

 1

ECE 3055 Lecture 2

Instruction Sets

Reading: Comp. Org. & Design, Chap. 2, Sec.1-10, 19

CPU
Control, Datapath

Random Access Memory
(RAM)

Storage
(Hard Disk)

Input / Output
(Console, Network,

Printer, Speaker,
Microphone, Camera, ...)

The Five Classic Components of a Computer are Underlined

Address Bus, A0-A31

32-lines (addr bits)

Read/Write (R/W)

Data (In or Out)

Memory Chip or
Array of Chips

No of Bytes = 2^(addr bits) = 4,294,967,296 for 32 address bits

10980 - Program
 . . .
16864 - Stack, Bottom
 . . .
24896 - Data
 . . .
28164 - End of Allocation

CPU Registers - Ptrs to
Memory Locations

Program Counter (PC)

Stack Pointer (SP)

Index Pointer (IP)

 (+ Offset) 2

Instruction Set Architecture - Must Match CPU Architecture

C code: X = Y + Z ;

Assembly (for MIPS): lw $8, Y

lw $9, Z

add $10, $8, $9

sw $10, X

Machine Language (for MIPS, “add $10, $8, $9”):

000000 01000 01001 01010 00000 100000

In decimal: op=0, rs=8, rt=9, rd=10, shamt=0, addr/funct=32

MIPS is a RISC. All machine instructions are 32-bits long.
3

 2

Instruction Buffer
op rs rt rd shamt addr/function
6 5 5 5 5 6 bits .

Instruction Buffer
op rs rt rd shamt addr/function
6 5 5 5 5 6 bits .

Register 1Register 1

Register 2Register 2

Register 3Register 3

Register 4Register 4

 * * * * * *

Register 30Register 30

ALU
(Arithmetic &
Logic Unit

4

C ProgramC Program

CompilerCompiler

Assembly Language ProgramAssembly Language Program

AssemblerAssembler

Machine Language ProgramMachine Language Program

Linker/
Loader

Linker/
Loader

Memory, PC = Program 0, RunMemory, PC = Program 0, Run

Hard DiskHard Disk

2-42-45

2-5

The Power of Computing comes from Decisions (if’s) and
Iteration (loops and arrays)

C-code: Loop: g = g + A[i] ; // add all A[i] values to g
i = i + j ;
if (i != h) goto Loop ;

Assembly: Loop: multi $9, $19, $10 # $19 = i, $10 = 4
lw $8, Astart($9) # $8 -> A (=&A[0])
add $17, $17, $8 # g = g + A[i]
add $19, $19, $20 # i = i + j
bne $19, $18, Loop # branch on i != h

To branch on >, <, <= ,or >= requires two assembler instructions:

slt $1, $16, $17 # $1 = 1 if $16 < $17, 0 if $16 >= $17
bne $1, $0 # branch if $1 != 0 (if $16 < $17)

6

 3

Machine Language Procedure A

Machine Language Procedure B

Machine Language Procedure C

Machine Language Procedure D Linker

Machine Language Program
0: Procedure A

64: Procedure B
112: Procedure C
176: Procedure D

7

Procedure A calls a Procedure “B” (Subroutine B() in C):
A executes: “jal ProcedureAddress”
 “jal” stores next instruction address (PC + 1) on $31
 sets Instruction Addr Reg.(Program Counter) = ProcedureAddress
Procedure B starts running
 must store value of $31 before it gets overwritten (“callee save”)
 must store values of any other registers before using them,

except those to be used for return values.
 does its job (e.g., I/O, sorts data in memory, puts Pi in $2, ...)
 restores register values to the way A left them, including $31
 executes: “jr $31”
 “jr” resets IAR (PC) to value of $31
Procedure A then starts running again, exactly where it left off,
 except some registers have values returned from B, and/or
 data values in memory may have changed.

8

Other Addressing Modes
Immediate:

Constant value included in the last 16 bits of Instruction

Add 4 to $29

Assembler: addi $29, $29, 4 # add 4 to $29

Machine:

 op (6 bits) =8, rs (5 bits) = 26, rt (5 b) = 26, immed.(16b) = 4

 001000 11010 11010 11010 0000000000000100

 Branch if $18 < 10

Assembler: slti $8, $18, 10 # set $8 to 1 if $18 < 10

bne $8, $0, Label # branch to Label if $8 != 0

bne $1, $0 # branch if $1 != 0 (if $16 < $17)
9

 4

Unconditional Jump
Assembly: j 10000 # jump to location 10000

Machine: op (6 bits) = 2, address (26 bits) = 10000

000010 0000000000010011100010000

jump address is relative to PC+4 (the next normal instruction address)

 note: 2^25-1 = +/- 33,554,431 - maximum jump distance

Conditional Jump

Assembly: beq $21, $8 Exit # jump to “Exit” if $21 == $8

Machine: op (6 bits) = 5, rs (6) = 21, rt (6) = 8, address (16 b) = “Exit”

 note: 2^15-1 = +/-32,767 - max. single-instruction jump distance.

Longer Jump: bnei $18, $19, 4 # jump over next instr. if $18 != $19

j Exit # now Exit can be 33MB distant. 10

11

MIPS is a “RISC”- Reduced Instruction Set Computer
All instructions are the same length (short).

Instructions execute quickly.

More instructions needed - larger memory required.

“CISC”- Classical Instruction Set Computer

Instructions vary in length (2, 4, 6, 8 bytes)

Instructions execution time varies, some are slow

Less instructions needed - smaller memory required

Example of instructions not in MIPS’s Instruction Set:

 Increment X (no INCR, no direct operation on memory locations

 Increment, compare, and branch (if (++i < $12) goto Label)

 Copy 1000 bytes from memory address X to memory address Y) 12

