

 1

10.1 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Chapter 10: Virtual MemoryChapter 10: Virtual Memory
 Background
 Demand Paging
 Process Creation
 Page Replacement
 Allocation of Frames
 Thrashing
 Demand Segmentation
 Operating System Examples

10.2 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

BackgroundBackground
 Virtual memory – separation of user logical memory from

physical memory.
 Only part of the program needs to be in memory for execution.
 Logical address space can therefore be much larger than physical

address space.
 Allows address spaces to be shared by several processes.
 Allows for more efficient process creation.

 Virtual memory can be implemented via:
 Demand paging
 Demand segmentation

10.3 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Virtual Memory That is Larger Than Physical MemoryVirtual Memory That is Larger Than Physical Memory

⇒

 2

10.4 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Virtual-address SpaceVirtual-address Space

10.5 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Virtual Memory has Many UsesVirtual Memory has Many Uses
 It can enable processes to so share memory

10.6 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Shared Library Using Virtual MemoryShared Library Using Virtual Memory

 3

10.7 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Demand PagingDemand Paging
 Bring a page into memory only when it is needed

 Less I/O needed
 Less memory needed
 Faster response
 More users

 Page is needed ⇒ reference to it
 invalid reference ⇒ abort
 not-in-memory ⇒ bring to memory

10.8 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Transfer of a Paged Memory to Contiguous Disk SpaceTransfer of a Paged Memory to Contiguous Disk Space

10.9 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Valid-Invalid BitValid-Invalid Bit
 With each page table entry a valid–invalid bit is associated

(1 ⇒ in-memory, 0 ⇒ not-in-memory)
 Initially valid–invalid but is set to 0 on all entries
 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry
is 0 ⇒ page fault

1
1
1
1
0

0
0

M

Frame # valid-invalid bit

page table

 4

10.10 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page Table When Some Pages Are Not in Main MemoryPage Table When Some Pages Are Not in Main Memory

10.11 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page FaultPage Fault

 If there is ever a reference to a page, first reference will trap to
OS ⇒ page fault

 OS looks at another table to decide:
 Invalid reference ⇒ abort.
 Just not in memory.

 Get empty frame.
 Swap page into frame.
 Reset tables, validation bit = 1.
 Restart instruction: Least Recently Used

 block move

 auto increment/decrement location

10.12 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Steps in Handling a Page FaultSteps in Handling a Page Fault

 5

10.13 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

What happens if there is no free frame?What happens if there is no free frame?

 Page replacement – find some page in memory, but not really in
use [i.e., “least recently used”], swap it out
 algorithm (logic process for deciding which to choose)
 performance – want an algorithm which will result in minimum

number of page faults
 Same page may be brought into memory several times [if page

faults are occurring]

10.14 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Performance of Demand PagingPerformance of Demand Paging
 Page Fault Rate 0 ≤ p ≤ 1.0

 if p = 0 no page faults
 if p = 1, every reference is a fault

 Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

“swap page out” = “swap page in” x “probablity it has been changed”

10.15 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Demand Paging ExampleDemand Paging Example
 Memory access time = 1 microsecond (usec)
 50% of the time the page that is being replaced has been modified and

therefore needs to be swapped out

 Swap Page Time = 10 msec = 10,000 usec

EAT = (1 – p) x 1usec + p (1+ 0.50) 10000 usec
1 + 14999 x p (in usec)

If page fault rate p = 0.1% (0.001), then
EAT = 16 usec (16 times the memory access time)

Page faults can be zero for small data sizes that fit in memory.

 [Why will adding more memory speed up your PC?]

 6

10.16 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Process CreationProcess Creation
 Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

10.17 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Copy-on-WriteCopy-on-Write
 Copy-on-Write (COW) allows both parent and child processes to

initially share the same pages in memory

If either process modifies a shared page, only then is the page
copied [parent and child processes use different versions]

 COW allows more efficient process creation as only modified
pages are copied

 Free pages are allocated from a pool of zeroed-out pages

10.18 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page ReplacementPage Replacement
 Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk

 Page replacement completes separation between logical
memory and physical memory – large virtual memory can be
provided on a smaller physical memory

 7

10.19 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Need For Page ReplacementNeed For Page Replacement

10.20 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Basic Page ReplacementBasic Page Replacement
Find the location of the desired page on disk

Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement

algorithm to select a victim frame

Read the desired page into the (newly) free frame. Update the
page and frame tables.

