified. If there are i inputs, then there are 2 i combinations. It is 
also possible to have multiple outputs in a table, so long as all results are functions 
of the same inputs. Here are several Boolean expressions with three variables:

A B C A · B · C A + B + C A · B + C A · (B + C)

0 0 0 0 0 0 0
1 0 0 0 1 0 0
0 1 0 0 1 0 0
1 1 0 0 1 1 1
0 0 1 0 1 1 0
1 0 1 0 1 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

Three variable AND and OR functions have expected behaviors. The AND output is 
true if all of the inputs are true. The OR output is true if any of the inputs are 
true. In the third expression, AND is higher precedence than OR. So the output is 
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true if either A AND B are true OR C is true. In the last expression, A must be 
true AND either B OR C (or both B and C) must be true for the output to be true.

There are a few basic properties of Boolean algebra that make it both familiar and 
convenient (plus a few new, not-so-familiar properties). 

property AND OR

identity A · 1 = A A + 0 = A

commutativity A · B = B · A A + B = B + A

associativity (A · B) · C = A · (B · C) (A + B) + C = A + (B + C)

distributivity A · (B + C) = (A · B) + (A · C) A + (B · C) = (A + B) · (A + C)

absorption A · (A + B) = A A + (A · B) = A

The identity, commutative, and associative properties are intuitive. Distributivity 
of AND over OR makes sense. OR over AND is new (don’t try this with arithmetic 
addition  over  multiplication;  it  doesn’t  work!).  Absorption  is  a  new property  of 
Boolean algebra. It comes in handy for simplifying expressions.

Generally, working with Boolean expressions is a lot like working with arithmetic 
expressions, with a few notable differences.

And  that’s  NOT  all:  The  complement  (NOT)  function  adds  an  interesting 
dimension  to  the  math.  Where  quantitative  expressions  have  a  rich  range  and 
domain  for  inputs  and  outputs,  binary  expression  are  decidedly  limited.  Any 
operation  in  a  Boolean  expression  can  have  its  inputs  and/or  its  output 
complemented. But results will still be either true or false.

In fact most Boolean expression design extends the set of logical functions with 
NOTed AND (NAND) and NOTed OR (NOR). These functions are computed by 
complementing the result of the core operation.

AND NAND OR NOR
A B A·B

0 0 0
1 0 0
0 1 0
1 1 1

A B A·B

0 0 1
1 0 1
0 1 1
1 1 0

A B A+B

0 0 0
1 0 1
0 1 1
1 1 1

A B A+B

0 0 1
1 0 0
0 1 0
1 1 0

Here’s where limited variable values and a small collection of basic operations leads 
to one of the most significant relationships in computation … DeMorgan’s Theorem!
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Sometimes the most amazing concepts are easy to see, when you look in the right 
way.  In  the  table  above,  it’s  clear  that  NAND  is  just  AND  with  its  output 
complemented. All the zeros become ones and the one becomes zero. It’s also clear 
that OR resembles NAND but for it being upside down. If all inputs to OR are 
complemented, the table flips and it matches NAND.

Complementing the inputs or the output of a NAND reverses this transformation. 
If inputs or an output is complemented twice, the function returns to its original 
behavior, leaving it unchanged. This supports reversible transformations between 
NAND and its left and right neighbors.

AND NAND OR
A B A·B

0 0 0
1 0 0
0 1 0
1 1 1

complement
output

A B

0 0 1
1 0 1
0 1 1
1 1 0

complement
inputs

A B A+B

0 0 0
1 0 1
0 1 1
1 1 1

Note that the transformations to obtain the NAND function can be employed for 
any of the four logical functions. To determine the necessary neighbor functions, 
consider cutting out the four function table above and wrapping it into a cylinder 
where  AND and  NOR  are  now  neighbors.  Or  better  still,  let’s  draw  the  four 
functions in a two dimensional table, shown below. This is DeMorgan’s square and it 
shows how any logical function can be transformed into any other logical function 
using NOT gates.

← complement output →
AND NAND

in
pu

ts
 →

A B A·B

0 0 0
1 0 0
0 1 0
1 1 1

A B

0 0 1
1 0 1
0 1 1
1 1 0

NOR OR

←
co

m
pl

em
en

t A B

0 0 1
1 0 0
0 1 0
1 1 0

A B A+B

0 0 0
1 0 1
0 1 1
1 1 1

08:34:47 PM 4 June 2013 BA-5 © Scott & Linda Wills



You can start with a logical function, and by complementing all its inputs and/or its 
output, you can arrive at any other logical function. This has a profound effect on 
digital system design. Let’s hear it for DeMorgan!

This  principle  can  be  applied  to  Boolean  expressions  as  well.  If  you  want  to 
transform an OR into an AND, just complement all the OR inputs and its output. 
Let’s try this process on a few expressions.

original expression A⋅B A⋅BC  A⋅B⋅C

AND becomes OR AB ABC  ABC

complement inputs AB ABC  ABC

complement output AB A BC  ABC

equivalent expression AB A BC  ABC

In  the  first  example,  an  AND  function  is  turned  into  an  OR  function  by 
complementing  the  inputs  and  the  output.  The  second  example  has  the  same 
change, but one of the inputs to the AND is a subexpression.  Note that when 
inputs  are  complemented,  this  subexpression  receives  a  bar,  but  is  otherwise 
unchanged.  Just  like  this  first  input  A,  the  subexpression  is  the  input  to  the 
original  AND function.  The third example has  a three input  AND, so all  three 
inputs  must  be  complemented.  Note  also  that  the  second  input   is  already 
complemented. When it is complemented again, it has double bars. But when any 
variable or subexpression is complemented twice, the bars cancel out.

This DeMorgan transformation allows transformation of an OR to an AND using the 
same steps. It can be applied to the last evaluated function, the first evaluated 
function, or anything in between. It can even be applied to an entire expression (or 
subexpression) all at once … although some care must be exercised.

original expression AB⋅C  AB ⋅CD  A⋅BCD

swap AND and OR A⋅BC  A⋅B C⋅D  AB ⋅C⋅D

complement inputs A⋅BC  A⋅BC⋅D AB ⋅C⋅D

complement output A⋅BC  A⋅BC⋅D AB ⋅C⋅D

equivalent expression A⋅BC  A⋅BC⋅D AB ⋅C⋅D

In the first example, both AND and OR functions are swapped. Then all inputs and 
the  output  are  complemented.  One  might  ask  why  no  bars  are  added  on 
subexpressions (e.g., over (B·C)). The reason is that each subexpression is both an 
output for one function and an input for another. Since both are complemented, 
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the two bars cancel out. Only the input variables (e.g., A, B, and C) and the last 
function to be executed (the outermost function) will be complemented.

Note also that the function evaluation order is invariant throughout this process. 
In the first example,  B is first ANDed with C. Then the result is ORed with A. 
After the transformation is complete, this is still the order. Often parentheses 
must  be  added  to  preserve  this  order  since  AND  and  OR  have  different 
precedence. Sometime parentheses can be dropped (like in the second example) 
since the new function precedence implies the correct (original) evaluation order.

In  the  second  example,  an  initial  bar  over  the  outermost  function  (AND)  is 
canceled when the entire expression is complemented. Note also that the bars over 
inputs are reversed.  In the third example,  a  bar  over the earlier  OR function 
(A●B+C) remains unchanged through the transformation.

Eliminating  Big  Bars:  Often  implementation  of  Boolean  expressions  requires 
transforming them to a required form. For example, switch implementation needs a 
Boolean expression with complements (bars) only over the input variables (literals). 
If  an  expression  has  complements  over  larger  subexpressions  (big  bars), 
DeMorgan’s theorem must be applied to eliminate them. Here’s an example.

Out=ABC⋅D expression with many big bars

1 AB⋅C⋅D replace final AND with OR, and

2 Out=AB⋅C⋅D complement inputs and output

3 Out= AB ⋅C⋅D remove double bars

4 AB ⋅CD replace first AND with OR, and

5 Out= AB ⋅CD complement inputs and output

6 Out= AB ⋅CD  remove double bars

When eliminating  big  bars,  one  should  start  with  the  outermost  complemented 
function. In this case, the OR in the center of the expression comes first. In step 
1,  it  is  replaced  by  an  AND.  The  function's  inputs  and  outputs  are  then 
complemented.  Then double  bars  are removed.  Note that  parentheses must  be 
added to maintain the same evaluation order. These first steps remove the big 
bars from the initial expression; but a new big bar is created over C+D. So in step 
4, this OR is replaced by an AND. Then its inputs and outputs are complemented. 
Again parentheses must be added to preserve the original evaluation order. The 
final expression (step 6) has an equivalent expression without big bars.
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DeMorgan's  Theorem  allows  us  to  transform  a  Boolean  expression  into  many 
equivalent expressions. But which one is right? That depends on the situation. If 
we  are  designing  an  implementation  with  switches,  eliminating  big  bars  is  an 
important  step  in  the  process.  For  gate  design,  we  might  want  to  use  logical 
operations  that  better  match  the  implementation  technology.  Regardless  of 
implementation, we might just want to use a form of the expression that most 
clearly expresses (to a fellow engineer) the function we require.

In most cases, we can choose the equivalent expression that fits our needs. But 
how can we evaluate expressions for equivalence?

Standard  Forms:  There  are  two  standard  forms  that  offer  a  canonical 
representation  of  the  expression.  Let's  explore  these  forms  starting  with  a 
function's behavior in a truth table.

A B C Out

0 0 0 0

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 1

0 1 1 0

1 1 1 1

To correctly express this function, we must show where its output is true (1) and 
where its output is false (0). We can accomplish this in two ways. Let's start with 
the “easy” one, expressing when the output is true. There are four cases.

A B C Out

0 0 0 0

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 0

0 1 1 1

1 1 1 1

Consider the first case, when A is true and B is false and C is false. We can create 
an expression to cover the case: A·B·C. If this were the only case where the output 
is true, this would accurately describe the function. It is an AND expression that 
contains all the inputs in their true (e.g., A) or complemented (e.g., B) form. This is 
called a minterm. But there are three other cases. The output is true when A·B·C is 
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true or when its the second case A·B·C or the third case A·B·C or the fourth case 
A·B·C. This behavior forms an OR expression.

Out =  A·B·C + A·B·C + A·B·C +  A·B·C

Since this is an OR  function applied to  AND expressions,  it's called a Sum Of 
Products  (SOP).  All inputs  are included  in each  product  term (minterms).  So this 
becomes a canonical  expression for the  function's  behavior:  a sum of products  
using minterms.  Everyone starting with this behavior will  arrive at  the identical 
Boolean expression.

If one works from bottom to top in the truth table, a different order of inputs can 
be derived.

Out =  C·B·A +C·B·A + C ·B·A + C·B·A

This is  an identical expression  (but for commutative ambiguity). It has the same 
logical operations applied to the same forms of the inputs.

You might notice that when B and C are true, the output is true, independent of A. 
The resulting expression becomes: Out =  A·B·C + A·B·C + B·C. This is simpler, but 
not canonical since it is not composed of minterms.

There's another way to express this function behavior that is rooted in the binary 
world.

Popeye Logic: In the 1980 movie “Popeye”, the title character is in denial about his 
father being the oppressive “Commodore” in their town, Sweet Haven (“My Papa 
ain't  the  Commodore!”).  This  denial  is  present  when  he  asks  directions  to  the 
Commodore's location (“Where ain't he?”). In our multivalued world, this is not so 
easy.  While  “north”  is  unambiguous,  “not  north”  could  be  any  direction  except 
north. But in binary, things are different. We can state when something is true. Or 
we can use “Popeye Logic” and state when it is NOT false. Let's try Popeye logic on 
this behavior.

A B C Out

0 0 0 0

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 0

0 1 1 1

1 1 1 1
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Suppose the only false value was the second one, when A is false, B is true, and C is 
false. If all the other outputs were true, we could express the function by stating 
when its not this case (“when it ain't  A·B·C ”). As in the real world, this is more 
than one thing; it is all the truth table entries except for A·B·C. But binary makes 
expressing all the cases easier. In the expression A·B·C, A is false. So whenever A 
is true, the output is true. Or whenever B is false, the output is true. Or whenever 
C is true, the output is true. In fact, the function behavior is true whenever A is 
true or B is false  or C is true (A+B+C).  This expression does not describe when 
A·B·C is true, rather it covers all other cases, when  “A·B·C ain't true”.  The term 
A+B+C is an OR function of all inputs in their true or compliment form.  This is a 
maxterm. But this only works if the second case was the only case when the output 
is false. What about when more than one case is false?

In this example,  the output is false when  A·B·C or  A·B·C or  A·B·C or  A·B·C.  So 
showing when  the output is true requires  expressing when it is not any of these 
cases. It is not  A·B·C when A is true or B is true or C is true (A+B+C).  It is not 
A·B·C when A is true or B is false or C is true (A+B+C).  It is not A·B·C when A is 
true or B is true or C is false (A+B+C). It is not A·B·C when A is false or B is true or 
C is false (A+B+C). But since the function output is only true when it is none of 
these cases,  A+B+C,  A+B+C,  A+B+C,  and  A+B+C must all be true for the function 
output to be true. So we can express the function:

Out = (A+B+C)·(A+B+C)·(A+B+C)·(A+B+C)

Since this is an AND expression of OR terms, it is called a Product of Sums (POS). 
Using maxterms makes this  canonical,  but  different from the sum of products 
using  minterms.  There  is  no  direct  way  to  transform  a  SOP  using  minterms 
expression into a POS expression using maxterms or vice versa.  Standard forms 
provide a good way to clearly express a behavior. 

Summary: Boolean algebra is the mathematics of digital computers. Here are the 
key points:

• Variables have one of two values (0 or 1).

• Functions include AND, OR, and NOT.

• A Boolean expression containing these functions can be used to specify a 
more complex behavior. Truth tables can also define this behavior.

• Boolean algebra exhibits many familiar and useful properties (plus some new 
ones).
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• DeMorgan’s square shows how any logical operation can be transformed into 
any other logical function by complementing the inputs and/or output. 

• DeMorgan’s Theorem allows Boolean expressions to be transformed into an 
equivalent expression that employs different logical functions.

• Standard forms provide a canonical expression in SOP and POS forms.
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Gate Design
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Designing Computer Systems

Gate Design

Logical functions that are specified in Boolean algebra, can be implemented with 

switches and wire. The resulting designs are often the fastest and most efficient 

implementations possible.  But the time and effort required for design is often 

greater. And switch design requires the manipulating the  desired  expression so 

that only input variables are complemented (no big bars). Often after the design 

process,  the desired expression is lost.  Is there a way to implement a Boolean 

expression quickly, without distorting the expression?

Yes!

We can simplify the design process by using more powerful components. We'll work 

with  gates,  building blocks that  match the logical  operations in our  expression. 

Wires still connect outputs to inputs. Data still is digital. In fact, we use switches 

to implement these new gate abstractions.

Suppose we want to implement the expression Out = (A +  B)  ·  C. Using switches, 

details of the implementation technology (e.g., P-type switches are active low and 

pull  high) are visible and affect the design. Using gates, technology details are 

hidden  and the desired expression  is  easily  discerned.  Unfortunately  this  gate 

design is twice as slow and uses twice as many switches. Convenience has a cost!

Of  course,  gate  design  can  be  improved  if  the  choice  of  implementation 

components is not tied to the desired expression. For CMOS technology, NAND 

and NOR gates require fewer switches than AND and OR. So in this example, the 

OR and AND gates can be replaced by NOR gates. Unfortunately, this requires 

DeMorgan  transformations  of  the  desired  expression.  This  distorts  the 
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expression, increases design time, and increases the possibility for errors. Why 

can't we leave the expression alone?

We  can.  DeMorgan's  square  suggests  that  all  gate  types  have  two  equivalent 

representations. One is built on an AND body. The other employs an OR body.

