
1

Chapter Six - 2nd Half
Pipelined Processor

Forwarding, Hazards, Branching

EE3055
Web: www.csc.gatech.edu/copeland/3055

2

• Use temporary results, don’t wait for them to be written
– register file forwarding to handle read/write to same register
– ALU forwarding

Forwarding

what if this $2 was $13?

3

Forwarding

Forwa-
rding
Unit

Control

A

B

Register
Set

4

• Load word can still cause a hazard: (structual hazard)
– an instruction tries to read a register following a load instruction

that writes to the same register.

–

• Thus, we need a hazard detection unit to “stall” the load instruction

Can't always forward

5

Stalling

• We can stall the pipeline by keeping an instruction in the same stage

This stall may sometimes be avoided
 by reordering instructions,

6

Hazard Detection Unit

• Stall by letting an instruction that won’t write anything go forward

Forward-
ing Unit

Hazard
Detection

Unit

7

• When we decide to branch, other instructions are in the pipeline!

• We are predicting “branch not taken”
– need to add hardware for flushing instructions if we are wrong

Branch Hazards

Special ALU (=) makes branch decision in Instr. Decode stage

M Reg
If Branch Taken

8

Flushing Instructions

Forward-
ing Unit

Hazard
Detection

Unit

Instruction
Flush

Control

New mini-ALU to detect <, >, or = so branch condition
can be determined without going through the normal

ALU

ALU

9

loop: mul $t4, $t3, $t2
move $t3, $t4
sgt $s6, $t2,1
addi $t2, $t2, -1
bne $s6, $0, loop

mul $t4, $t3, $t2
la $a0, newline
li $v0, 4
syscall

Compiler or CPU
hardware must copy
first instruction of
loop and insert it
after “bne”.

The actual branch
can then take place
one instruction later
when decision has
been made.

$t4 must not be
written if branch is
not taken.

Branch Strategies - Assume branch at end of loop will be taken most of the time.

10

loop: mul $t4, $t3, $t2
move $t3, $t4
sgt $s6, $t2,1
addi $t2, $t2, -1
bne $s6, $0, loop

mul $t4, $t3, $t2
la $a0, newline
li $v0, 4
syscall

CPU hardware must
contain a table of
branch addresses
with a bit to show
whether branch was
taken last time. This
bit determines the
present assumption
about whether the
branch will be taken
or not.

When the prediction
is wrong, there must
be a “flush” which
wastes a clock cycle.

Branch Strategies - Dynamic Branch Prediction.

11

Improving Performance

• Try and avoid stalls! E.g., reorder these instructions:

lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

• Add a “branch delay slot”
– the next instruction after a branch is always executed
– rely on compiler to “fill” the slot with something useful

• Superscalar: start more than one instruction in the same cycle

Even with forwarding, $t2 will not be ready
until one more clock cycle has passed

12

Dynamic Scheduling

• The hardware performs the “scheduling”
– hardware tries to find instructions to execute
– out of order execution is possible
– speculative execution and dynamic branch prediction

• All modern processors are very complicated
– DEC Alpha 21264: 9 stage pipeline, 6 instruction issue
– PowerPC and Pentium: branch history table
– Compiler technology important

• “Superscalar” CPU - two or more instructions in parallel
– speed increased, but not n-fold
– more cases of data dependency and hazards.

13

Exception Handling in a Pipelined Computer

• The hardware must determine which instruction threw the exception
– Illegal instruction -> instruction in ID (instr. decode) stage
– ALU overflow -> instruction in Execute stage.
– Executing instructions turned into NOP’s (flushed).

• I/O interrupts and hardware malfunctions not due to instruction
– Some flexibility to finish some instructions, flush later ones.

• Method of flushing various stages
– Next Instruction set to Interrupt Handler - hex 4000 0040
– Instruction Decode - logic turns instruction to all zeroes (NOP)
– Execute - Ex.Flush signal causes control lines to go to zero when

overflow detected in this stage.
• Operating system will kill the program and send an error message for:

– Illegal instruction, arithmetic overflow, or hardware malfunction.
• Operating system will save the program, store state, and restart for:

– I/O Interrupt or Operating System Service Call.

