

 1

11.1 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Chapter 11: File-System InterfaceChapter 11: File-System Interface

 File Concept
 Access Methods
 Directory Structure
 File System Mounting
 File Sharing
 Protection

ch11_file_sys.ppt

[John Copeland’s notes added]

11.2 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File ConceptFile Concept
 Contiguous logical address space

 Types:
 Data

numeric
character
binary

 Program

11.3 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File StructureFile Structure
 None - sequence of words, bytes
 Simple record structure

 Lines
 Fixed length
 Variable length

 Complex Structures
 Formatted document
 Relocatable load file

 Can simulate last two with first method by inserting appropriate
control characters

 Who decides:
 Operating system
 Program [modern choice]

 2

11.4 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File AttributesFile Attributes
 Name – only information kept in human-readable form
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing
 Time, date, and user identification – data for protection,

security, and usage monitoring
 Information about files are kept in the directory structure, which

is maintained on the disk

11.5 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File OperationsFile Operations
 Create
 Write
 Read
 file seek – reposition within file
 Delete
 Truncate
 Open(Fi) – search the directory structure on disk for entry Fi,

and move the content of entry to memory
 Close (Fi) – move the content of entry Fi in memory to directory

structure on disk

11.6 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Open FilesOpen Files
 Several pieces of data are needed to manage open files:

 File pointer: pointer to last read/write location, per process that has
the file open

 File-open count: counter of number of times a file is open – to allow
removal of data from open-file table when last processes closes it

 Disk location of the file: cache of data access information
 Access rights: per-process access mode information

 3

11.7 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Open File LockingOpen File Locking
 Provided by some operating systems and file systems
 Mediates access to a file
 Mandatory or advisory:

 Mandatory – access is denied depending on locks held and
requested

 Advisory – processes can find status of locks and decide what to
do

11.8 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File Locking Example File Locking Example –– Java API Java API
import java.io.*;
import java.nio.channels.*;
public class LockingExample {

public static final boolean EXCLUSIVE = false;
public static final boolean SHARED = true;
public static void main(String arsg[]) throws IOException {

FileLock sharedLock = null;
FileLock exclusiveLock = null;
try {

RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");
// get the channel for the file
FileChannel ch = raf.getChannel();
// this locks the first half of the file - exclusive
exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
/** Now modify the data . . . */
// release the lock
exclusiveLock.release();

11.9 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File Locking Example File Locking Example –– Java API (cont) Java API (cont)
// this locks the second half of the file - shared
sharedLock = ch.lock(raf.length()/2+1, raf.length(),

SHARED);
/** Now read the data . . . */
// release the lock
exclusiveLock.release();

} catch (java.io.IOException ioe) {
System.err.println(ioe);

}finally {
if (exclusiveLock != null)
exclusiveLock.release();
if (sharedLock != null)
sharedLock.release();

}
}

}

 4

11.10 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File Types File Types –– Name, Extension Name, Extension

11.11 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Access MethodsAccess Methods

 Sequential Access
read next
write next
reset
no read after last write

(rewrite)
 Direct Access

read n
write n
position to n

read next
write next

rewrite n
n = relative block number

11.12 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Sequential-access FileSequential-access File

 5

11.13 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Simulation of Sequential Access on a Direct-access FileSimulation of Sequential Access on a Direct-access File

11.14 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Example of Index and Relative FilesExample of Index and Relative Files

11.15 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Directory StructureDirectory Structure

 A collection of nodes containing information about all files

F 1 F 2 F 3
F 4

F n

Directory

Files

Both the directory structure and the files reside on disk
Backups of these two structures are kept on [a different
area of the disk] tapes

 6

11.16 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

A Typical File-system OrganizationA Typical File-system Organization

11.17 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Information in a Device DirectoryInformation in a Device Directory
 Name
 Type
 Address
 Current length
 Maximum length
 Date last accessed (for archival)
 Date last updated (for dump)
 Owner ID
 Protection information (discuss later)

11.18 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Operations Performed on DirectoryOperations Performed on Directory
 Search for a file
 Create a file
 Delete a file
 List a directory
 Rename a file
 Traverse the file system

 7

11.19 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Organize the Directory (Logically) to ObtainOrganize the Directory (Logically) to Obtain

 Efficiency – locating a file quickly
 Naming – convenient to users

 Two users can have same name for different files
 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g.,
all Java programs, all games, …)

11.20 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Single-Level DirectorySingle-Level Directory

 A single directory for all users

Naming problem

Grouping problem

11.21 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Two-Level DirectoryTwo-Level Directory

 Separate directory for each user

•Path name
•Can have the same file name for different user
•Efficient searching
•No grouping capability

 8

11.22 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Tree-Structured DirectoriesTree-Structured Directories

11.23 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Tree-Structured Directories (Cont)Tree-Structured Directories (Cont)
 Efficient searching

 Grouping Capability

 Current directory (working directory)
 cd /spell/mail/prog
 type list

11.24 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Tree-Structured Directories (Cont)Tree-Structured Directories (Cont)

 Absolute or relative path name
 Creating a new file is done in current directory
 Delete a file

rm <file-name>
 Creating a new subdirectory is done in current directory

mkdir <dir-name>
Example: if in current directory /mail

mkdir count

mail

prog copy prt exp count

Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”

 9

11.25 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Acyclic-Graph DirectoriesAcyclic-Graph Directories

 Have shared subdirectories and files
Normal Links in UNIX: # ln /dict/count/x /spell/count/x

x

What is a “Soft” Link in UNIX: # ln -s /dict/count/x /spell/count/x

11.26 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Acyclic-Graph Directories (Cont.)Acyclic-Graph Directories (Cont.)