At first this duplicity may seem a complication. But it can be productively used to 

separate specification from implementation. Here's how.

When  a  desired  expression  is  derived,  AND  and  OR  functions  provide  the 

relationship between binary variables. The choice of gate types can improve the 

implementation efficiency and performance. But it should not distort the meaning 

of the desired expression.

Since each gate function can be drawn with either an AND or OR body, a desired 

logical function can be realized using any gate type by simply adding a bubble to the 

inputs  and/or  output.  Unfortunately,  a  bubble  also  changes  the  behavior  by 

inverting the signal. But bubble pairs (bubbles at both ends of a wire) cancel out 

and the behavior is unchanged.

So we can draw a gate design using the logical functions in the desired expression. 

Then we can then add bubble pairs to define the implementation gate type without 

changing the gate body (i.e., distort the expression being captured).

Here's an example: Out = A · B + C · D
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using AND and OR using NAND

If we draw the circuit directly using AND and OR gates, the expression is clear. 

But the implementation cost is high (18 switches). If we preserve the gate bodies, 

but add bubble pairs, the behavior is unchanged. But the implementation cost is 

lowered (12 switches).

A bar over an input or subexpression indicates that an inversion is required. This 

bar is part of the desired expression and should be preserved along with gate 

bodies. But the implementation must include, in some way, the required inversion of 

the signal. Again, bubble pairs can help.

Let's  add  bars  to  our  gate  design,  not  as  active  devices,  but  as  a  notational 

reminder that a real signal inversion is needed. Then during implementation, we'll 

place  exactly  one  bubble  on  the  bar.  Bubble  pairs  are  added  to  change  the 

implementation without changing the behavior. If one bubble in a bubble pair does 

not actually cause a real inversion (because it is a notation), the  signal will  be 

inverted (by the other bubble).

Consider the expression  Out = (A + B) · C.

First  let's  draw  the  expression  as  a  circuit. 

Bars  are  added  where  they  appear  in  the 

expression. This is not an implementation.

Now suppose we want to use NOR gates for the 

implementation.  This  is  partially  accomplished 

by adding a bubble pair between the gates. But 

the bubble on the lower input of the AND gate 

is unmatched.

We can put  the matching bubble  on the bar, 

indicating that we really do want the inversion. 

The bubbled bar does not actually do anything; 

it's just notation. The bubble on the AND input 

does the required inversion.
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We also need a buhhle on the A input. But we 

can't add the matching bubble to the OR gate 

body  without  changing  its  implementation. 

Instead let's add a buffer on the A input. 

Now  we  can  add  a  bubble  pair  between  the 

buffer and bar. The implementation gate type 

is NOR, all  bubbles are matched, and all  bars 

have exactly one bubble. This implementation is 

complete.

The gate implementation of this example requires ten switches. That's two more 

than the switch design. But it is six less that the original gate implementation. 

Note  that  by  ignoring  bubble  pairs  and  buffers,  we  still  see  the  desired 

expression,  graphically  displayed.  Specification  and  implementation  are  now 

decoupled.

We can  also  implement  the  design  using  OR  or  AND gates.  DeMorgan's 

equivalence allows any gate body to be implemented in any multi-input gate 

type.  In  CMOS technology,  OR  and  AND implementations  requires  more 

switches (18 for this design).

Here's another example: Out=A⋅BCDE⋅F

We start with the expression as a graph using gates and bars. It captures the 

function. But its not an implementation.

Now we select a good implementation gate. One doesn't always need to use one 

gate type for a design. The technology may favor an implementation approach. In 

CMOS, inverting gates (NAND and NOR) use fewer switches than non-inverting 
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gates (AND and OR). In this case, we use NAND gates. Bubble pairs are added to 

gate bodies to transform the implementation.

Buffers are added where bubbles pairs are still needed for bars.

Finally bubbles pairs are added to complete the implementation.

Desired Expression: This gate design technique is called mixed logic. Its name is 

derived  from  the  fact  the  implementation  combines  positive  (active  true)  and 

negative (active false) logic. A key advantage is the ability to preserve the desired 

expression (i.e., the expression the designer specified) in an implementation. For 

example, the circuit below is built with NAND gates.

To  see  the  desired  expression,  ignore  the  bubbles  and  buffers  and  read  the 

expression from the gate bodies and bars.
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This expression is Out=A⋅B⋅CDE

If we wish to reimplement it, say using NOR gates, we just move around bubble 

pairs, adding and removing buffer bodies as needed.

Note that the desired expression has not changed.

Common  Subexpressions:  Often  in  design,  a  logical  expression  is  required  for 

multiple outputs. It would be wasteful to build multiple copies. We can just use a 

computed value in multiple places. This is called fanout since a single gate output 

fans out to multiple gate inputs. Consider these two equations.

OutX=A⋅BCDE OutY=CDE⋅F

Both expressions require the subexpression  CDE so it can used in creating 

both outputs.

During implementation, here using NOR gates, special attention is needed for fan 

out connections. In order to ignore a bubble on an output, there must be a bubble 

on each input that uses it. The bubble pair on the output of the subexpression 

becomes a bubble trio.
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Propagation Delay

When considering the speed of circuits, one must look at underlying technology – 

here, switches and wire.  The two parameters that dominate delay are resistance 
and capacitance.

Resistance is an abundance of charge carriers.  It is proportional to the availability 

of charge carriers brought in by the electronic field on the gate. It is proportional  

to the charge carrier mobility.  Metals are a charge carrier gas.  They have clouds 

of electrons that are easy to acquire. A semiconductor has more bound charge 

carriers that are harder to acquire and more difficult to move around with a field, 

leading to higher resistance to pull a node to a high voltage or to a low voltage.

The charge it takes to reach a high or low voltage is proportional  to a node's 

capacitance C. Capacitance forms automatically when two insulated conductors are 

near one another separated by a  dielectric  material.  The higher the dielectric 

constant, the higher capacitance.  Dislike charges attract to form an electric field 

when the insulated conductive dislike charges appear on the conducting surfaces 

(for example, the polysilicon gate oxide on the switch).

The bigger the switch, the more charge carriers are needed to charge the switch 

voltage to the On level, which is a product of the switch resistance R and the gate 

capacitance C.  RC is proportional to the propagation delay through the switch.

CompuCanvas  models delay as unit  delay,  which assumes a fixed constant delay 

through each gate.

Energy

Energy is proportional to the product of induced voltage on a node and channel 

conductance, which is the inverse of the resistance through a conducting channel 

of a turned on switch.  This resistance is proportional to the major charge carrier 

mobility. Conductors have an electron cloud of free electrons that can be easily 
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moved by  a  field.  Doped silicon  has  limited charge  carrier  mobility  that  limits 

conductance and energy.

Summary:  Gate design of Boolean expression is a fast and clean alternative to 

switch design.

• Gate design is easier to understand than switches and is independent of 

implementation technology.

• Gate  implementations  often  require  more  switches  than  direct  switch 

implementations, but designs can still be optimized.

• DeMorgan's gate equivalence allows specification and implementation to be 

separated using mixed logic design.

• Mixed logic design also preserves the designer's desired expression.
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Simplification
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Designing Computer Systems

Simplification

Using  DeMorgan's  theorem,  any  binary  expression  can  be  transformed  into  a 

multitude of equivalent forms that represent the same behavior. So why should we 

pick  one  over  another?  One form provides  a  canonical  representation.  Another 

provides a clear representation of the desired function.  As engineers,  we want 

more than functionality. We crave performance and efficiency!

So what improves an expression? … fewer logical functions. Every logical function 

requires  computational  resources  that  add  delay  and/or  cost  energy,  switches, 

design time, and dollars. If we can capture the desired behavior with fewer logical 

operations, we are building the Ferrari of computation; or maybe the Prius?

Simplify Your Life:  There are many techniques to simplify Boolean expressions. 

Expression reductions (e.g., X + X · Y  X + Y) is good. But it's not obvious what to→  

reduce first, and it's hard to know when you're finished. An intuitive method can 

be  seen in a truth table … sometimes. Here's an example. Consider the expression:

Out = A·B·C + A·B·C + A·B·C

In truth table form, one might notice that the red and green terms suggest that 

when B is false (zero) and C is true (one), Out is true (one) no matter what state A 

is in. The blue and green terms express a similar simplification. If A is true and B 

is false, Out is true independent of C. A simplified expression Out =  B·C +  A·B 

expresses  the  same  behavior  with  three  dyadic  (two  input)  logical  operations 

versus eight for the original expression.

A B C Out

0 0 0 0

1 0 0 1

0 1 0 0

1 1 0 0

0 0 1 1

1 0 1 1

0 1 1 0

1 1 1 0
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This simplification is intuitive. In all cases when a subexpression (e.g., B·C) is true, 

the  output  is  true,  then  including  extra  qualifying  terms  is  unnecessary. 

Unfortunately, truth tables lack uniform adjacency of these simplifying groupings.

For  a  small  number  of  variables,  a  Karnaugh  Map  (K-map)  displays  the  same 

behavior  information  in  a  different  way.  A  K-map  are  composed  of  a  two-

dimensional map displaying the output for every combination of input values. But 

these combinations are arranged so that horizontal or vertical movement results in 

exactly one variable changing. Here's the K-map for the function being considered.

In this  map,  the top row includes all  input  combinations where A is  false.  The 

second row includes all combinations where A is true. The left two columns include 

input combinations where B is false. The right two columns cover when B is true. 

The outermost columns include input combinations where C is false. The middle two 

columns include cases where C is true.

In  this  arrangement,  adjacent  ones  (true  outputs)  suggests  an  opportunity  for 

simplification. The red and green ones can be grouped into a single term covering 

all combinations where  B is zero and C is one (B·C). The adjacent  blue and  green 

ones are grouped to cover where  A is one and B is zero (A·B). Since a simplified 

expression  must  cover  all  cases  when  the  output  is  one,  these  terms  can  be 
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1 1 0 0A

A

B B

C
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0 1 0 0

1 1 0 0A

A

B B

C
C C



combined to express the function's behavior: Out = B·C +  A·B, a simplified sum of 

products expression.

Two-dimensional K-maps accommodate two-, three-, and four-variable expressions. 

Larger K-maps (five- and six-variable) are possible in three dimensions. But they 

are error prone and better simplification techniques exist.

Just like a truth table, the K-map describes a function's behavior by giving the 

output for every combination of the inputs. But adjacency in a K-map also indicates 

opportunities for expression simplification. Here's a four-variable K-map.

The behavior represented by this K-map could be represented as a truth table. 

Adjacent ones are opportunities for simplification. The size of groupings are given 

as (width x height). So a (2x1) grouping is two squares wide and one square high.
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A

B B

C

C

C

D
D D

A

A

B B

C
C C

A

A

B B

0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D



The second row grouping (2x1) represents all cases where A is false, B is false, and 

C is true (A·B·C). The bottom row (4x1) is all cases where A is true and C is false 

(A·C).  Larger  groupings  lead  to  smaller  terms.  But  the  grouping  has  to  be 

describable as all cases where variables have a certain value.

The first column contains three adjacent ones. In this candidate grouping, B and D 

are zero. But it is not all cases where B and D are zero. A (1x3) grouping is not a 

describable grouping. Instead these adjacent ones are cover by two overlapping 

(1x2) groupings: C·D and A·D. Overlapping groups are okay, so long as one grouping 

is not subsumed by another grouping. Groupings of ones always have power of two 

dimensions (1, 2, 4).

08:43:29 PM 4 June 2013 SP-5 © Scott & Linda Wills

0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D

0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D



Adjacency extends at the K-map edges. The one in the third column of the top row 

can  be  grouped  with  the  corresponding  one  in  the  bottom  row.  This  grouping 

represents all cases where B is true, C is false, and D is true (B·C·D). Here are all 

legal groupings in this K-map.

Note that while groupings overlap, no grouping falls completely within another. The 

grouped terms: A·B·C, A·C, C·D, A·D, and B·C·D, represent all candidate terms in the 

simplified expression. But are all terms necessary?

The objective is to correctly define the behavior by expressing all cases when the 

output is one. This means selecting groupings that cover all true outputs in the K-

map. Sometimes this requires all groupings. Sometimes not. In this K-map, three 

groupings, A·B·C, A·C, and B·C·D, include a true not covered by any other grouping. 
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0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D

0 0 1 0

1 1 0 0

1 0 0 0

1 1 1 1
A

A

B B

C

C

C

DD D



This makes them essential for the simplified expression. If they are not included, 

the  behavior  is  not  accurately  defined.  But  in  the  example,  these  essential 

groupings don't cover all the ones in the K-map. Additional groupings are needed.

Two groupings C·D and A·D, are not essential (non-essential) but cover the missing 

one in the behavior (A·B·C·D). Since they have the same number of variables, and 

the  same  cost  to  implement,  either  will  provide  an  equivalently  simplified 

expression.

Out =  A·B·C + A·C + C·D +  B·C·D Out =  A·B·C + A·C + A·D +  B·C·D

These two simplified expressions are significantly less expensive to implement than 

the canonical sum of products expression.

Out =  A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D

Parlance of the Trade: Due to its arithmetical origin, these groupings are named 

Prime Implicants. PIs for short. Essential prime implicants are always included in 

the  simplified  expression  because  they  exclusively  contain  one  of  the  grouped 

elements.  Non-essential  PIs  may  or  may  not  be  needed,  depending  on  whether 

essential PIs cover the selected outputs. Formally, this simplification process is 

defined as minimally spanning the selected outputs.

But  aren't  the  selected  outputs  always  true?  Not  always.  More  on  this  later. 

Here's another example.

1 0 1 1

0 0 1 1

1 1 0 0

1 1 0 1
A

A

B B

C

C

C

DD D

Two (2x2) PIs stand out: all cases where A is false and B is true (A·B), and all cases 

where A is true and B is false (A·B). But how to group the remaining true outputs?
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1 0 1 1

0 0 1 1

1 1 0 0

1 1 0 1
A

A

B B

C

C

C

DD D

The final (2x2) PI groups the four corners, covering all cases where C and D are 

zero (C·D). The edges of a K-map connected; there's just no good way to draw it on 

a  two-dimensional  plane.  If  the  vertical  edges  are  joined,  the  map  becomes  a 

cylinder. If the ends of the cylinder are joined, it becomes a donut (torus). In two-

dimensions, one must look for connections on the edges of K-maps.

Since all PIs are essential and necessary to span true outputs in the behavior, the 

simplified sum or products expression is Out = A·B + A·B +  C·D

Here's another example.

0 0 0 0

0 1 1 1

1 1 0 1

0 0 0 0
A

A

B B

C

C

C

DD D

This example contains six overlapping PIs:  A·B·C,  B·C·D,  A·C·D,  A·B·C,  B·C·D, and 

A·C·D. What makes them interesting is that none are essential. Sometimes there is 

an  urge  to  ignore  non-essential  PIs  when  simplifying  a  K-map.  This  example 
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demonstrates the need to record all legal PIs before considering minimal spanning. 

There are two, equally simplified sum of products expressions for this behavior.

Out =  A·B·C + A·C·D + B·C·D Out =  B·C·D + A·B·C + A·C·D

Incomplete listing of PIs might not expose both of these expressions due to false 

appeasement of essentialness. It might even yield a less simplified result.

SoP versus PoS: Boolean Algebra explains the duality where a function's behavior 

can be defined by stating where the output is true (sum of products) or by stating 

where the function is not false (product of sums). This applies in K-maps. In the 

first case (SoP), product terms define a group of true outputs (a PI). A spanning 

set of these groupings is ORed together to form the simplified expression. In the 

second case (PoS), groupings represent where the output is not true, but false. 

Since the simplified expression must still represent where the behavior is true, a 

grouping (PI) must express  states not in the grouping. Here's the same example, 

targeting a simplified product of sums expression.

