\qquad

EE 4603, LOCAL AREA NETWORKS, QUIZ 2
 Fall 2000 - Oct. 17, 2000

Prof. John A. Copeland
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332

Tel.: 404-894-5177
E-Mail: copeland@ece.gatech.edu
RULES.
I This quiz is closed book. Calculators may be used.
ii Answer all questions and show all work to receive full credit.
iii All questions have the same weight. (20 Points). All subquestions within a question are weighted equally.
iv Please do not ask the proctors any questions during the exam about exam questions. Part of the test is understanding the question, as written, without supplemental information. If you feel additional data is needed to solve the problem, make (and state) an assumption and then work the problem.

Question 1 - How 3 techniques detect frames (packets) within a stream of bits.

A. For character oriented bit streams (state "not needed" where that is the right answer).
\qquad DLE STX \qquad Starting flag
\qquad DLE ETX \qquad Ending flag

V DLE (STUFF A "DLE" BEFORE OR AFTER EVERY "DLE")
__ B ETX SOT EOD RET LF DLE NULL __Quoting technique -insert characters, or state "not needed."
B. For bit-oriented bit streams.
\qquad
\qquad Starting flag
\qquad 01111110 \qquad Ending flag

Vo Vo (STUFF A "0" AFTER FIVE 1'S)
_ 01101111100011111100000110 _ Quoting technique -insert bits, or state "not needed."
A. For a T-1 AMI bit streams.
\qquad $+$ \qquad Starting flag (after 0 - +) ($"+$ " OR " - " SAME AS LAST)
\qquad $+$ \qquad Ending flag (after 0 O - +)

[^0]
Question 2 - Stop and Wait Flow Control Utilization

\qquad 80 \qquad What is the time to send a frame of 1000 bytes at 100 Mbps (in microsec (us)).
\qquad 50 \qquad How long does it take for a bit to travel 10 km to the next station (at $200 \mathrm{~m} / \mathrm{us}$) (in us).
\qquad 0.44 \qquad What is the utilization factor for a stop and wait protocol with these parameters?
\qquad 44,000,000 \qquad What is the average throughput (rate x utilization) in bits/second?
\qquad 0 \qquad What is the maximum distance for the Utilization to be 100%.
\qquad
8,000 meters \qquad What is the distance where the Utilization falls to 50%.

Question 3 - Sliding Window Flow Control Utilization (W = 15)

\qquad 80 \qquad What is the time to send a frame of 1000 bytes at 100 Mbps (in microsec (us)).
$\ldots \quad \mathbf{1 6 , 0 0 0} \mathrm{m}$ \qquad What is the physical length of the frame ($1^{\text {st }}$ to last bit as it travels along)
\qquad 50 \qquad How long does it take for a bit to travel 10 km to the next station (at $200 \mathrm{~m} / \mathrm{us}$) (in us).
\qquad 1.0 \qquad What is the utilization factor for a sliding-window protocol with these parameters?
\qquad $100,000,000$ \qquad What is the average throughput (rate x utilization) in bits/second?
___ 112,000 ___ What is the maximum distance for the Utilization to be 100%.

$$
2 \mathrm{X} / 200=(\mathrm{W}-1) \times 80 \quad \mathrm{~W}=15 \quad \mathrm{X}=8000 *(15-1)=112,000
$$

232,000 \qquad What is the distance where the Utilization falls to 50%.

$$
\mathrm{U}=0.5=(\mathrm{W} * 80) /(80+2(\mathrm{X} / 200)) \quad \mathrm{X}=240,000-8,000=232,000 \text { meters }
$$

Question 4 - Network Transmission System Losses and Gains (dB)

\qquad 4 dB \qquad What is the overall gain in dB for this transmission system (from A to B)?
$\mathrm{G}=-18+20-22+20-16+20=4$
\qquad 2.5 \qquad What is the ratio of (Power Out)/(Power In) as a dimensionless number.
$\mathrm{G}=10 \log (\mathrm{R}) \quad \mathrm{R}=10^{\wedge}(4 / 10)=2.5$
\qquad 1.6 \qquad What is the ratio of (Voltage Out)/(Voltage In) as a dimensionless number.

Question 5- Network Short Questions (one or two word answers)

\qquad Establish (or Setup) \qquad (1) Name the three stages of a connection in a connection-oriented network
___Transfer Data (Transmission) \qquad (2)
\qquad Disconnect (Takedown) \qquad (3)
\qquad Non-Blocking \qquad What is a switch called that can connect every station to every other station simultaneously?
\qquad Time Division \qquad (1) Name three types of multiplexing.
\qquad Frequency Division \qquad (2)
\qquad Code Division \qquad (3) ("Spread Spectrum")
\qquad CRC \qquad What technique is used that typically can detect any burst of errors up to 32 bits long? (Cyclic Redundancy Check)
\qquad X (Non-Blocking) _ _ What is a switch called that can connect every station to every other station simultaneously?
\qquad Async \qquad What is the coding technique where different bytes or characters are not synchronized to a common bit clock? (Asynchronous)

[^0]: \qquad $+00-+-00-+$ \qquad Quoting technique -insert characters or bits, or state "not needed." (NOT NEEDED)

