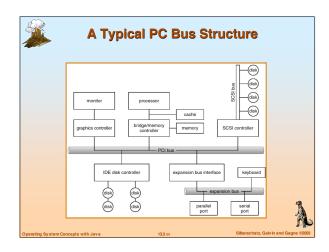
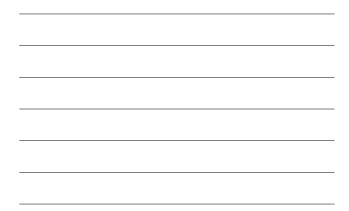
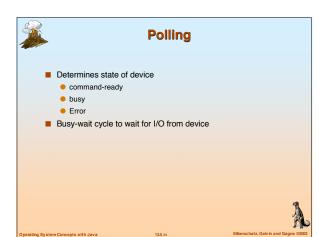

Chapter 13: I/O Systems


- I/O Hardware
- Application I/O Interface
- Kernel I/O Subsystem
- Transforming I/O Requests to Hardware Operations
- Streams

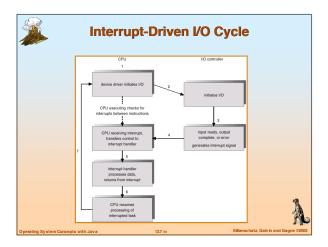

g System Concepts with Jay

Performance

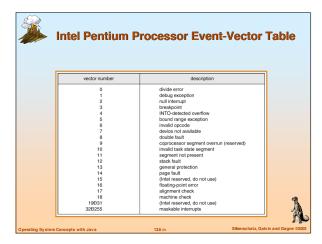




X	Device I/O Port Loca	ations on PCs (partial)	
	I/O address range (hexadecimal)	device	
	000-00F	DMA controller	
	020-021	interrupt controller	
	040-043	timer	
	200-20F	game controller	
	2F8-2FF	serial port (secondary)	
	320-32F	hard-disk controller	
	378-37F	parallel port	
	3D0-3DF	graphics controller	
	3F0-3F7	diskette-drive controller	
	3F8-3FF	serial port (primary)	9
Operating :	System Concepts with Java 13.4 /	11 Silberschatz, Galvin and Ga	gne ©2003

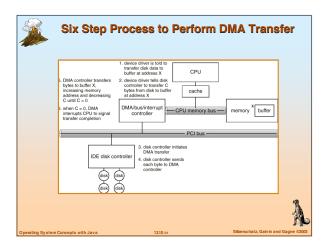


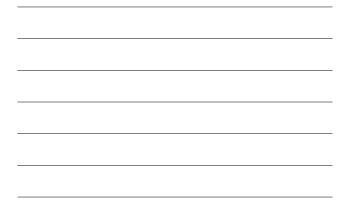
Interrupts

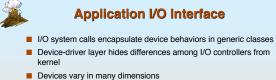

- CPU Interrupt request line triggered by I/O device
- Interrupt handler receives interrupts
- Maskable to ignore or delay some interrupts
- Interrupt vector to dispatch interrupt to correct handler
 Based on priority
 - Some unmaskable

System Concepts with Java

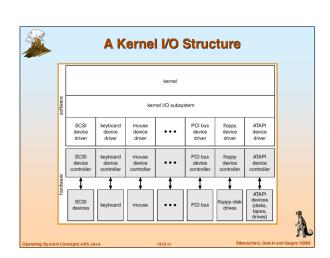
Interrupt mechanism also used for exceptions

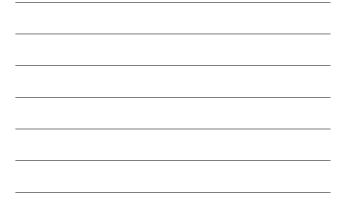



- Used to avoid programmed I/O for large data movement
- Requires DMA controller


E.

 Bypasses CPU to transfer data directly between I/O device and memory


A



- Character-stream or block
 - Sequential or random-access
 - Sharable or dedicated
 - Speed of operation
 - read-write, read only, or write only

A

	Characteristics of I/O Device		
aspect	variation	example	
data-transfer mode	character block	terminal disk	
access method	sequential random	modem CD-ROM	
transfer schedule	synchronous asynchronous	tape keyboard	
sharing	dedicated sharable	tape keyboard	
device speed	latency seek time transfer rate delay between operations		
I/O direction	read only write only readĐwrite	CD-ROM graphics controlled disk	