 

0 0 0 0

0 1 1 1

1 1 0 1

0 0 0 0
A

A

B B

C

C

C

DD D

The largest grouping of zeros (false) covers the cases where C is false. As in the 

SoP process, a (4x2) grouping is drawn. But labeling this group  C is not helpful, 

since the goal is expressing when the behavior is true. This grouping include many 

of the false outputs and none of the true outputs. So the PI should represent when 

it  is  not  in  this  grouping,  namely  C.  Being outside the  red PI C is not enough; 

additional Pis are required to guarantee a true output.
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0 0 0 0

0 1 1 1

1 1 0 1

0 0 0 0
A

A

B B

C

C

C

DD D

Just as ones where grouped in SoP, here zeros are grouped. A (1x2) grouping of 

false outputs represents when A is true and B is true and D is true. But the PI for 

this grouping represents cases not in this grouping. That occurs when A is false OR 

B is false OR D is false (A+B+D). It is ORed because the output is not in this 

grouping if any of the variables are false. Again, this doesn't mean the output is 

true, its just not in this grouping of zeros.

Another (1x2) grouping of false outputs occurs when A is false and B is false and D 

is false. This PI is expressed as A is true or B is true or D is true (A+B+D). These 

are all cases not in the green grouping.

So how does the simplified expression show when the behavior is true? By showing 

when it it is not false! Each of the PIs represents cases that are not in one of the 

groups of zeros.  If the PIs span all  false outputs,  and all  terms are true, the 

output must be true. In this example, all PIs are essential (i.e., they contain a false 

output not included in any other PI). So the simplified product of sums expression 

is:

Out =  C · (A+B+D) · (A+B+D)

Note  that  this  simplified  PoS  expression  has  no  obvious  relationship  to  the 

equivalent simplified SoP expressions:

Out =  A·B·C + A·C·D + B·C·D = B·C·D + A·B·C + A·C·D

This PoS example has unusual symmetries in its PIs. Here's a different example.  
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0 0 0 0

1 1 0 0

1 1 0 1

0 1 0 1
A

A

B B

C

C

C

DD D

The groupings of false outputs mirror the SoP technique for true outputs. Only 

here the PI is labeled for cases outside its group. The (4x1) in the top row contains 

cases where A and C are false. The PI is labeled  (A+C). The (1x4) in the third 

column includes cases where B and D are true. The PI is labeled (B+D). The upper 

right quadrant (2x2) is selected when A is false and B is true. The PI is (A+B). The 

(1x2) in the first column is cases where B, C and D are all false. The PI is (B+C+D).

0 0 0 0

1 1 0 0

1 1 0 1

0 1 0 1
A

A

B B

C

C

C

DD D

All PIs are essential. So the simplified PoS expression is:

Out = (A+C) · B+D · (B+C+D)

Here's another example.
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0 1 1 0

0 0 1 1

0 0 1 0

1 1 1 0
A

A

B B

C

C

C

DD D

The PIs include the following: (B+C), (A+B+D), (A+C+D), (B+C+D), (A+B+D), (A+C+D). 

0 1 1 0

0 0 1 1

0 0 1 0

1 1 1 0
A

A

B B

C

C

C

DD D

Only (B+C) is essential. No other PI exclusively contains a false output. But this 

simplified expression is not ambiguous. The minimal span of zeros yields:

Out = (B+C) · (A+C+D) · (A+B+D)

Six of One; A Half Dozen of Another: Some folks find it advantageous to place 

the input variables in the upper left corner of a K-map and assign truth table row 

numbers  to  each  square.  While  truth  table/K-map  correspondences  are  never 

row/column sequential, the numbering can have some semi-sequential ordering. In 

our examples, it looks like this:
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0 8 10 2

4 12 14 6

5 13 15 7

1 9 11 3
A

A

B B

C

C

C

DD D

AC

BD

So what difference does it make? In terms of simplification, none. Reordering the 

input variables scrambles the K-map cells. But any proper ordering, where vertical 

and horizontal movements change exactly one variable, yields the same PIs and the 

same simplified expression.

Simplifying Boolean Expression: This ordering helps simplify Boolean expressions. 

Suppose a behavior, defined as a Boolean expression, is to be simplified.

Out = A·B·D + A·B·C·D + B·C·D + A·B·C + A·B·D

In this SoP expression, each product term represents a grouping of true outputs. 

The ungrouped cases represent false outputs. Here's the mapping of each term.

0 1 0 0

1 1 1 1

1 1 0 1

0 1 0 0
A

A

B B

C

C

C

DD D
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Once the expression's behavior is defined, it can be simplified as either a SoP or 

PoS expression. In SoP simplification, there are four PIs (B·D, A·C, C·D, B·C), three 

of which are essential and span the true outputs.

Out = B·D + A·C + C·D

0 1 0 0

1 1 1 1

1 1 0 1

0 1 0 0
A

A

B B

C

C

C

DD D

In PoS, false outputs are grouped. Here three PIs are identified. All are essential.

Out = (C+D) · (B+C) · (A+B+D)

0 1 0 0

1 1 1 1

1 1 0 1

0 1 0 0
A

A

B B

C

C

C

DD D

Both  simplified  expressions  require  fewer  dyadic  logical  operations  than  the 

original expression (five  for SoP, six for PoS versus 15  for original).
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Here's a PoS expression to be simplified. Each term represents potentially true 

outputs outside a grouping of known false values. So zeros can be added for each 

term. Finally, the ungrouped cases are assigned a true value (one).

Out = (A+B+C) · (A+B+D) · (B+C+D) · (A+B+D) · (A+C+D) · (A+B+C+D)

0 0 1 0

1 0 0 0

1 1 0 0

0 1 1 0
A

A

B B

C

C

C

DD D

The PoS simplification produces six PIs:  (C+D), (B+C), (A+B+C),  (A+B+D), (A+C+D), 

(B+D), two of which are essential: (C+D), (B+C). One non-essential is require to span 

false outputs: (A+B+D).

Out = (C+D) · (B+C) · (A+B+D)

0 0 1 0

1 0 0 0

1 1 0 0

0 1 1 0
A

A

B B

C

C

C

DD D
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This behavior also can be simplified to a SoP expression.  It produces five PIs: 

B·C·D, A·B·C, A·B·D, A·C·D, B·C·D, two are essential: B·C·D, B·C·D. One non-essential 

PI is required to cover true outputs: A·B·D.

Out =  B·C·D + B·C·D + A·B·D

0 0 1 0

1 0 0 0

1 1 0 0

0 1 1 0
A

A

B B

C

C

C

DD D

Again,  simplification  reduced  implementation  cost  from  18  logical  operations 

(original) to six (PoS) and eight (SoP). It's clear from these examples that there is 

no direct translation of a product term to a sum term, or vice versa.

Simplification Nightmare:  Is there an  unsimplifiable behavior? Yes.  Here's odd 

parity (XOR).

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0
A

A

B B

C

C

C

DD D
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Odd and even parity (XOR and XNOR) toggle their outputs with every horizontal or 

vertical movement. Exactly one variable is changing. So the number of ones also 

toggles between odd and even. For this reason, there are no adjacent true or false 

outputs.  SoP  terms  are  always  minterms and  PoS  terms  are  always  maxterms. 

Parity is a useful function. But it is relatively costly.

What If You Don't Care?: Sometimes a function's behavior is unimportant for 

certain combinations of the inputs. Maybe it cannot occur. Or when a combination 

of the inputs occurs, the output is not used. This is recorded in the truth table as 

an “X” for the output. When an “X” occurs in a K-map, it can be defined as either a  

zero or one to improve the simplification process. Here's an example.

1 1 0 0

1 X 0 0

1 0 0 X

1 0 0 0
A

A

B B

C

C

C

DD D

For two combinations of inputs: A·B·C·D and A·B·C·D, the output is unspecified and 

listed as don't care “X”. This underspecification of the behavior permits the don't 

cares to be specified to reduce implementation cost.
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1 1 0 0

1 X 0 0

1 0 0 X

1 0 0 0

1

0

A

A

B B

C

C

C

DD D

To simplify this behavior to a SoP expression, the don't cares must be specified. 

For the first case, the choice of a true output doesn't add additional PIs. Rather it 

increases a PI from a (2x1) A·B·C to a (2x2) A·B. This eliminates a logical operation 

from the simplified  expression. In the second case, a false output is selected to 

eliminate  the  need  for  an  additional  PI:  A·C·D,  to  cover  it.  The  simplified 

expression is found:

Out =  A·B + B·D

Sometimes specifying don't cares can take some thought. Here's another example.

X 0 1 X

1 1 X 1

1 0 X X

0 0 0 1
A

A

B B

C

C

C

DD D

Suppose  a  simplified  PoS  expression  is  required.  Don't  cares  are  specified  to 

maximize the size of false output PIs while minimizing the number of PIs.
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Here, the don't cares a specifies false to create two (2x2) PIs: (B+C), (A+D). The 

remaining don't cares are specified as true and don't contribute to groupings. The 

simplified expressing is:

Out = (B+C) · (A+D)

X 0 1 X

1 1 X 1

1 0 X X

0 0 0 1
A

A

B B

C

C

C

DD D

0

0

1

1

1

✮�✁e than Four Variables?: How does handle more complex behaviors with over 

four  variables.  Other  simplification  techniques,  like  the  Quine–McCluskey 

algorithm, are not limited in the number of variables. They are less intuitive to 

humans. But they are more amenable to computers and can be programmed into 

design tools like Espresso.

Summary: This chapter addresses methods for Boolean expression simplification 

using Karnaugh maps.

• Term reduction is possible when all combinations of a subexpression have a 

true (or false) output.

• A Karnaugh map specifies a behavior where vertical and horizontal movement 

changes exactly one variable.

• For a simplified sum of products expressions, true outputs are grouped. For 

product of sums expression, false outputs are grouped.

• A prime implicant is a group of adjacent true or false outputs that are of 

power of two (1, 2, 4) dimensions, and not enclosed in a larger grouping.

• A product PI lists where the output is true. A sum PI lists where the output 

is not in a specified grouping of false outputs.

• Boolean expressions and behaviors with don't cares can be simplified.
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Designing Computer Systems

Building Blocks

A logic gate employs many switches to achieve a more complex behavior. Now we’ll 

use gates to build an even more specialized, more powerful set of building blocks.

Encoders / Decoders: A binary digit or  bit is the fundamental representational 

element in digital computers. But a bit by itself is limited to two states: O and 1. 

Fortunately, many bits can be grouped to form more interesting strings. This can 

be done in different ways. For example, three bits in a car might indicate whether 

(A) the door is open (B) the headlights are on, and (C) the seatbelt is fastened.  

These conditions are independent and can occur in any combination. So each bit in 

the string has a simple coding:

A door B headlights C seatbelt

0 open 0 off 0 unfastened

1 closed 1 on 1 fastened

In the transmission, three bits might represent its operation state:

C B A state

0 0 0 neutral

0 0 1 1st gear

0 1 0 2nd gear

0 1 1 3rd gear

1 0 0 4th gear

1 0 1 5th gear

1 1 0 fault

1 1 1 reverse

In  this  case,  only  one  state  can  exist  at  a  time.  So  rather  than  having  eight 

separate bits to represent the transmission’s state, three bits are used to encode 
one  of  the  eight  possible  states.  This  requires  additional  decoding  when  this 

information is used.  In order to illuminate the “reverse”  indicator on the dash 

board (and turn on the backup lights), all three bits are required to generate the 

control signal. A different set of values for A, B, and C indicates a different state.  

The Boolean expression for two of these states are:

Reverse = A · B · C 1st gear= A · B · C

The logic to decode these conditions from the three bits is shown below.
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Encoding  things  in  this  ways  reduces  the  number  of  bits  to  be  stored  and 

communicated (a good thing). But it requires logic to decode a condition from that 

signal. Let’s explore a more common type of decoder: a multi-bit binary decoder.

N-to-M Binary Decoder: In many systems, it is useful to encode one of several 

states as a multi-bit binary number. In the transmission example, we used a three 

number value to represent on of eight conditions. More generally we can use N bits 

to represent 2N unique states. Although we can use logic to decode each state 

independently, we can envision a generic decoder that takes an N bit binary number 

as input, and produces M separate outputs. Here's a N to M decoder.

I
0

I
1

I
n-1

...

N-bit

binary

number N
 t

o 
M

d
ec

od
e r

 

...

O1

O0

O2

O3

O4

O5
O6

Om

O7

M binary

outputs

The value of the input, 0 to (2N – 1) causes the corresponding output to be asserted 

(set true), while the other outputs remain false. If the input is “101”, O5 is high 

while all other outputs are low. Because there are times when the input data may 

not be valid, an enable input controls when the decoding process takes place. When 

this is low, the input binary number is ignored and all outputs are low.

Here are the behaviors of several binary decoders: 1 to 2, 2 to 4, and 3 to 8. Note 

that I2, I1, I0 form a one, two, or three bit binary number whereas O0 – O7 are just 

outputs labeled with a number. The input binary number determines which output is 

asserted.
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I2 I1 I0 En O0 O1 O2 O3 O4 O5 O6 O7

X X X 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 1 0 0 0 0 0

0 1 1 1 0 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0 1 0 0 0

1 0 1 1 0 0 0 0 0 1 0 0

1 1 0 1 0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 0 0 1

Implementing a decoder with gates is straightforward. Since each output is high in 

only one case, a sum of products expression contains a single minterm. For a 2 to 4 

decoder (the blue truth table), the output expressions are easily expressed and 

implemented.

O0= I
1
⋅I

0
⋅En EnIIO ⋅⋅=

01
1 EnIIO ⋅⋅=

01
2 EnIIO ⋅⋅=

01
3

BCD to 7 Segment Decoder: Not all decoders assert one of M outputs. Sometimes 

the decoded outputs have a different requirement. For example, many numerical 

displays use a seven segment display to show a decimal digit. The digits are labeled 

a, b, c, d, e, f, and g. Any decimal digit (0-9) can be created by turning on different  

combination of these named segments. A four bit binary coded decimal (BCD) can 

be  used  as  input  to  a  decoder  than  switches  on  the  proper  segments  for  the 

corresponding digit character. When enable is low, all segments are switched off, 

blanking the display.
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a

b

c

d

e

f

g

I3 I2 I1 I0 En Oa Ob Oc Od Oe Of Og

X X X X 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 0

0 0 0 1 1 0 1 1 0 0 0 0

0 0 1 0 1 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 1 0 0 1

0 1 0 0 1 0 1 1 0 0 1 1

0 1 0 1 1 1 0 1 1 0 1 1

0 1 1 0 1 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 0 1 1

Here multiple outputs are asserted for each code. But the gate implementation is 

still  direct.  Each  of  the  seven  outputs  can  be  expressed  and  simplified  as  a 

function of the four bit binary number and enable.

Decoders extract the coded information in a binary string to assert one or more 

outputs. They are a widely used building block. But how do we get the encoded word 

in the first place? Perhaps by using an encoder !

Encoders: If the job of decoders is to turn an N-bit coded binary string into M 

uncoded outputs, then an encoder must perform the reverse process: turning an 

asserted input into a coded binary string (a N-bit binary number). This is more 

complicated than is sounds.
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M binary

inputs

Consider the behavior of a 2 to 4 encoder. 

I0 I1 I2 I3 O1 O0

1 0 0

1 0 1

1 1 0

1 1 1

O
0

O
1

4
 t

o 
2

en
co

d
e r

 

I1

I0

I2

I3

When a single input is asserted, the output string corresponds to the number of 

the asserted input. For example, when I2 is asserted, the output string is “10” 

which represents a binary “2”. An ambiguity occurs when no inputs are asserted. 

What  should  the  output  be.  Since  all  2N output  values  already  have  a  defined 

meaning  (i.e.,  the  number  of  the  asserted  input),  what  remains  to  indicate  no 

asserted inputs? Its time to add a new output: Valid.