 Two different names (aliasing)

 If dict deletes list ⇒ dangling
pointer
Solutions:
 Backpointers, so we can delete all

pointers
Variable size records a problem

 Backpointers using a daisy chain
organization

 Entry-hold-count solution
 Linux - file with hard links not

deleted until all links deleted
 - no solution for soft links (error if

dangling soft link used)

% mkdir a [make directory “a/”]
% mkdir b [make directory “b/”]
% date > a/x [create a file “a/x” with date in it]
% ln a/x b/y [link “a/x” to “b/y”
% cat b/y [type “b/y”]
Tue Mar 1 15:50:16 EST 2005

% ls -l a b [list files in “a/” and “b/”]
a:
total 2
-rw-r--r-- 2 copeland faculty 29 Mar 1 15:50 x

b:
total 2
-rw-r--r-- 2 copeland faculty 29 Mar 1 15:50 y

% rm -fR a [delete “a/” and all files in it]

% ls -l b [list files in “b/”]
total 2
-rw-r--r-- 1 copeland faculty 29 Mar 1 15:50 y

[note: the number of links changed from “2” to “1”]

11.27 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

General Graph DirectoryGeneral Graph Directory

 10

11.28 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

General Graph Directory (Cont.)General Graph Directory (Cont.)
 How do we guarantee no cycles?

 Allow only links to file not subdirectories
 Garbage collection
 Every time a new link is added use a cycle detection

algorithm to determine whether it is OK

11.29 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File System MountingFile System Mounting

 A file system must be mounted before it can be
accessed

 A unmounted file system (i.e. Fig. 11-11(b)) is
mounted at a mount point

% df -k -l

Filesystem kbytes used avail capacity Mounted on

/dev/dsk/c0t0d0s0 2056211 1393407 601118 70% /
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
mnttab 0 0 0 0% /etc/mnttab
swap 9143992 24 9143968 1% /var/run
swap 9144040 72 9143968 1% /tmp
/dev/dsk/c0t0d0s6 9149485 5076967 3981024 57% /export/home1
/dev/dsk/c2t5d0s6 104938096 98730179 5158537 96% /var/spool/imap/staff
/dev/dsk/c2t5d1s6 69955723 60346350 8909816 88% /var/spool/imap/students

To see the Mounting Table: % cat /etc/mnttab

11.30 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

(a) Existing. (b) (a) Existing. (b) Unmounted Unmounted PartitionPartition

 11

11.31 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Mount PointMount Point
Mount at top level: “/”

11.32 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File SharingFile Sharing
 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing
method

11.33 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File Sharing File Sharing –– Multiple Users Multiple Users

 User IDs identify users, allowing permissions and
protections to be per-user

 Group IDs allow users to be in groups, permitting group
access rights

 12

11.34 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File Sharing File Sharing –– Remote File Systems Remote File Systems
 Uses networking to allow file system access between systems

 Manually via programs like FTP [better: SCP]
 Automatically, seamlessly using distributed file systems
 Semi automatically via the world wide web

 Client-server model allows clients to mount remote file systems
from servers
 Server can serve multiple clients
 Client and user-on-client identification is insecure or complicated
 NFS is standard UNIX client-server file sharing protocol
 CIFS is standard Windows protocol
 Standard operating system file calls are translated into remote calls

 Distributed Information Systems (distributed naming services)
such as LDAP, DNS [Web], NIS implement unified access to
information needed for remote computing

11.35 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File Sharing File Sharing –– Failure Modes Failure Modes
 Remote file systems add new failure modes, due to

network failure, server failure
 Recovery from failure can involve state information about

status of each remote request
 Stateless protocols such as NFS include all information in

each request, allowing easy recovery but less security

11.36 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

File Sharing File Sharing –– Consistency Semantics Consistency Semantics
 Consistency semantics specify how multiple users are to

access a shared file simultaneously
 Similar to Ch 7 process synchronization algorithms

Tend to be less complex due to disk I/O and network latency
(for remote file systems

 Andrew File System (AFS) implemented complex remote file
sharing semantics

 Unix file system (UFS) implements:
Writes to an open file visible immediately to other users of the

same open file
Sharing file pointer to allow multiple users to read and write

concurrently
 AFS has session semantics

Writes only visible to sessions starting after the file is closed

 13

11.37 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

ProtectionProtection
 File owner/creator should be able to control:

 what can be done
 by whom

 Types of access
 Read
 Write
 Execute
 Append
 Delete
 List

11.38 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Access Lists and GroupsAccess Lists and Groups

 Mode of access: read, write, execute
 Three classes of users

RWX
a) owner access 7 ⇒ 1 1 1

RWX
b) group access 6 ⇒ 1 1 0

RWX
c) public access 1 ⇒ 0 0 1

 Ask manager to create a group (unique name), say G, and add
some users to the group.

 For a particular file (say game) or subdirectory, define an
appropriate access.

owner group pub lic

chmod 761 game

Attach a group to a file
 chgrp friends /home/jennifer/game