Block and Character Devices

- Block devices include disk drives
 - Commands include read, write, seek
 - Raw I/O or file-system accessMemory-mapped file access possible
- Character devices include keyboards, mice, serial ports
 Commands include get, put
 - Libraries layered on top allow line editing

epts with Ja

Network Devices

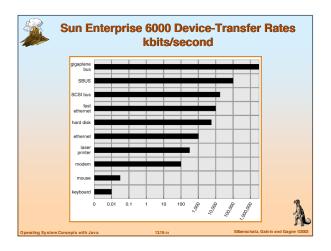
TAK

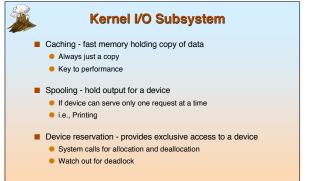
- Varying enough from block and character to have own interface
- Unix and Windows NT/9i/2000 include socket interface
 Separates network protocol from network operation
 - Includes select functionality
- Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes)

 ioctl (on UNIX) covers odd aspects of I/O such as clocks and timers

System Concepts with Jay

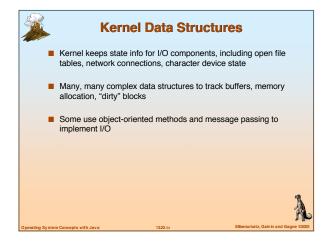
Blocking and Nonblocking I/O

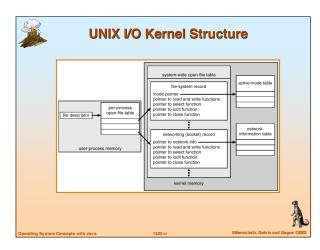

- Blocking process suspended until I/O completed
 Easy to use and understand
 - Insufficient for some needs
- Nonblocking I/O call returns as much as available
 - User interface, data copy (buffered I/O)
 - Implemented via multi-threading
 - Returns quickly with count of bytes read or written
- Asynchronous process runs while I/O executes
 Difficult to use
 - I/O subsystem signals process when I/O completed

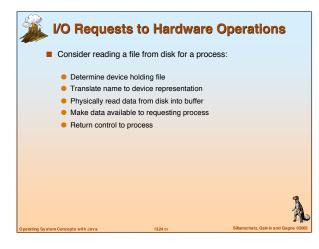

Scheduling

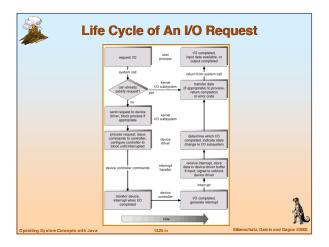
System Concepts with Java

- Some I/O request ordering via per-device queue
- Some OSs try fairness
- Buffering store data in memory while transferring between devices
 - To cope with device speed mismatch
 - To cope with device transfer size mismatch
 - To maintain "copy semantics"

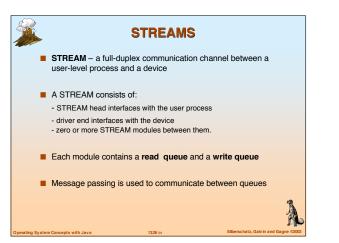


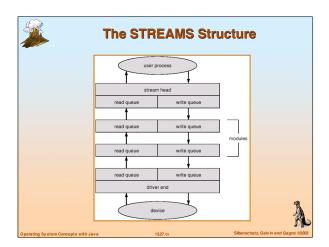

J.K

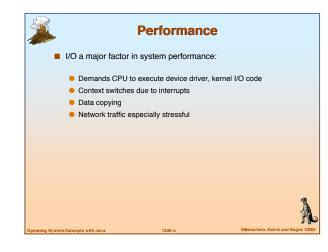


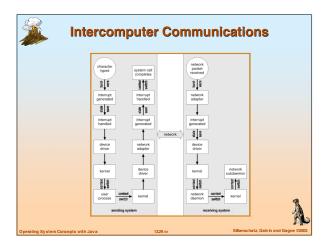

- OS can recover from disk read, device unavailable, transient write failures
- Most return an error number or code when I/O request fails
- System error logs hold problem reports

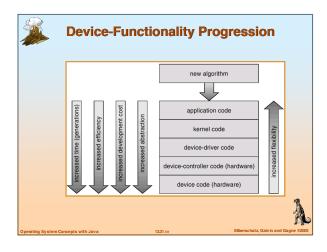
System Concepts with Jan











Improving Performance

- Reduce number of context switches
- Reduce data copying
- Reduce interrupts by using large transfers, smart controllers,
- polling
- Use DMA
- Balance CPU, memory, bus, and I/O performance for highest throughput