I0 I1 I2 I3 V O1 O0

0 0 0 0 0 X X

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

O
0

O
1

4
 t

o 
2

en
co

d
e r

 

I1

I0

I2

I3
Valid

The valid output (V) indicates that an input is asserted and an valid encoded output 

is available. If no inputs are asserted, the valid signal is low and the outputs are 
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undefined. When using an encoder, the outputs should only be sampled when V is 

high. If V is low, no inputs are asserted to encode.

What's your priority?: But what happens when more than one input is asserted? 

In this case, the inputs require a priority scheme so that the highest priority input 

is encoded into a binary output value. Input priority can be used to expand the five 

case behavior table (show above) into the full 16 cases that can occur. That assume 

a simple priority scheme:

I3 > I2 > I1 > I0

Under  this  scheme,  if  I3 is  asserted,  the  state  of  the  other  inputs  is  of  no 

concern.  I3 will be encoded as output  11. If I3 is zero, but  I2 is asserted, the 

output will  reflect this encoding:  10. If  I1 is the asserted value being encoded 

(because I3 and I2 are zero), the output becomes 01. Finally, if only I0 is asserted, 

the output value is 00.

I0 I1 I2 I3 V O1 O0

0 0 0 0 0 X X

1 0 0 0 1 0 0

X 1 0 0 1 0 1

X X 1 0 1 1 0

X X X 1 1 1 1

This  leads  to  a  implementation  by  simplifying  the  output  behaviors  as  Boolean 

expression.  Normally  Karnaugh Maps are needed.  But  this  behavior  has  obvious 

expressions.

V=I0 I1 I2 I3

O
1
=I3 I2

O
0
= I3I1⋅I2

If the input priorities are changed, the Xs and 0s can be easily changed to reflect 

the new behavior.  The rows are processed in  a  different  order.  But  the same 

process is applied. In order for a given row to represent the encoded input, all 

higher priority inputs must be 0 while all lower priority inputs are ignored (don't 

cared). Here's another example. 
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I1 > I3 > I0 > I2

I0 I1 I2 I3 V O1 O0

0 0 0 0 0 X X

1 0 X 0 1 0 0

X 1 X X 1 0 1

0 0 1 0 1 1 0

X 0 X 1 1 1 1

Summary: In general, decoders and encoders transform N-bit binary numbers into 

assertions  of  one  of  M  outputs,  and  back.  They  change  the  how  the  value  is 

represented.

Steering Logic: Sometimes the goal is not to transform data but rather to move it 

from one place to another. Wire, optical, and wireless channels do a good job of 

transporting data. But sometimes logic is required to steer data into and out of 

these  channels.  For  example,  we  might  want  to  connect  multiple  sensors  that 

collect  information  to  multiple  controllers  that  process  the  data.  Rather  than 

connecting dedicated wires between each sensor and controller, we can multiplex 

the data (in time) on a single wire.

S

S

S

S

C

C

C

C

S

S

S

S

C

C

C

CI0

I1

I2

I3

S1 S0

O0

O1

O2

O3

S1 S0

two bit
binary
select

two bit
binary
select

There are many uses for a digital block that can steer one of many inputs into an 

output  (a  multiplexer).  Steering  a  single  input  to  one  on  many  outputs  (a 

demultplexer) is also valuable. Let's explore their design.
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Two familiar gates, seen a new way: Before we start, let's revisit the functions 

of our more fundamental gates. Imagine a block that can pass or block an input 

signal depending on a control signal.

In Out

C

In C Out

X 0 0

A 1 A

If the control signal is  high, the input is passed on to the output. If the control 

signal is low, the output is masked. In binary, we only have two proper states: 0 and 

1. So we'll define “masking” as setting to zero regardless of the input's value.

The implementation of this masking function can be seen by expanding the truth 

table of its behavior. A masking gate is really an AND gate.

In Out

C

In C Out

0 0 0

1 0 0

0 1 0

1 1 1

Now imagine a block that can take two or more binary inputs where exactly one of 

the inputs contains a value A, and all other inputs are zero. A four input version of 

the function would like like this:

In0

OutIn1

In2

In3

In0 In1 In2 In3 Out

A 0 0 0 A

0 A 0 0 A

0 0 A 0 A

0 0 0 A A

Regardless of which input receives the single, if A is zero, so is the output. If A is  

one, the output is one. This is the OR function since A + 0 = 0 + A = A. It serves as 

a combining gate for a single value and many zeros.

Multiplexer: A multiplexer or mux steers one of many inputs to the output. The 

input is selected by a binary number S. For example, a 4 to 1 mux  uses a two bit 

binary number to steer one of four inputs to the output. Here's its behavior.
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In0

OutIn1

In2

In3

S1 S0

4 to 1
Mux

In0 In1 In2 In3 S1 S0 Out

A B C D 0 0 A

A B C D 0 1 B

A B C D 1 0 C

A B C D 1 1 D

Note that the binary number represented by S1 and S0 controls which input value is 

passed through to the output. The behavior can be realized using a 2 to 4 decoder 

and the masking and combining gates described above.

In0

Out

In1

In2

In3

S1 S0

2 to 4
Decoder En

O0 O1 O2 O3

Each input is connected to a masking (AND) gate controlled by the corresponding 

decoder output. So only the input decoded from the binary input S will be passed 

through to the combining (OR) gate.  All other inputs will be masked to zero. The 

combining gate ignores zeros, outputting the one passed input.

This behavior can also be expressed as Boolean expressions.

Out= In0⋅S
1
⋅S

0
In1⋅S

1
⋅S

0
 In2⋅S

1
⋅S

0
In3⋅S

1
⋅S

0

It can be implemented using AND and OR gates as shown below. Note that the four 

input OR gate can be broken into a combination of two input ORs.
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Here S1 and S0 contain the value 01 (shown on the left). I1's high value (red) is 

passed forward while all other masking gates are blocking inputs. The combining OR 

gates then pass this value forward to the output. If S is changed to the value 11, 

I3 becomes the signal that is steered to the output (shown on the right).

If the selected input happened to have a low value (I2, shown as blue on left), the 

output would be zero. However if I2 changes to a high value, this change is also be 

seen at the output (shown on right).

To reduce implementation cost, these AND and OR gates can be transformed to 

NAND gates using mixed logic. If three and four input gates are available (they 

are in VLSI), the implementation can be reduced to four 3-input NAND, one 4-

input NAND, and two inverters for a total of 24 + 8 + 4 = 26 transistors. because 

of the inversions, this implementation is less easy to follow an input to the output. 

But it still works!
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Demultiplexer:  So  what  is  the  device  that  performs  the  reverse  operation.  A 

demultiplexer or demux takes a single input and, under control of a binary number, 

steers it to one of many outputs. The fundamental operation is easy to understand.

Out0

In Out1

Out2

Out3

S1 S0

1 to 4
Demux

In S1 S0 O0 O1 O2 O3

A 0 0 A

A 0 1 A

A 1 0 A

A 1 1 A

However  deciding  the  status  of  unselected  outputs  (off-diagonal  values) 

dramatically affects the implementation and use of a demux. Suppose unselected 

outputs  are  don't  cared.  After  all,  they're  not  selected.  In  this  case,  the 

implementation can be extremely inexpensive!

In S1 S0 O0 O1 O2 O3

A 0 0 A X X X

A 0 1 X A X X

A 1 0 X X A X

A 1 1 X X X A

This is fanout. It is cheap and useful.  Fanout is simply taking a value (in CMOS, a 

value is a high or low voltage), and connecting it to multiple inputs. Since using an 

input, or ignoring it does not affect the value, there is no obstacle to fanout (aside 

from parasitic loading that affects the wire's speed).  But it marginally deserves 

the title “demux”.
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Unselected outputs can also be defined as zero. This could be useful since the 

input  value  is  ”masked”  from  unselected  outputs.  This  is  useful  when  multiple 

components produce a signal that must travel on the same wire (not at the same 

time). Unselected outputs can be combined with a signal (using an OR gate) without 

affecting the OR gate's output. The OR identity states that X + 0 = X.

In S1 S0 O0 O1 O2 O3

A 0 0 A 0 0 0

A 0 1 0 A 0 0

A 1 0 0 0 A 0

A 1 1 0 0 0 A

Here the implementation is more complex and expensive; it costs 28 transistors 

for  the the one to four demux.  This added cost  is  only required to prevent a 

unselected output from interfering an OR gate combining many signals. There is a 

better way...

Pass Gates: Just when you thought you'd seen every gate, another one comes along 

… and this one is amazing! So far, all gates have been regenerative; they use input 

signals  to  control  switches  that connect the  output  to  either  the  high  or  low 

voltage source. This is a good idea to insure signal integrity. But suppose we just 

want to pass a signal through, or not. This would be far simpler and less expensive. 

If  only  there  was  an  ideal  switch  that  could  connect a  high  or  low  signal. 

Unfortunately, P and N type switches can only do half the job. Let's use them both 

to create a pass gate (also known as transmission gate or T-Gate).

A B

C

C

A B

C

C
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Two switches are connected at their switch points (source and drain) and opened 

or closed together. With this construction, a P-type switch is available to pull high 

while a N-type can pull low. With both switches closed, the signal level at A can be 

high  or  low and  the  most  capable  switch  is  there  to  connect  the  signal  to  B.  

Sometimes folks think that only one switch needs to be closed, depending on the 

signal being passed. But by closing both switches together, it really doesn't matter 

if the signal is high, low, or changing back ands forth!

Interestingly, this switch really doesn't have an input and an output. Instead it has 

two terminals (A and B) that can be connected together when the control signal C 

is high. When C is low, the terminals A and B are isolated. This component acts as  

an “ideal switch” and its extremely useful. It's gate icon looks like two overlapping 

buffers showing how signals can be passed bidirectionally. The control signals C and 

C arrive that mid point of the two buffers. The bubble indicates the active low 

control. Look carefully at the pass gate and its icon show side by side above. The 

icon is on the left; the implementation (using one P-type switch and one N-type 

switch) is on the right.

A Demux Using Pass Gates: We can use a couple of pass gates to create a demux 

with a twist.

In S O0 O1

A 0 A Z0

A 1 Z0 A

Here the input value is passed to the selected output via a closed pass gate. The 

cyan bar on the pass gate indicates the gate is closed; it is not part of the icon. 

This output is like our previous demux implementations. However the unselected 

output isn't zero,  it  isn't connected to anything,  Its  floating.  This condition is 

indicated in the truth table with the somewhat cryptic symbol Z0 which means high 

impedance. But this is just a fancy way to say “floating”. Because its floating, it can 

be  connected  to  another  signal  with  no  risk  of  contention  (and  no  OR  gate 

required). If we want more outputs on our demux, we can replicate this demux in a 

binary tree.
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In S1 S0 O0 O1 O2 O3

A 0 0 A Z0 Z0 Z0

A 0 1 Z0 A Z0 Z0

A 1 0 Z0 Z0 A Z0

A 1 1 Z0 Z0 Z0 A

Here S1 is low so the input travels through the top pass gate. Since S0 is high, the 

bottom pass gate of each 2 to 1 demux is closed. But only the uppermost 2 to 1 

demux has an input to connect to the output. So all but the selected output, O1, 

have floating outputs. O1 will follow In.

The function of this implementation is similar to the gate implementation. However, 

this  version  has  floating  unselected  outputs  (a  good  thing)  and  a  lower 

implementation cost: 16 versus 28  switches (an even better thing).

A Mux Using Pass Gates: What's good for demuxes is also good for muxes. Here's 

a 2 to 1 and a 4 to 1 implemented using pass gates.

These muxes also enjoys a low implementation cost (6 and 16 switches respectively) 

and they behave exactly as the gate version. These implementations employ binary 
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tree construction. To double the number of inputs, just replicate the current mux 

and then add one more on the end. An 8 to 1 mux would stack two 4 to 1 muxes and 

then add an extra 2 to 1 mux (controlled by S2) to choose between their outputs. 

Using pass gates, muxes are as easy to build as demuxes … hey wait a minute.

Mirror Twins:  Regarding the switch contacts,  pass gates don't have inputs and 

outputs like other gates. Either terminal can pull the other. So muxes and demuxs 

built as binary trees of pass gates are the same thing, but for switching inputs and 

outputs. In fact they are mirror images of each other.

Summary:  Building  blocks  provide  a  new  abstraction  for  digital  design.  What 

decoders and muxes loss in the generality of gates, they gain in functionality. Its 

important to remember that, while they have similar appearances, they accomplish 

different objectives.

• Decoders  and  encoders  perform translation  between  binary  numbers  and 

less compact, but valuable presentations (e.g., selecting one of eight outputs 

to be high). 

• Muxes  and  demuxes  are  all  about  steering  signals  in  and  out  of  shared 

channels. They can also select a value, or help multiple components share a 

communications medium. They are controlled by a binary value. But they still 

just connect an input to an output.

• Pass gates are the ideal switch we wish we had all along. It can pull high and 

low. But it requires a control signal and its complement. It connect to wires. 

Or it can leave then floating.  An most  amazingly,  it  provide bidirectional 

connections for flexibility not achieved with other gates.
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Designing Computer Systems
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Designing Computer Systems

Number Systems

Most concepts are easier to learn when you're already familiar with them. But a 
few concepts are more difficult to learn because you know them so well. In our 
early childhood, we learn that abstract symbols represent real things in our world. 
The word “candy” represents something that tastes sweet. The word “bedtime” 
means  you're  about  to  leave  the  party.  A  symbol  and  its  meaning  are  locked 
together in our brain.

This  is  especially  true  for  qualitative  symbols.  Here  we  see  the  symbol  “5” 
represents the quantity five. In fact, its difficult to describe the symbol  with 
implying its meaning.

5 =
symbol meaning

But for computers, a symbol has no implicit meaning. It is a string of ones and 
zeros. Only when we instruct the computer on how to process a symbol does it have 
meaning. In many programming languages, you must declare the type of a variable, 
(i.e., an integer, a floating point, or a character string)  before you can perform 
operations on it. This allows the compiler to assign the correct instruction for that 
interpretation of the variable's value.

Number systems separates a symbol and its meaning into two distinct concepts: a 
notation and a  representation.  Notations determine how symbols can be created 
using strings of characters from a given alphabet. Representations show how to 
assign real world meaning to a given string.
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Native Notations: Humans around the world favor  decimal (base 10) notation. An 
anthropologist might suggest this is because we have ten fingers. People define ten 
characters (0,1,2,3,4,5,6,7,8,9) to represent quantities. These characters form a 
notation  alphabet. We use this alphabet to create multi-character  strings, which 
provide a limitless number of intuitive, unique symbols. In base 10, a N character 
string can provide 10N unique strings.

A computer also has a native notation. It uses binary (base 2) notation because the 
limited multiplicity of its “fingers” maintain digital states: 1 or 0, high or low, true 
or false. It also builds strings out of its two character alphabet (0 and 1). An N 
character binary string provides 2N unique symbols.

Binary, requires longer strings to achieve the same number of symbols. A three 
character decimal string can represent 1000 symbols (000 –  999). It takes ten 
character binary string to achieve the same number of strings (0000000000 – 
1111111111). To keep the length of written symbols manageable, we often use power 
of two bases octal (base 8) and hexadecimal (base 16).

The table below shows the ordered sequences in each notation. Notice that each 
digits  counts  through  the  base's  alphabet.  When  a  digit  reaches  the  last 
character, it wraps back to zero and the next digit position is advanced. In all 
notations, leading zeros are implied, but not drawn.

decimal binary octal hexadecimal

0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3

4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7

8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B

12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

16 10000 20 10

Notational Conversion: Since all notations begin with zeros, strings on a row in the 
table  are  the  same  sequence  number.  Since  we  use  the  sequences  in  order, 
notational  conversion of a string in one notation is accomplished by finding the 
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corresponding position in another notation. For example, the string 11 in decimal is 
1011 in binary, 13 in octal, and B in hexadecimal. This conversion takes no position 
on the meaning of the string. Rather it shows string equivalence.