Restart [continue] the process

10.21 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page ReplacementPage Replacement

 8

10.22 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page Replacement AlgorithmsPage Replacement Algorithms
 Want lowest page-fault rate
 Evaluate algorithm by running it on a particular string of memory

references (reference string) and computing the number of page
faults on that string

 In all our examples, the reference string is
2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 [1 is LRU]

10.23 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Graph of Page Faults Versus The Number of FramesGraph of Page Faults Versus The Number of Frames

10.24 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

First-In-First-Out (FIFO) AlgorithmFirst-In-First-Out (FIFO) Algorithm
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 3 frames (3 pages can be in memory at a time per process)

 4 frames

 FIFO Replacement – Belady’s Anomaly
 more frames (can) ⇒ more page faults (but not generally)

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

 9

10.25 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

FIFO Page ReplacementFIFO Page Replacement

10.26 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

FIFO Illustrating BeladyFIFO Illustrating Belady’’s Anomalys Anomaly
(Not the general case, but it can happen.)

10.27 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Optimal AlgorithmOptimal Algorithm
 Replace page that will not be used for longest period of time
 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?
 Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

 10

10.28 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Optimal Page ReplacementOptimal Page Replacement

-LRU

-LRU

-LRU

(Look Ahead - FIF = Farthest in Future)

LRU = 2 FIF = 0

10.29 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Least Recently Used (LRU) AlgorithmLeast Recently Used (LRU) Algorithm
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation
 Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter
 When a page needs to be changed, look at the counters to

determine which are to change. [inefficient -why?]

1

2

3

5

4

4 3

5

Previous values

10.30 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

LRU Page ReplacementLRU Page Replacement

 11

10.31 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

LRU Algorithm (Cont.)LRU Algorithm (Cont.)
 Stack implementation – keep a stack of page numbers in a

double link form:
 Page referenced:

move it to the top
requires 6 pointers to be changed

 No search for replacement (page at bottom of stack replaced)

10.32 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Use Of A Stack to Record The Most Recent Page ReferencesUse Of A Stack to Record The Most Recent Page References

Top

Bottom

Top

Linked List Pointers Changed

10.33 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

LRU Approximation AlgorithmsLRU Approximation Algorithms
 Reference bit

 With each page associate a bit, initially = 0
 When page is referenced bit set to 1 [indicates a second reference]
 Replace the first one which is 0 (if one exists). We do not know the

order, however. [move through pages in a circular manner]

 Second chance
 Need reference bit
 Clock replacement
 If page to be replaced (in clock order) has reference bit = 1 then:

 set reference bit 0
 leave page in memory
 replace next page (in clock order), subject to same rules

 12

10.34 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Reference Bit Page-Replacement AlgorithmReference Bit Page-Replacement Algorithm

Set to 0

Set to 0

Replace

“2nd Chance” replaces oldest (by clock) rather than “circular pointer”

10.35 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Counting AlgorithmsCounting Algorithms
 Keep a counter of the number of references that have been

made to each page

 LFU Algorithm: replaces page with smallest count

 MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be
used

10.36 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Allocation of FramesAllocation of Frames
 Each process needs minimum number of pages
 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to

 Two major allocation schemes
 fixed allocation
 priority allocation

 13

10.37 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Fixed AllocationFixed Allocation

 Equal allocation – e.g., if 100 frames and 5 processes,
give each 20 pages

 Proportional allocation – Allocate according to the size of
process

m
S

s
pa

m

sS

ps

i
ii

i

ii

!==

=

"=

=

 for allocation

frames of number total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2

!"=

!"=

=

=

=

a

a

s

s

m

i

10.38 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Priority AllocationPriority Allocation
 Use a proportional allocation scheme using priorities rather than

size

 If process Pi generates a page fault,
 select for replacement one of its frames - or -
 select for replacement a frame from a process with lower priority

number

10.39 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Global vs. Local AllocationGlobal vs. Local Allocation
 Global replacement – process selects a replacement frame

from the set of all frames; one process can take a frame from
another

 Local replacement – each process selects from only its own
set of allocated frames

 14

10.40 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

ThrashingThrashing
 If a process does not have “enough” pages, the page-fault rate

is very high. This leads to:
 low CPU utilization
 operating system thinks that it needs to increase the degree of

multiprogramming
 another process added to the system

 Thrashing ≡ a process is busy swapping pages in and out

10.41 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

ThrashingThrashing

 Why does paging work?
Locality model
 Process migrates from one locality to another
 Localities may overlap

 Why does thrashing occur?
Σ size of locality > total memory size

10.42 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Locality In A Memory-Reference PatternLocality In A Memory-Reference Pattern

 15

10.43 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Working-Set ModelWorking-Set Model
 Δ ≡ working-set window ≡ a fixed number of page references

Example: 10,000 instruction
 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent Δ (varies in
time)
 if Δ too small will not encompass entire locality
 if Δ too large will encompass several localities
 if Δ = ∞ ⇒ will encompass entire program

 D = Σ WSSi ≡ total demand frames
 if D > m ⇒ Thrashing
 Policy if D > m, then suspend one of the processes

10.44 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Working-set modelWorking-set model

10.45 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Keeping Track of the Working SetKeeping Track of the Working Set
 Approximate with interval timer + a reference bit
 Example: Δ = 10,000