Since binary, octal, and hexadecimal are all power of two bases, they are more 
easily  translated because  they each can be represented as  a  whole  number  of 
binary digits or  bits.  Converting from one power of two notation to another is 
simply a matter of regrouping the bits. Here are a few examples:

10101110 (binary) = 010 101 110 = 256 (octal) = 1010 1110 = AE (hexadecimal)

153 (octal) = 001 101 011 = 1101011 (binary) = 0110 1011 = 6B (hexadecimal)

68A (hexadecimal) = 0110 1000 1010 =  0110 1000 1010 (binary) =  011 010 001 010 = 3212 (octal)

A conversion between a  power of  two bases (e.g.,  binary)  and  decimal  is  more 
complicated.  A  decimal  digit  is  approximately  three  and  a  third  bits,  so  bit 
regrouping  will  not  work.  Notational  conversion  between  binary  and  decimal  is 
accomplished by finding the string sequence position (how many strings is it from 
all zeros) and then converting the number between binary and decimal.

In an arbitrary base B, a N character string provides BN unique symbols. The first 
digit on the right is the one's place. The second digit is the B's place, the third 
digit  is  the  (B2)'s  place,  the  fourth  digit  is  the  (B3)'s  place  etc.  The familiar 
decimal places are 1s, 10s, 100s, 1000s, … In binary, the places 1s, 2s, 4s, 8s, 16s, … 
are less familiar, but more useful powers of two.

Powers of Two: When you work with computers, you must know the powers of two. 
Bad news: we have to memorize a few of them. Good news: we don't need to know 
very many. Here are the ones to learn:

20 = 1 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32
26 = 64 27 = 128 28 = 256 29 = 512 210 = 1024 = ~1K

Memorizing can be difficult ... but not here. Most folks can compute through 24 in 
your head. 26 is 64. The sixes go together. 28 is 256. Eight bits is a byte so 256 
shows up all the time. 25, 27, and 29 are either twice or half an easy one. And 210 is 
the vehicle for all other powers of two! It is approximately 1000 (1K).

To find larger powers of two, recall that exponents can be reduced like this:
BX+Y = BX · BY

We can  break  larger  powers  of  two  into  groups  in  the  table  above.  Exponent 
multiples of ten can be grouped to become 1000. Here are a few examples.

216 = 26 x 210 = 64 x 1K = 64K 224 = 24 x 210 x 210 = 16 x 1K x 1K = 16M

225 = 25 x 210 x 210 = 32 x 1K x 1K = 32M 232 = 24 x 210 x 210 x 210 = 4 x 1K x 1K x 1K = 4G

241 = 21 x 210 x 210 x 210 x 210 = 2 x (1K)4 = 16T 2-18 = 2-8 x 2-10 = 1 / (256 x 1K) = 1 / 256K
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Binary to Decimal: Using powers of two, binary numbers can be converted using 
the place values. Here's an example:

64's 32's 16's 8's 4's 2's 1's

1 1 1 1 0 0 1
In a base, the order of a string in a notation is found by summing the products of 
each character and its respective digit's significance. In binary, the digit values 
are powers of two. Since characters are either 0 or 1, multiplication is easy. In this 
example, the corresponding decimal string is computed as:

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 0 x 2 + 1

64 + 32 + 16 + 8 + 1

80 + 40 + 1

            121 (decimal)

Note that many of the powers of two sum to form multiples of ten. Here are a few 
more examples. The bases are indicated here with subscript.

1101102 = 32 + 16 + 4 + 2 = 5410 101010102 = 128 + 32 + 8 + 2 = 17010

1000010002 = 256 + 8 = 26410 11112 = 8 + 4 + 2 + 1 = 1510

A string of ones always sums to next place value minus one.

Decimal to Binary: Notational conversion from decimal to binary is similar. Only 
here you subtract away powers of two until you reach zero.

7810 16510 50010

- 64 1000000 - 128 10000000 - 256 100000000
14 37 244
– 8 + 1000 – 32 + 100000 – 128 10000000
6 5 116

- 4 + 100 - 4 + 100 - 64 1000000
2 1 52 
– 2 + 10 – 1 + 1 – 32 100000
0 10011102 0 101001012 20

- 16 10000
4

- 4 100
0 1111101002

Often there are tricky ways to do things. Sometimes they help. Sometimes they 
don't. For decimal to binary conversion, one can simply perform a series of halvings 
(dividing by two). If the number being halved is an even number, list a “0”. If the 
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number being halved is odd, subtract one and list a “1”. When you reach zero, the 
list of ones and zeros is the binary notation. Let's try 78 and 165 this way.

78 39 38 19 18 9 8 4 2 1 0

0 10 110 1110 01110 001110 10011102

165 164 82 41 40 20 10 5 4 2 1 0

1 01 101 0101 00101 100101 0100101 101001012

This trick works by deconstructing the decimal value from its binary components, 
from  least  significant  to  most  significant.  It  gives  the  right  result;  but  it 
sometimes requires more calculations and it is harder to double check the result.

It may appear that integer values are being translated between different bases. 
But we are only finding corresponding strings in different bases. Notations do not 
imply meaning.

Get to the Point: Sometimes strings include a point (a decimal point in base 10) as 
part of the notation. This point divides the string into two parts, a substring to the 
left  of  the  point  and  a  substring  to  the  right.  When  performing  notation 
conversion,  start  at  the  point  and  work  left  and  then  right.  This  addresses 
unwritten  leading  and trailing  zeros.  Let's  try  a  few  power  of  two  conversion 
examples.

10100101.0110112 = 1010 0101 . 0110 1100 = A5.6C16

1101001.11112 = 001 101 001 . 111 100 = 151.748

26.BC16 = 0010 0110 . 1011 1100 = 101 110 . 101 111 = 56.578

46.268 = 100 110 . 010 110 = 0010 0110 . 0101 1000 = 26.5816

Sometimes leading and trailing zero are adding and subtracted to form necessary 
bit groupings. But notice that they always work out, left and right, from the point. 
Binary to decimal conversions with a point is the same, only the bit positions are 
fractions.

4's 2's 1's 1/2's 1/4's

1 0 1 . 1 1

4 + 1 + .5 + .25 = 5.75

8's 4's 2's 1's 1/2's 1/4's 1/8's 1/16's

1 0 1 0 . 0 1 0 1

8 + 2 + .25 + .0625 = 10.3125

8's 4's 2's 1's 1/2's 1/4's 1/8's 1/16's

1 1 0 1 . 1 0 1 1

8 + 4 + 1 + .5 + .125 + .0625 = 13.6875
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Representations - Finding Meaning in a Digital World:  Although the use of a 
point   has  implications  to  a  sequence's  value,  the  focus  thus  far  has  been  on 
notational  conversion.  A given sequence is  composed of a specified numbers of 
characters (N) in a given base (B) offering BN unique codes. How those codes are 
used is dependent on representations.

Unsigned Integers: A representation begins with a requirement: what needs to be 
represented. Suppose a digital system is counting objects being manufactured in a 
factory. The counting numbers (0, 1, 2, …) are needed to maintain a tally. These 
unsigned integers can be associated with notational sequences in an intuitive way.

sequence meaning sequence meaning

0000 “0” 1000 “8”
0001 “1” 1001 “9”
0010 “2” 1010 “10”
0011 “3” 1011 “11”
0100 “4” 1100 “12”
0101 “5” 1101 “13”
0110 “6” 1110 “14”
0111 “7” 1111 “15”

Perhaps this is too intuitive, since this looks like notational conversion from binary 
to decimal. But here the quoted value really does mean a quantity (remember the 
fingers). A four bit binary sequence is used to represent a quantity between  “0” 
and  “15”.   In  general,  when  representing  unsigned  integers,  an  N-bit  binary 
sequence can represent quantities between “0” and “2N -1”. So an eight bit unsigned 
integer can represent quantities between “0” and “255”; a 16 bit unsigned integer 
can represent  “0” to  “65,535” (around 64K),  and a 32 bit  unsigned integer can 
represent  “0” to  “4 billion”.  This  process  is  nothing more than a uniform value 
sequence assignment. An integer value is assigned to each sequence.

Signed Integers: Some applications require negative as well as positive integers. 
While it doesn't have to be this way, a signed representation typically offers an 
equal number of positive and negative quantities. 

signed sequence unsigned signed sequence unsigned

“0” 0000 “0” “-8” 1000 “8”
“1” 0001 “1” “-7” 1001 “9”
“2” 0010 “2” “-6” 1010 “10”
“3” 0011 “3” “-5” 1011 “11”
“4” 0100 “4” “-4” 1100 “12”
“5” 0101 “5” “-3” 1101 “13”
“6” 0110 “6” “-2” 1110 “14”
“7” 0111 “7” “-1” 1111 “15”
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Since half of the sequences are used to represent negative values, there are not as 
many to represent positive quantities.  Here the 16 sequences represent  “-8” to 
“+7”. In general, this N-bit signed integer representation can represent quantities 
from  “-2(N  -  1)” to  “2(N  -  1)  – 1”. A eight bit  signed integer can represent  “-128” to 
“+127”. A 16-bit signed integer can represent “-32,678” to “+32,767” (±32K). A 32-
bit  signed integer can represent  “±2 billion” (±32G). Why isn't it symmetric? 
Because zero has to go somewhere (and use a sequence). Here it is counted as a 
positive value. This signed representation is called two's complement.

There are many choices for signed representations. But only one, two's complement 
is  widely  used,  and  for  good  reasons.  As  number  systems  and  arithmetic  are 
explored, two's complement has many significant advantages other other signed 
representations.

• Sign  and  Magnitude:  This  signed  representation  (used  in  floating  point) 
employs  all  but  one  bits  for  an  unsigned  magnitude.  The  remaining  bit 
indicates  the  sign.  It  problems  include  complex  arithmetic  logic  (since 
addition  sometimes  becomes  subtraction  and  vice  versus)  and  two 
representations of zero (+0 and -0). This may seem like a small matter. But 
comparison to zero is the most commonly performed conditional operation. 
If  there  are  two  values  representing  zero,  this  operation  become  more 
complex.

• One's  Complement:  This  signed  representation  has  a  simple  negation: 
complement  each  bit.  So  +1  (0001)  is  negated  to  -1  (1110).  This 
representation  also  introduces  complexity  is  arithmetic.  And  it  has  two 
values for 0 (0000) and (1111).

Two's complement is related to one's complement. Negation involves complementing 
each bit in the representation. But then one is added: one's complement + one = 
two's complement. It only has one representation of zero (negating zero give zero). 
Sign is easy to determine; the most significant bit of the representation indicates 
the sign (0 = positive, 1 = negative). But it is not a sign bit. And arithmetic using  
two's complement couldn't be easier (one can ignore sign). Two's complement also 
works well with non-integer representations, which come next.

Fixed Point:  Integer representations have a  fixed step size,  the value  one.  All 
adjacent sequences differ by the integer value one. This is its resolution and it is 
fixed. This step size can assume any value, depending on the position of the point 
(which separates whole and fractional parts of the representation). So if the point 
is fixed one bit position to the left of integers, the step becomes 0.5 instead of 
one. This four-bit, fixed point representation offers a different set of values.
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signed sequence unsigned signed sequence unsigned

“0.0” 000.0 “0.0” “-4.0” 100.0 “4.0”
“0.5” 000.1 “0.5” “-3.5” 100.1 “4.5”
“1.0” 001.0 “1.0” “-3.0” 101.0 “5.0”
“1.5” 001.1 “1.5” “-2.5” 101.1 “5.5”
“2.0” 010.0 “2.0” “-2.0” 110.0 “6.0”
“2.5” 010.1 “2.5” “-1.5” 110.1 “6.5”
“3.0” 011.0 “3.0” “-1.0” 111.0 “7.0”
“3.5” 011.1 “3.5” “-0.5” 111.1 “7.5”

For  both  unsigned  and  signed  representations,  there  are  the  same  number  of 
sequences.  With  a  smaller  resolution  (0.5  versus  1),  the  representation  has  a 
smaller range. In general, an N bit  fixed point representation with K bits to the 
right of the binary point has a step size of 1/2K and a range of -2(N – 1)/2K to (2(N - 1) – 
1)/2K. The range is divided by the step size.

If the fixed point is set two bits from the left, the step size and range change. A 
smaller step, 0.25, yields higher resolution, but a smaller range.

signed sequence unsigned signed sequence unsigned

“0.0” 00.00 “0.0” “-2.0” 10.00 “2.0”
“0.25” 00.01 “0.25” “-1.75” 10.01 “2.25”
“0.5” 00.10 “0.5” “-1.5” 10.10 “2.5”

“0.75” 00.11 “0.75” “-1.25” 10.11 “2.75”
“1.0” 01.00 “1.0” “-1.0” 11.00 “3.0”

“1.25” 01.01 “1.25” “-0.75” 11.01 “3.25”
“1.5” 01.10 “1.5” “-0.5” 11.10 “3.5”

“1.75” 01.11 “1.75” “-0.25” 11.11 “3.75”

Fixed point does not require a change to the arithmetic. It is only a matter of 
interpretation of the operands and the result. Fixed point is the presentation of 
choice  for  the financial  world.  All  calculations  must  be accurate  to the  penny, 
regardless  of  the  amount.  This  fixed  resolution  limits  the  range.  Science  and 
engineering often need something else.

Floating Point: Fixed point presentations have a problem in that their accuracy (the 
number of significant figures) is dependent on  the magnitude of the represented 
value. The integer value 23,415,823 may have eight significant figures. But 16 has 
only two.  Floating point has a different,  more complex approach.  Use a certain 
number of bits to represent the magnitude (the significant figures) of a value. 
Then use addition bits to scale it to the correct value. Most people have used this 
approach in scientific notation. The magnitude 6.022 is scaled by 1023 to express 
the number of molecules in a mole. This value would be difficult to express using a 
fixed point representation.
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Floating point breaks the bits of the  representation into fields: sign, mantissa, and 
exponent.

sign mantissa exponent

The sign field is a one bit field indicating the sign of the mantissa. This sign and 
magnitude representation makes sense when scaling the value. The mantissa is the 
largest field and contains the bits that provide the accuracy (significant figures) 
to the value being represented. Since the mantissa does not need to provide the 
scaling, its range is between zero and one. The exponent field is a signed integer 
that scales the mantissa to the proper value. In binary, the exponent is raised to a 
power of two, not ten. In general, a floating point value is computed as:

sign x mantissa x 2exponent

where the sign is ±1, the mantissa is an unsigned fixed point value with the binary 
point  at  the right  end of the sequence (K =  N),  and the exponent is  a  signed 
integer. Typical field lengths for an IEEE single precision floating point value is 
sign = one bit, mantissa = 23 bits, and exponent = 8 bits.  This means that the 
unscaled  step  size  is  1/8M  of  the  mantissa.  To  find  the  equivalent  decimal 
significant figures, consider the mantissa range (0 to 8,000,000).  The first six 
digits can assume any value (0-9). The seventh decimal digit can assume 0-8. So 
this  mantissa  maintains  between  six  and  seven  decimal  significant  figures.  In 
general, every ten bits of mantissa provides three decimal significant figures.

The exponent field is a signed (two's complement) integer. Like scientific notation, 
it scales the mantissa to the proper value. It doesn't change the bits, rather it 
moves the binary  point.  Moving it  right  by  one bit  multiples the value  by two. 
Moving right two bits multiples by four. Moving right by I bits multiples by 2I. 
Moving left is similar, except it divides by 2I. Because of this exponential scaling, a 
modest range in the exponent field can have an enormous effect on the value. An 
eight bit exponent has a range of -128 to +127. Since the mantissa is between zero 
and one, the final value an be as large as 2127 or as minuscule as 1/2128.

Floating points representations can assume smaller and larger number of bits. IEEE 
double precision floating point employs 64 bits including an eleven bit exponent and 
a 52 bit mantissa for approximately 15 significant figures. A 16 bit floating points 
might have a 10 bit mantissa (three significant figures) and a five bit exponent for 
values from 215 (32K) to 1/216 (1/64K).

Arithmetic operations in floating are more complicated since exponents must be 
adjusted before simple addition and subtraction can be performed in the mantissa. 
Afterwards, a process called normalization must be performed where the mantissa 
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and  exponent  are  adjusted  to  keep  a  one  in  the  most  significant  bit  of  the 
mantissa. This is necessary to maintain the full accuracy of the value. 

In  floating  point,  all  values  have  a  fixed  accuracy  (significant  figures),  but  a 
varying resolution (step size).  This contrasts with fixed point that has a fixed 
resolution,  and a  varying  accuracy.  Fixed point  works for  financial  calculations. 
Floating point works for science and engineering. Both are important.

Full Disclosure: Floating point standards have many subtle complexities that are 
not covered here. For example, since normalization maintains a one on the most 
significant bit of the mantissa, it can be assume to effectively  add a bit. Other 
field  combinations  are  used  for  rare  but  important  values  like  NaN  (Not  a 
Number). If interested, check out http://grouper.ieee.org/groups/754/.

Symbolic  Values:  Speaking  of  not  a  number,  there  is  a  large  class  of 
representation that don't represent quantities. Take this document, for example. 
Each character represents a letter of the alphabet, and sequences are strings of 
letters forming words,  sentences,  and paragraphs.  One of the oldest  and most 
common  symbolic  representation  is  ASCII  (American  Standard  Code  for 
Information Interchange). This seven bit representation includes the characters 
that  appear  on  a  keyboard:  A-Z,  0-9,  a-z,  characters  for  punctuation,  special 
symbols, etc. Plus some obsolete control characters like bell, ACK/NAK, etc. that 
date back to an era when mechanical teletypes were used to display text. This 
standard was latter expanded to eight bits (256 symbols) for CP/M, MS-DOS, etc. 
but it still lives on. 

One limitation of ASCII is its inability to expand to international character sets. A 
modern alternative is Unicode, a 16-bit character code that embraces the diversity 
of symbols from around the world. While its larger 16 bits versus eight bits, its 
ability to international character sets justifies the extra storage. Still, ASCII is 
far  from gone.  It  still  is  the  primary  representation  used  in  text  files  under 
today's operating systems including Microsoft Windows, Mac OS X, and Linux.

Other  Representations:  There  are  hundreds  of  other  representations  to 
represent images (e.g., JPEG), videos (e.g., XviD), audio (e.g., mp3), vector graphics 
(e.g., postscript), and many other things. However the notations used generate the 
same patterns of sequences.

Summary:  In  digital  computers,  information  is  expressed  in  one  of  several 
notations, and its meaning is defined by one of many representations.

• Today's notations include binary, decimal, and hexadecimal. Powers of two 
fit the binary technology being used. Decimal fits ten fingered humans.
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• Quantitative  representations  include  signed  and  unsigned  fixed  point 
representations integers is a special case). For signed representations, two's 
complement is the representation of choice. Fixed point has a fixed step 
size  (resolution),  but  varying  accuracy.  Floating  point  is  a  more  complex 
representation  with  fixed  accuracy,  but  a  varying  step  size.  Both 
representations have their place in digital systems.

• Symbolic representations are widely used in digital systems. ASCII is an old 
but  widely  used  standard.  Unicode  allow  representation  of  international 
characters.

ASCII Codes

0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70

0x0 NUL DLE SP 0 @ P ` p

0x1 SOH DC1 ! 1 A Q a q

0x2 STX DC2 " 2 B R b r

0x3 ETX DC3 # 3 C S c s

0x4 EOT DC4 $ 4 D T d t

0x5 ENQ NAK % 5 E U e u

0x6 ACK SYN & 6 F V f v

0x7 BEL ETB ' 7 G W g w

0x8 BS CAN ( 8 H X h x

0x9 HT EM ) 9 I Y i y

0xA LF SUB * : J Z j z

0xB VT ESC + ' K [ k {

0xC FF FS , < L \ l |

0xD CR GS - = M ] m }

0xE SO RS . > N ^ n ~

15 SI US / ? O _ o DEL
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Designing Computer Systems

Arithmetic

1 1

1 1 0

+ 0 1 1

1 0 0 1
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Designing Computer Systems

Arithmetic

Arithmetic  in  digital  systems  involves  a  few  familiar  operations  (addition, 

subtraction, multiplication, and division) on quantitative representations described 

in Number Systems. Everyone knows what the answer should be. The challenge is 

making  hardware  that  performs  these  operations,  and  detecting  when  the 

representation  cannot  capture  the  result  (overflow).  This  chapter  combines 

Number  Systems and  Gate  Design to  define  and  implement  addition  and 

subtraction.

Addition:  Addition is a simple  dyadic operation in that operates on two operands, 

the addends, to produce a result, a sum. The rules of addition were first learned in 

an early grade on decimal values.

1      1 1      1 1       

6 8 3 6 8 3 6 8 3 6 8 3 6 8 3

  +   3 6 5   +   3 6 5   +   3 6 5   +   3 6 5   +   3 6 5

8 4 8 0 4 8 1 0 4 8

When adding these values, one starts at the least significant digit. Adding three 

and  five is easy. The result,  eight is expressible within the significance of this 

digit (the one's place). So this place is done. The next digit, in  the ten's place is 

more complicated. The sum of eight (80) and six (60) is 14 (140). But this cannot be 

expressed fully in the tens place. So the six (60) is recorded and the ten (100) is 

carried to the next place, the hundreds place. The sum of six (600), three (300), 

and the carried in one (100) sums to one thousand. Again, this cannot be captured 

in the hundred's place. So it is carried to the next digit, the thousand's place. This 

leads  to  a  habit  that  humans  have,  but  digital  systems  cannot  support:  The 

presumption of unlimited bit resolution. Humans assume that if there is space in 

the  result  line,  it  can  be  used  to  fully,  and  accurately  express  the  result. 

Unfortunately  digital  systems  must  live  within  the  available  bits  in  the 

representation. If the representation if three decimal digits, 000 to 999, it cannot 

represent 1048. So there is an overflow error.

Moving to binary addition is simply a matter of employing a binary notation.

1 1 1 1 1

1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

  + 0 1 1   + 0 1 1   + 0 1 1   + 0 1 1   + 0 1 1

1 0 1 0 0 1 1 0 0 1
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Zero added to one results in one. There are fewer characters in the alphabet so 

this happens less frequently. Note also that places here are not powers of ten (1, 

10, 100) but are instead powers of two (1,  2,  4, 8). When one (2) is added to one 

(2),  the  result,  10 (4)  cannot  be  represented  in  the  two's  place.  So  zero is 

recorded and 10 (4) is carried to the next bit position, the 4's place. This 10 (4) is 

added to the one (4) and zero already in this place to produce a result 10 (8). The 

zero remains in the 4's place, and the 10 (8) is carried to the 8's place.

But as before, digital systems may not always have an extra bit position (here in  

the 8's place) to hold the one carried out of the 4's place. If it's available, 110 (6) 

added to 011  (3)  results  in  1001 (9).  Otherwise  the result  is  001  (1),  which is 

incorrect,  at  least  for  unsigned  integers.  Interestingly,  in  a  three  bit  two's 

complement representation, 110 (-2) added to 011 (3) is  001 (1)! So overflow errors 

are dependent on the representation. More on this later.

Addition Hardware:  The goal is to build hardware to perform arithmetic.  It is 

important to note that the operation of binary addition is invariant to bit position. 

It's the same operation with respect  to given inputs  used to compute outputs 

regardless of whether it is performed in the 1's place, 2's place, etc. So building a 

one-bit  adder  is  the  place  to  start.  Here's  an  adder  for  two  one-bit  binary 

operands, X and Y. The result is S.

X

+ S

Y

X Y S

0 0 0

1 0 1

0 1 1

1 1 10

Again, the rules of addition are applied in binary. 0 + 0 = 0, 1 + 0 = 1, 0 + 1 = 1, 1 + 1 = 

10.  Only this is a one-bit adder. So 10 (2) cannot be represented in this place. An 

additional output is added to carry this value to the next bit position. This is called 

Carry Out (Cout). When the sum of X and Y exceeds one, this output signals that 

the bit position capacity exceeded, and a carry out takes excess output to the 

next bit position. When X and Y are one, the output is two and carry out transfers 

this excess. For all other addition cases, the sum can be represented in this bit 

position so carry out is zero.
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X

+ S

Y

Cout

X Y Cout S

0 0 0 0

1 0 0 1

0 1 0 1

1 1 1 0

This output is drawn on the bottom rather than the left side of the adder  icon 

because it is used as an input for another one-bit adder. Since the next bit position 

must process this carry out signal, the adder also needs another input.

Two for You is One for Me: When a two in one bit position is carry into the next, 

what is it worth? Moving from least significant to most significant bit positions, 

each bit is twice the significance of the bit before it. So the two's place is twice 

the significance of the one's place. The four's place is twice the two's place. The 

eight's place is twice the four's place.  In general,  the i+1's place is twice the 

significance of i's place. So when two is carried out of the i's place, it becomes one 

in the i+1's place. So a carry out (two) from the lesser significant neighboring bit 

becomes one as a carry in.

This  simplifies the behavior  when a  Carry In (Cin)  is  added.  Now,  rather than 

adding X and Y, the adder is adding X + Y + Cin. All three inputs have the same 

significance. Here's the behavior assuming the carry in is zero (from before).

Cin

X

+ S

Y

Cout

X Y Cin Cout S

0 0 0 0 0

1 0 0 0 1

0 1 0 0 1

1 1 0 1 0

0 0 1

1 0 1

0 1 1

1 1 1
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To handle the new cases where carry in is one, the result includes the sum of X, Y, 

and Cin.

Cin

X

+ S

Y

Cout

X Y Cin Cout S

0 0 0 0 0

1 0 0 0 1

0 1 0 0 1

1 1 0 1 0

0 0 1 0 1

1 0 1 1 0

0 1 1 1 0

1 1 1 1 1

The first case (X = 0, Y = 0, Cin = 1) produces a sum of one. No carry out required. 

When (X = 1, Y = 0, Cin = 1), the sum is 10 (2). This results in Sum = 0 and Cout = 1. 

The same outputs occur when (X = 1, Y = 0, Cin = 1). But when (X = 1, Y = 1, Cin = 1), 

the sum is 11 (3). Carry out moves 10 (2) to the next bit position. The remaining one 

becomes the Sum output. So the results are Sum = 1 and Cout = 1.

This one-bit adder, also known as  a Full Adder, captures the behavior of binary 

addition. Multi-bit addition can be constructed from cascaded one-bit adders.

What's Inside a Full Adder?: The behavior of Sum (S) is expressed as odd parity 

(XOR) which is defined as “true when the number of high inputs is odd”. As X, Y, or 

Cin transitions between zero and one, the number of high inputs changes from even 

to odd, or odd to even. Independent of the carry out signal, a transition of an input 

(X, Y, or Cin) results in a transition of the resulting sum, S. Carry out, Cout, has an 

equally intuitive definition. If there is a one on less than two inputs (X, Y, and Cin), 

the resulting sum can be handled within the bit position. However if two or more 

inputs are one, the sum will exceed the bit position's maximum value and carry out 

must be asserted. This happens in four cases:

X⋅Y Y⋅C
in

X⋅C
in

X⋅Y⋅C
in

The expression for carry out can be simplified to a sum of three product terms.  

The behavior of a full adder can be expressed with these two boolean expressions.

S=X⊕Y⊕C
in

C
out

=X⋅YX⋅C
in
Y⋅C

in

The  implementation  is  straightforward.  Odd  parity  (a  checkerboard  K-map)  is 

difficult to simplify. The sum of products expression is implemented with NAND 

gates.
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Going Multi-Bit: Since each bit position follows the same operations, a multi-bit 

adder is created by connecting several replicated one bit adders. The carry in of 

the least significant bit is set to zero. If it is one, an extra one is added to the 

sum.  This may come in  handy  later.  Each bit  position  is  implicit  relative  to its 

position. Here's a four bit adder:

1's place 0 + 1 = 1

2's place 1 + 1 = 0 (Cout)

4's place 1 + 0 + Cin = 0 (Cout)

8's place 0 + 0 + Cin = 1

In this example X = 0110 (6) and Y = 0011 (3), Each one bit adder handles one bit 

position. The collection performs the word addition yielding the correct solution 

1001 (9) … correct assuming an unsigned integer representation. But what about for 

other representations?

Fixed Point Arithmetic: A full adder works predictably for unsigned integers. It 

also  supports  unsigned  fixed  point  representations,  since  the  bit  position 
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relationship does not change. The carry in comes from a bit position that has half 

the  significance.  The  carry  out  goes  to  a  bit  position  that  has  twice  the 

significance. All that is required is a zero in the carry in to the least significant 

bit. For all unsigned representations, a carry out of the most significant bit in the 

representation  indicates  a  result  beyond  the  maximum  expressible  value. 

Otherwise the value is correct. If a fixed point is added in the middle of a four bit 

adder, its operation is unchanged. All that changes is the interpretation of the 

operands and the result. The operation adds 01.10 (1.5) and 00.11 (0.75) to produce 

10.01 (2.25). Here are more examples.

integer fixed point

7 + 1 = 8 0111 + 0001 = 1000 01.11 + 00.01 = 10.00 1.75 + 0.25 = 2.0

9 + 6 = 15 1001 + 0110 = 1111 10.01 + 01.10 = 11.11 2.25 + 1.5 = 3.75

4 + 12 = 0

overflow

0100 + 1100 = 0000 01.00 + 11.00 = 00.00 1.0 + 3.0 = 0.0 

overflow

In each of these examples, the same operand patterns are applied to the four bit 

adder, producing the same result. Only the representation differs. Note that for 

fixed  point  representations,  overflow  errors  occur  (or  not)  with  the  same 

operands, regardless of the position of the point. Fixed point is a scaling of the 

operands and the corresponding ranges of the representation.

Signed Arithmetic:  In  Number Systems,  there were many advantages to  two's 

complement representations for signed quantities: only one representation of zero, 

a simple negation, easy differentiation of positive and negative values. Here's one 

more reason to like two's complement: it employs the same rules for arithmetic. So 

the examples can be reconsidered as  two's complement.

unsigned integer two's complement integer

7 + 1 = 8 0111 + 0001 = 1000 0111 + 0001 = 1000 7 + 1 = -8 

overflow

9 + 6 = 15 1001 + 0110 = 1111 1001 + 0110 = 1111 -7 + 6 = -1

4 + 12 = 0

overflow

0100 + 1100 = 0000 0100 + 1100 = 0000 4 + -4 = 0.0 

In  both  representations,  the  same  four  bit  adder  performs  the  same  logical 

operations  producing  the  correct  result  when  the  answer  is  within  the 

representation's range. Different representations give different meanings to the 

operand  sequences.  And different  ranges produce  overflow errors  in  different 

places. The two's complement interpretation of the first example 7 + 1 = -8 results 

from the range of a four-bit  two's complement integer:  -8 to  +7. This is not an 
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error for the unsigned integer representation with a range of 0 to 15. In the third 

example, the result in the unsigned integer representation overflows its range. The 

two's complement representation does not.

The four  bit  adder  also  performs properly  for  signed  two's  complement fixed 

point. Since this is just scaling of the values (and ranges), this is expected.

unsigned fixed point two's complement fixed point

01.11 + 00.01 = 10.00 1.75 + 0.25 = 2.0 01.11 + 00.01 = 10.00 1.75 + 0.25 = -4.0 

overflow

10.01 + 01.10 = 11.11 2.25 + 1.5 = 3.75 10.01 + 01.10 = 11.11 -1.75 + 1.5 = -0.25

01.00 + 11.00 = 00.00 1.0 + 3.0 = 0.0 

overflow

01.00 + 11.00 = 00.00 1.0 + -1.0 = 0.0

The  carry  out  of  the  most  significant  bit  indicates  overflow  with  unsigned 

representations.  It  tells  nothing  about  overflow  in  two's  complement 

representations. So how can these errors be detected?