 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all

reference bits to 0
 If one of the bits in memory = 1 ⇒ page in working set

 Why is this not completely accurate?
 Improvement = 10 bits and interrupt every 1000 time units

 16

10.46 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page-Fault Frequency SchemePage-Fault Frequency Scheme

 Establish “acceptable” page-fault rate
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

10.47 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Memory-Mapped FilesMemory-Mapped Files
 Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory

 A file is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

 Simplifies file access by treating file I/O through memory rather
than read() write() system calls

 Also allows several processes to map the same file allowing the
pages in memory to be shared

10.48 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Memory Mapped FilesMemory Mapped Files

 17

10.49 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Memory-Mapped Files in JavaMemory-Mapped Files in Java
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class MemoryMapReadOnly
{

// Assume the page size is 4 KB
public static final int PAGE SIZE = 4096;
public static void main(String args[]) throws IOException {

RandomAccessFile inFile = new RandomAccessFile(args[0],"r");
FileChannel in = inFile.getChannel();
MappedByteBuffer mappedBuffer =
 in.map(FileChannel.MapMode.READ ONLY, 0, in.size());
long numPages = in.size() / (long)PAGE SIZE;
if (in.size() % PAGE SIZE > 0)

++numPages;

10.50 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Memory-Mapped Files in Java (cont)Memory-Mapped Files in Java (cont)
// we will "touch" the first byte of every page
int position = 0;
for (long i = 0; i < numPages; i++) {

byte item = mappedBuffer.get(position);
position += PAGE SIZE;

}
in.close();
inFile.close();

}
}
 The API for the map() method is as follows:
map(mode, position, size)

10.51 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Other IssuesOther Issues
 Prepaging

 To reduce the large number of page faults that occurs at process startup
 Prepage all or some of the pages a process will need, before they are

referenced
 But if prepaged pages are unused, I/O and memory was wasted
 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than the cost of prepaging
s * (1- α) unnecessary pages?

 α near zero ⇒ prepaging loses
 Page size selection must take into consideration:

 fragmentation
 table size
 I/O overhead
 locality

 18

10.52 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Other Issues (Cont.)Other Issues (Cont.)

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB.
Otherwise there is a high degree of page faults.

TLB is Translation Look-aside Buffer

10.53 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Other Issues (Cont.)Other Issues (Cont.)

 Increase the Page Size. This may lead to an increase in
fragmentation as not all applications require a large page size.

 Provide Multiple Page Sizes. This allows applications that
require larger page sizes the opportunity to use them without an
increase in fragmentation.

10.54 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Other Issues (Cont.)Other Issues (Cont.)
 Program structure

 int A[][] = new int[1024][1024];
 Each row is stored in one page [page size = 4096 bytes]
 Program 1 for (j = 0; j < A.length; j++)

for (i = 0; i < A.length; i++)
A[i,j] = 0;

1024 x 1024 page faults

 Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults

[Moral: Inner loop should be over left-most array index.]

 19

10.55 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Other Considerations (Cont.)Other Considerations (Cont.)
 I/O Interlock – Pages must sometimes be locked into memory

 Consider I/O. Pages that are used for copying a file from a
device must be locked from being selected for eviction by a
page replacement algorithm.

10.56 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Reason Why Frames Used For I/O Must Be In MemoryReason Why Frames Used For I/O Must Be In Memory

10.57 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Demand SegmentationDemand Segmentation
 Used when insufficient hardware to implement demand paging.
 OS/2 allocates memory in segments, which it keeps track of

through segment descriptors
 Segment descriptor contains a valid bit to indicate whether the

segment is currently in memory.
 If segment is in main memory, access continues,
 If not in memory, segment fault.

 20

10.58 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Operating System ExamplesOperating System Examples
 Windows NT

 Solaris 2

10.59 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Windows XPWindows XP
 Uses demand paging with clustering. Clustering brings in

pages surrounding the faulting page.
 Processes are assigned working set minimum and working

set maximum
 Working set minimum is the minimum number of pages the

process is guaranteed to have in memory
 A process may be assigned as many pages up to its working set

maximum
 When the amount of free memory in the system falls below a

threshold, automatic working set trimming is performed to
restore the amount of free memory

 Working set trimming removes pages from processes that have
pages in excess of their working set minimum

10.60 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

SolarisSolaris
 Maintains a list of free pages to assign faulting processes
 Lotsfree – threshold parameter (amount of free memory) to

begin paging
 Desfree – threshold parameter to increasing paging
 Minfree – threshold parameter to being swapping
 Paging is performed by pageout process
 Pageout scans pages using modified clock algorithm
 Scanrate is the rate at which pages are scanned. This ranges

from slowscan to fastscan
 Pageout is called more frequently depending upon the amount

of free memory available

 21

10.61 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Solaris 2 Page ScannerSolaris 2 Page Scanner