Overflow  in  Two's  Complement:  There  are  several  ways  to  detect  two's 

complement overflows. The most intuitive exploits the easy sign detection of the 

representation using only the most significant bit. If the MSB is zero, the value is 

positive.  If  the  MSB  is  one,  it  is  negative.  When  an  overflow  occurs,  the 

inexpressible  wraps around the range of the representation and ends up in the 

opposite signed values. In the first example, two positive numbers are added to 

produce a negative result. Because overflows wrap into the opposite sign, they can 

be detected using only the most significant bits of the operands and the result. 

Here are the eight cases when positive and negative values are added.

0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1

+ 0 0 1 1 + 0 1 1 0 + 1 1 0 0 + 1 1 0 0 + 0 1 1 0 + 0 1 0 1 + 1 0 1 0 + 1 0 1 1

0 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0

ok overflow ok ok ok ok overflow ok

Overflows occur in two cases: when two positive values are added with a negative 

result, and when two negative values are added with a positive result. Here are the 

corresponding decimal values:

2 2 6 2 -6 -6 -7 -3

+   3  +   6  +   -4  +   -4  +   6  +   5  +   -6  +   -5  

5 -8 2 -2 0 -1 3 -8

ok overflow ok ok ok ok overflow ok
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Two's  complements  overflows  for  addition  occur  when two positives  produce  a 

negative sum, or two negatives produce a positive sum. This can be expressed as a 

boolean expression, where the “m” subscript indicates the most significant bit:

Overflow=Xm⋅Ym⋅Sm+ X m⋅Ym⋅Sm .

The same multi-bit adder can be used for unsigned and signed two's complement 

representations.  But  different  hardware  is  required  to  detect  overflows.  For 

unsigned addition, the carry out of the most significant bit indicates an overflow. 

For signed two's complement, hardware that implements this sum of products is 

needed. More of this hardware will follow an exploration of the next arithmetic 

operation, subtraction.

Giving and Taking Away: Subtraction is the converse of addition. But in addition, 

the early-learned rules of elementary school are directly applied, in subtraction, a 

more modern approach to borrowing is employed. Here's an example.

1      1  1      1  1      

4 0 5 8 4 0 5 8 4 0 5 8 4 0 5 8 4 0 5 8

  - 2 3 7 3   - 2 3 7 3   - 2 3 7 3   - 2 3 7 3   - 2 3 7 3

5 8 5 6 8 5 1 6 8 5

Like addition, one starts at the least significant bit. Here, 3 is subtracted from 8 

leaving  5.  But  in  the next digit,  the  ten's place,  7 is  subtracted from  5.  Like 

addition, sometimes the operation cannot be completed within the digit. Early on, 

one learns to search for the next non-zero digit, borrowing one in its place, and 

regrouping as needed. Here one would borrow from the 4 (4000). But this approach 

is expensive, since it requires a search though an indeterminate number of digits. A 

more efficient approach doesn't look for the needed value to borrow; it presumes 

it exists, passes a borrow signal to the next digit, and completes the operation. 

This closely resembles the modern approach to borrowing: one places a purchase on 

a credit card, and decides later whether needed funds are available. While this is 

an unsound fiscal policy, it works well in computer arithmetic.

In this example, the process assumes the additional 10 (100) is available to regroup 

the 5 (50) as 15 (150). Then the 7 (70) is subtracted leaving 8 (80). A borrow out 

signal is passed to the next digit, the hundred's place. Here, 3 (300) is subtracted 

from  0. The the borrow in does not add, it subtracts as a  1 (100) in this digit. 

Again, the total of  4 (400) that is subtracted. So borrow out is asserted to the 

thousand's place. This provides 10 (1000) that the 4 (400) can be subtracted from. 

The operation in the  thousand's place concludes with  2 (2000) being subtracted 

along with the borrow value 1 (1000) from the 4 (4000), leaving 1 (1000) remaining.
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Binary subtraction follows this decimal example just as binary addition did.

1 1 1 1 1

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

 - 0 1 1 0  - 0 1 1 0  - 0 1 1 0  - 0 1 1 0  - 0 1 1 0

1 1 1 0 1 1 0 0 1 1

In this example, barrow out is asserted when the operation cannot be completed 

with the bit position. 

Subtraction Hardware: Subtraction logic resembles a full adder. Only it computes 

the difference, and it accepts borrow in and generate borrow out. In subtraction, 

the difference output (D) is computed as X = Y – Bin since both Y and Bin have the 

same significance. Here's the behavior of a full subtractor.

Bin

X

- S

Y

Bout

X Y Bin Bout D

0 0 0 0 0

1 0 0 0 1

0 1 0 1 1

1 1 0 0 0

0 0 1 1 1

1 0 1 0 0

0 1 1 1 0

1 1 1 1 1

It is interesting to note that difference (D) is exactly the same as sum (S) in 

addition: odd parity. This makes sense when one considers that, from a single bit 

position's  standpoint,  adding  one  has  the  same  effect  as  subtracting  one.  The 

result toggles. The borrow out expression differs from carry out.

D=X⊕Y⊕B
in

B
out

=X⋅YX⋅B
in
Y⋅B

in

The hardware implementation resembles the full adder, but for a small difference 

in the borrow out circuit.
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Two for One: Full subtracters can be replicated to form a multiple bit subtractor. 

But that's not how it's done. The hardware cost for subtraction would match the 

cost of addition. What if there were a way to get both operations using only one 

multi-bit arithmetic unit? How can an adder subtract? The answer comes from a 

little math and the magic of two's complement.

Z = X - Y Z = X + (-Y)

These  two  expressions  compute  the  same  result.  So  subtraction  can  be 

accomplished by adding the negation of the subtracted value. Negation is easy in 

two's complement. Just invert (complement) each bit and add one. The complement 

is done with inverters. The added one occurs by setting the carry in of the least 

significant bit to one. This “feature” was noted in the multi-bit adder.

Suppose the desired subtraction is 1001 – 0110. The result, 0011, can be computed 

using either full subtracters or full adders (with negation logic).

A multi-bit adder/subtracter can employ the adder hardware to perform addition 

and subtraction. A single control line  ADD/SUB determines which operation is to 

be performed. This rather unusual signal label declares that the signal is an active 

low  add signal  combined with an active high  subtract signal.  Since the signal  is 

either low (zero)  or  high (one),  the circuit  is  either adding or  subtracting.  To 

construct this, the inverters are replaced with selective inverters introduced in 
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Building Blocks, implemented as XOR gates. The ADD/SUB signal also controls the 

carry in of the least  significant  bit  of the adder.  When high,  it  adds the one 

needed to  negate  the  second  operand  being  subtracted.  The adder/subtractor 

implementation  is shown below in both operation modes.

What  About  Overflows?:  The  signed  overflow  detection  logic  handles  two's 

complement representations with this design. For unsigned, the carry out indicates 

addition overflow with a high value (One). Subtraction overflows are represented 

with a low value (zero) on carry out. The negation of the subtracted value wraps 

non-overflowing results into the unsigned overflow domain. Ironically, subtracted 

numbers larger than the first operand become small in negation and do not reach 

the unsigned overflow domain.

Summary:

• Addition and subtraction follow the rules learned for decimal, but with a few 

small changes. One does not assume unlimited digits. And subtraction uses 

borrowing on credit to simplify protracted borrowing.

• Binary  addition  and  subtraction  are  defined  bit-wise,  leading  to  the 

definition and construction of a full adder and a full subtractor. They are 

implemented using XOR and NAND gates.

• Overflows  occur  due  to  a  bound  word  size.  Error  detection  is 

straightforward and differs for unsigned and signed representations.

• An  adder/subtractor  can  be  constructed  using  a  multi-bit  adder  and 

selectable negation circuitry for the second operand.
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Latches and Registers

The potential to design functional blocks using switches and wire appears limitless. 

The  analog  quantities  of  our  world  can  be  represented  using  multi-bit  words. 

Operations on these values, defined a Boolean expressions, can be constructed as 

combinational logic of unbound complexity. So what is missing? … history.

Combinational

Logic

...
O1

O0

O2

O3

O4

O5
O6

Om

O7

Outputs

...

I1

I0

I2

I3

I4

I5
I6

In

I7

Inputs

No matter how complex the implemented function is, it has no memory of previous 

values or results. All data to be processed must be presented to the combinational 

logic as inputs. Combinational logic has no state.

Building even the simplest digital system is impossible without state. Consider a 

basic four function calculator (a four banger). Although it can process big numbers 

rapidly,  how can it solve a simple expression “5 + 3 =” without state? It would 

require the input keys “5”,  “+”,  “3”,  and “=” to be held simultaneously while the 

answer is displayed. Multi-digit math is out of the question.

One Bit Store: For useful digital computing systems, a simple block is needed that 

can store a bit of data for an extended period of time. That way data available now 

will persist, and can be used later. To best exploit the technology, this bit store 

must be built with switches and wire. And since many bits are needed, it must be 

implemented simply. Here's a starting point:

It certainly is simple, only two inverters (four switches). But why would somethings 

this simple have the ability to store data? The wire looping from the output to the 
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input is unusual: its uses its own output as an input. Analyzing this simple block is a 

challenge since, although it has only two nodes, it has no input values. So what are 

the nodes values?

Surprisingly, there are two answers. The output could be low (0) with the short 

wire between the inverters high (1). Or the output could be high with the short 

wire low. Which is right? They both are! This circuit is stable in two states; its bi-
stable. Since a one bit store maintains one of two states, this simple block is ideal  

… except it has no input.

RS Latch: In order to use this bit store, it needs inputs that can set the output 

high, or reset the output low. But it still must retain the ability to hold a state, 

high or  low,  for  an  indefinite  period.  Cross-coupled inverting  gates,  where  the 

output of each inverting gate is an input to the other, provides bi-stability. But 

inputs are need to Reset and Set it to a known state.

Consider a familiar gate, seen in a new way: a two input NOR. Assume one of the 

gate's input is a boolean variable In. The other is a control variable C.

C = 0 C = 1

The control signal C determines whether output is related to In. If C is low, the 

output is the complement of In (i.e., it is an inverter). If C is high, the output is low 

no matter what the value of In is.

IN C Out

A 0 A Out = In

X 1 0 Out = 0

This is just what is needed. The heart of a bit store is two cross-coupled inverters. 

To force the output into one of two states, the inverter can be preempted. Using 

cross-coupled NOR gates, the control inputs turn off one of the two inverters, 

creating a known output (low or high).

When both R (reset) and S (set) are low, both NOR gates act as inverters. Their 

other input is complemented to become the output. So when Reset and Set are low, 
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cross-coupled NOR gates become cross-coupled inverters used in the previous bit 

store implementation.

When either the Reset or Set inputs is temporary asserted (set high), it turns off 

an inverters, forcing the output into a known state. When Reset is high, Out is low 

independent of the first NOR gate's output. Since Out is low, the first NOR gate 

(acting as an inverter) makes the ignored input to the second NOR gate high. So 

when  Reset  returns  low,  and  the  second  NOR  gate  becomes  an  inverter,  Out 

remains low.

When Set is asserted (with Reset low), the output of the first NOR gate is low. 

With Reset low, the first NOR gate's output is inverted by the second NOR gate, 

setting Out high. Since this also sets the other input of the first NOR gate, the 

gates retain this state when Set is deasserted (set low).

Meta-Stability: Reset and Set can be asserted individually to force the RS latch 

into one of its two stable states. When both Reset and Set are low, this stable 

state  remains  unchanged.  But  what  happens  when  Reset  and  Set  are  asserted 

simultaneously? Both NOR gates have low outputs. While this is logically correct, it 

can  lead  to  an  unpredictable  state  when  Reset  and  Set  are  deasserted 

simultaneously. Which of the two stable states will it become? This condition is call  

meta-stable because the state of the latch is unknowable. It is also not knowable 

how long it will take for the latch to return to one of the two states.

“stable” “meta-stable”

To appreciate the difference between stable and meta-stable, consider a ball in a 

valley versus a  ball  balanced in a peak. Small  forces on the  stable ball will  not 

change its state. In contrast, a small  force applied to the  meta-stable ball will 

cause a significant state change. Needless to say, meta-stability should be avoided 
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when  predictable  storage  is  desired.  So  Reset  and  Set  are  only  asserted 

individually.

R S Out

0 0 Qo hold

1 0 0 reset

0 1 1 set

1 1 0 avoid

The hold state employs a new symbol: Qo to represent a previously defined state. 

It can be either 0 or 1, depending on whether Reset or Set was last asserted.

Transparent Latch: An RS latch can provide needed state. But it requires specific 

control signals to define and hold the storage. When a 0 is being stored, Reset is 

asserted and Set remains low. When a 1 is being stored, Set is asserted while R is  

low.  When the  value  is  held,  neither Reset nor  Set are asserted.  This  can  be 

generated from an input In and an enable En that allows the input to be captured.

assert R assert S hold

Before connecting this circuity, the RS latch must be rearranged.

Combining  both  circuits  produces  a  transparent  latch.  This  transparent  latch, 

shown below, can be in one of four different cases. Two are completely defined by 

the inputs: storing 0 and storing 1. Two are defined by En and the internal state: 

holding 0 and holding 1. In the second two cases, IN is ignored; it doesn't matter 

whether its one or zero because its masked by the AND gates.
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storing 0 storing 1

holding 0 holding 1

Here's the functional behavior of a transparent latch.

IN En Out

X 0 Qo latch

A 1 A transparent

When  enable  is  asserted,  the  output  follows  the  input  so  the  latch  becomes 

transparent. When enable is not asserted, the latch maintains the stored state on 

the output, independent of the input. Its value was defined at the last moment of 

transparency.

Implementation Costs: When implemented with switches and wire, this transparent 

latch requires two NOR gates (2 x 4 switches), two AND gates (2 x 6 switches), 

and one inverter (2 switches)  for  a  total  of 22 switches.  Not bad.  But  digital  

systems require a lot of storage bits. Is there a cheaper implementation of this 

behavior using switches and wire?

Some tricks from mixed logic can help.  If the bubbles on the NOR gates slide 

arround to the inputs and an extra pair of bubbles is added between the AND and 

OR, this implementation is transforms from two NOR and two AND gates to four 

NAND gates. Here the Set and Reset signal become active low (they are asserted 

when low, unasserted when high). Generating these signals requires the inverter to 

move down. But this latch implementation realizes the transparent latch behavior 
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with four NAND gates (4 x 4 switch) and one inverter (2 switches) for a total of 

18 switches.

But can the count still  be lowered?  Let's go back to basics.  Two cross coupled 

inverters are capable of storing a bit, but lack an input. Suppose pass gates are 

used to selective configure these inverters into either a transparent mode (where 

the the input is connected and the feedback pass is removed),  or a hold mode 

(where the feedback path is connected and the input is removed). These pass gates 

serve as a two to one mux. It may be easier to understand when drawn as a mux.

transparent mode hold mode

This implementation employs three inverters (2 x 2 switches) and two pass gates 

( 2 x 2 switches) for a total of 10 switches. It is called a ten transistor latch and is 

the significant storage element in digital computation. Can we do better than ten 

transistors? Yes, but at a cost in speed, and only in dense arrays. More on this 

follows in the memory chapter.

Latch Limitations:  Latches can store a single bit  of data,  but with limitations. 

Consider a parallel to serial shift register. This is a device that can take parallel  
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word (in this case, four bits), and shift it down a serial wire in an orderly way. We 

use these devices to transfer data between our digital products. USB is short for 

“Universal  Serial  Bus”.  SATA means “Serial  Advanced Technology  Attachment”. 

Strange  as  it  may  seem,  serial  buses  often  transfer  data  faster  than  parallel 

buses. So the need to load a parallel word into a clocked serial bus interface is 

widespread. Here's a first attempt.

Notice we are using latches to hold the word (I3:I0) when the Load signal is high. 

Then we use a simple clock to move bits along to Out.

What is a Clock: In physics, the most used clock signal is a sinusoidal waveform. But 

in the digital world, everything is a one or a zero. A clock is a square wave that 

alternates between high and low at a defined period. A timing diagram shows the 

behavior as the load signal goes low and the data move serially through the latches. 

Time advances from left to right. Each signal is stacked with high and low values  

indicated by the red and blue marks. Note clock alternates between zero and one. 

The problem occurs when the clock goes high (after Load goes low). All the enables 

on all of the latches go high and all latches become transparent. The stored data 

does travel to the output, but not in an orderly fashion. Instead bit race through 
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the latches independent of the clock. Not good. There is no way to capture and 

reconstruct the parallel word on the other end of the serial bus.

Two Phase, Non-Overlapping Clock: The problem with a latch is that is has no 

storage when its transparent. It can't hold an old value and accept a new value at 

the same time. To do accomplish this, there needs to be two latches and a special 

clocking scheme that allows one latch to hold the current value while a new value is 

being  captured.  The  clocking  scheme  must  allow  each  latch  to  be  transparent 

independently, with a brief period in between where both latches are holding their 

value. Here's the clock that produces this behavior:

Both clocks have the same shape, including a small asymmetry of being low longer 

than being high. But the second clock is phase shifted by 180 degrees. Note also 

that the two clock are never high at the same time. This creates a two phase, non-

overlapping clock. The clock signals are often named phi1 (Φ1) and phi2 (Φ2). It is 

widely used in digital computation where phase periods are set large enough to 

accommodate  the  gate  depth  x  gate  delay,  and  non-overlap  periods  are  large 

enough to accommodate anticipated clock skew.  This scheme will  help create a 

workable shift register.

After data is loaded, it is advanced in the shift register in time with the clock 

frequency.  This  orderly  movement  is  defined  as  the  latch  alternate  between 

transparent and hold modes. During  Φ1, the first latch is transparent while new 

data is sampled. The falling edge of Φ1 defines the sample point. Then on the rising 

08:58:22 PM 4 June 2013 LR-9 © Scott & Linda Wills 



edge of  Φ2, this new value moves forward through the second (now transparent) 

latch.

sample

input

new value

to output

Φ1

Φ2

These two critical moments (the falling edge of Φ1 and the rising edge of Φ2) define 

this  clock scheme behavior.  Here's  the timing diagram of this  functional  shift 

register:

Note the movement of ones and zeros through the monitor points A, B, C and Out.  

Of course, this four latch shift register can only maintain two bits. Half of the 

latches are transparent and cannot hold values.

Register: Two latches, plus the multiplexer form the core of a register.

IN WE Clk Out

X 0 →↓ Q0

A 1 ↑↓ A

By connecting the output through a 2 to 1 mux to the input of the first latch, the 

ability to selectively write (or preserve) a register's value can be controlled. Like 
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the  enable signal on the transparent latch, the write enable (WE) signal either 

selects a new input, or recycle the current output as the input. However this is a 

synchronous behavior in that the changing or preserving of a stored value is in sync 

with the clock signals. This selective write is call a write port.

Read Port: What would a read port be? Writing means changing the register state. 

Reading (or not) has no effect on its value. So what does a read port accomplish? 

Often registers are read onto a shared bus. Since only one value can be read onto 

the bus, a read port is a method of passing the register's contents onto a write (or 

not).  This  has  been  explored in  demultiplexers,  and  is  efficiently  accomplished 

using a pass gate.

WE = RE = 1 WE = RE = 0

The register on the left is being written and read. The register on the right is 

holding a value that is not being read (Out is floating). The behavior of this widely 

used storage element is shown below. Note that read and write are independent 

operations.  Even  when  the  register  is  not  read  (the  output  is  floating),  write 

operations  can  be  performed.  And  when  neither  write  or  read  operations  are 

performed, a bit is still be stored.

IN WE RE Clk Out

X 0 0 →↓ Z0 hold

A 1 0 ↑↓ Z0 write

X 0 1 ↑↓ Q0 read

A 1 1 ↑↓ A write & read

Word-Wide Register: Once a one bit register is designed, it can be replicated to 

create a word wide register to store multi-bit values. These parallel registers are 

stored and loaded using multiple bit values. In this example, the word size is four 

bits.  Control  signals  and  clocks  to  read  and  write  the  register  are  shared. 

Individual lines for each input and out bit position are connected separately. Read 
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and write operations can be performed independently, something latches cannot do. 

In this example, the stored value of the register (0101) is unchanged in the four 

examples.

read & write read write hold

Summary: Here's a summary of key points in digital storage:

• Storage is needed for digital systems. It can created using simple cross-

coupled inverting gates in a circuit that is bi-stable.

• A Transparent Latch is can store a bit of data, but it cannot hold data when 

a new bit is being stored. The 10T latch is the workhorse in digital systems.

• A Register can simultaneously be read and written. It is built of two latches, 

one to hold the current value while the other receives the new value.

• A  two-phase  non-overlapping  clock provides  necessary  timing  for  digital 

systems.  Its  parameters  (depth  and  non-overlap  delay)  determine 

performance of the digital system.

• A shift register shifts parallel words over a serial bus, often at high speeds. 

Serial interfaces are widely used in digital systems (USB, SATA, etc.).

• A timing diagram shows how sequential systems evolve in time. Behavioral 

tables cannot fully capture this information.
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A register has a critical role to play in digital computing systems. Its stores data 

so it can be used in the future. Its singular purpose is to accurately preserve a 

value for an indeterminate period.

register

“735”

write

register

“735”

read

time

A value  735 is stored (written) in a register. Later, the register is read and the 

value  735 is obtained. The register's value is changed only when a new value is 

written or if the power source is removed.

Another form of storage is widely used in digital systems. It is constructed using 

similar components, but it has a different objective. Ironically, if it behaves like a 

register, it is deemed faulty.

counter

“7:35”

write

counter

“7:41”

read

time

This storage is, of course, a counter and it is used for many purposes including time 

keeping. Here the clock is more than just a periodic sequencer of storage access. 

It also provides the time base that defines the counting interval. A counter is a 

multiple-bit storage element that follows a binary sequence in sync with a clock. It 

can also be described as counting the intervals  of time defined by the clock's 

period. With a one Hertz clock, a counter counts seconds.
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Stopwatch 101: Despite clocks being a prevalent example of counters in our world, 

its fraught with the peculiarities of time conventions. Time begins at 12:00. Then 

at 12:59, it advances to 1:00. Ante Meridian (AM) ends at 11:59 followed by 12:00 

Post Meridian (PM). Who made this system up?

Stopwatches employ similar counter principles, but with more clarity. It begins at 

0:00 when the clear button is pressed. When the start/stop button is pressed, the 

counter starts (or stops) measuring the passage of time. The lap button displays an 

interval while the counter continues.

Remember the Register:  Before exploring  the construction of a  counter,  let's 

review the register. Because the counter must retain its current value while it is 

updated with its new value, it is based on a two latch cell that is similar to the 

register.

Latch

I O

E

Latch

I O

E

2 to 1

Mux

I0 O

S
I1

Phi1 Phi2WE

In

Out

Latch

I O

E

Latch

I O

E

2 to 1

Mux

I0 O

S
I1

Phi1 Phi2WE

In

Out

hold write

The 2-to-1 mux selects one of two values for the first latch's input:  copy the 

current value from the second latch (right), or a new value from In (left). Because 

a  register's  roll  is  to  preserve  a  value  until  it  is  overwritten,  this  is  a  good 

selection.

Counters need to count. In a binary world, a one-bit counter is rather dull: 0, 1, 0,  

1, 0 ,1 , … this is well-described as toggling. But sometimes a one-bit counter needs 

to hold a value (1 or 0) for multiple cycles 0, 0, 0, … or 1, 1, 1, … The hold mode 

already exists in the register design. In this mode, on the left, the output value 

loops back to the input to hold the state. The toggling mode, on the right, is almost 

the same, except the complement of the output loops back to the input to toggle 

the state.

hold toggle
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Since a cell will sometimes hold its value and sometime toggle its value, it must be 

able  to do both,  controlled by an input  toggle  enable (TE).  This  new input  will 

control a selective inverter, otherwise known as a XOR gate (odd parity).

In C Out

A 0 A

A 1 A

When the control input is low, A is passed through unchanged. When the control 

input is high, A is inverted A. This gate can be used to create a cell that can toggle 

its output on each cycle of the clock (right).  Or it can hold a value unchanged 

through a clock cycle (left).

TE Clk Out

0 →↓ Qo

1 ↑↓ Qo

hold toggle

What State Am I: This cell has an essential feature, to selectively toggle. But it 

lacks definition. How can the state be set to a known value? The stopwatch must be 

able to be cleared, forcing all bits of the counter to zero. The current value must 

be masked. So an AND gate is used.

clear toggle

The Clr signal is active low, indicated by the bar over the signal name. When the 

clear signal is asserted (low), the current value, toggled or held, is masked to zero. 

When the Clr signal is deasserted (high), the AND gate passes the toggled or held 

state from the second latch. In this example, it is toggled.

This design represents a one bit toggle cell. It can operate in three modes, clear, 

hold, and toggle. It is the foundation of multiple-bit counters. A simple icon is used 

to capture this implementation.
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TE Clr Clk Out

X 0 →↓ 0 clear

0 1 ↑↓ Qo hold

1 1 ↑↓ Qo toggle

A stopwatch has two external controls. Count Enable (CE) allows the counter to 

advance with time. When it is not asserted, the counter is frozen at the current 

value. Clear (Clr) resets the counter value to zero. In both cases, the assertion of 

these signals is not immediate. The effect of these signals is seen at the counter's 

outputs  at  the  end  of  each  cycle.  This  is  called  synchronous operation  since 

behavior is synchronized with the system clock.

N-bit Counter: A multi-bit counter begins with a single toggle cell connected to 

the external signals. The external count enable controls the toggle cell's toggle 

enable. The external clear controls the counter's clear; but it must be inverted to 

be active low. A one-bit counter is nothing more than a toggle cell.
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But when counting is enabled and the device is not being cleared, it counts with the 

system clock, its output toggling on each cycle. The timing diagram shows the one 

bit counter's output. The vertical dashed lines represent the system clock. 

O0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Because is toggles once per clock cycle, its cycle period is twice the system clock 

period,  and  its  frequency  is  half  the  system clock.  For  this  reason,  a  one  bit 

counter is sometimes called a divide by two counter since it outputs a clock that is 

half the system clock frequency.

A  two bits  counter begins  with  two  toggle  cells.  The  first  cell  is  connected 

directly to the external count enable and clear (as in the one bit counter). But the 

second toggle cell must be connected differently or it will toggle (count) identically 

to the first cell.  For the second cell,  it  should toggle when the external count 

enable is asserted and the output of the first toggle cell is high. 
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Since this is only true on half the cycles, the second cell will toggle  every other 
cycle. Since the first output  is already half the system clock, the second output is 

a divide by 4 (one fourth the system clock frequency).

O0

O1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 01 01 01 01 01 1 01 0 1

A three bit counter adds a third toggle cell.

Whereas the first cell toggles every cycle, and the second toggle cell toggles every 

other  cycle,  the  third  toggle  cell  toggles  every  fourth  cycle,  when  all  lesser 
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significant bits are high. Its toggle enable is only high when O0 and O1 are high,  

along  with  the  external  count  enable.  Since  two  of  these  signals  are  already 

combined with an AND gate, its output can be ANDed with O1. The third output 

(O2) is a divide by 8 (one eighth the system clock frequency).

O0

O1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 01 01 01 01 01 1 01 0 1

O2 0 0 0 1 01 01 0 10 1 1 010 1

A  four bit counter follows the same extension process. A fourth toggle cell  is 

added and connected to toggle only when all lesser significant outputs are high, 

along with the external count enable. The new output, O3, toggles every sixteenth 

system clock  cycle,  as  a  divide  by  16  counter.  Here  a  decoder  seven  segment 

display has been added to show the numeric counting process.
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This process can be extended to an i-bit counter that divides the system clock by 

2i.

O0

O1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 01 01 01 01 01 1 01 0 1

O2 0 0 0 1 01 01 0 10 1 1 010 1

O3 0 0 0 10 10 10 10 1 1 010 1

Divide by N: These counter divide by a power of two (two raised to the number of 

toggle cells). How would a counter count by an arbitrary value N? Since we live in 

decimal word (with ten fingers), a decade counter (divide by ten) would be a handy 

device. A four bit counter divides by 16, meaning it counts from '0' to '15' ('0' to 

'F' in hexadecimal). A decade counter counts from '0' to '9' and then returns to 

'0'. Its maximum count is nine; when it reaches that count, to should return to 

zero  on  the  next  clock  cycle.  This  can  be  accomplished  using  the  max  count 

detector and the external clear signal.

The max count detector monitors the counter outputs,  detecting the maximum 

count. Normally, this would involve testing both high and low values in the maximum 

count. But since this is a up counter (it starts at zero and counts to all all ones), a 

more  compact  max count  detector  only  compare  high  values in  the  max  count. 

Differentiating low bits in the max count is pointless since it will never reach a 

high value; it will be cleared when it is low. A decade counter (divide by 10) has a 
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maximum value of nine. So a max count detector will monitor O0 and O3. When 

they are both high ('9'), the counter is cleared.

This method applies to an arbitrary value of N. For a divide by N counter, the 

maximum count is N-1. An N-1 detector will clear the counter on the cycle following 

the maximum  count, restarting the counting sequence.

A Counting Flaw: This scheme works with single digit counters. But often multiple 

counter  is  required.  For  example,  a  stopwatch uses  a  decade counter  to count 

seconds, and a divide by six counter to count tens of seconds. Note that the divide 

by six counter only counts when decade count has reached its maximum count.

Using this technique will result in a counting flaw when  it reaches '50'. 
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Here the decade counter clears to zero to begin the next decade. But since the 

divide by six counter has reached its maximum count, it automatically resets to 

zero on the next sequence.

A multi-digit counter reaches its maximum count does not  require an automatic 

clear, since it can hold that maximum count until the next time it is incremented. 

The counter clear should when it has reached its maximum count and  it ready to 

increment. Here's the correct divide by N counter. Note that the maximum count 

is  reached,  but  the  count  enable  is  low.  So the  toggle  cell  clear  signal  is  not 

asserted.  Since the counter is frozen, the maximum count will  remain until  the 

external count enable is again asserted. At that time, the counter clear will be 

asserted  and  the  counter  will  be  cleared.  Note  also  the  external  clear  is  not 

dependent on the value of the external count enable. When the user wants to clear 

the stopwatch, it is cleared imemdiately.
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Summary: This chapter has introduced a new type of storage device that changes 

the stored value (in a predictable way) with time. Here are the main points:

• Counters are build from toggle cells that resemble the register cell used in 

the last chapter. However they don't have an input. Rather hey have a toggle 

enable (to count) and an active low clear (to reset them to a  know value, 

zero).

• Toggle cells can be cascaded to produce a N bit counter. The counter will 

begin at zero and count to a maximum count of 2N – 1. These are called divide 

by  2N  counters  since  they divide  the  system clock  (the  two pahse  non-

overlapping clock) by 2N.

• A  divide  by N counter can be built  using  a 2N counter and a  max count 

detector. The Max Count is N – 1. Since the counter starts at zero, only the 

high values in the maximum count need to be tested. This can be done with 

an AND gate.

• The Max Count signal can assert the Clear to reset the counter state. But 

only  when  Count  Enable is  high,  when the counter is  being instructed to 

counter higher than the maximum count.
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