Chapter 10: Virtual Memory

Background

Demand Paging

Process Creation

Page Replacement
Allocation of Frames
Thrashing

Demand Segmentation
Operating System Examples

A

Operating System Concepts with Java 101 Siberschatz, Galvin and Gagne 62003

g Background

B Virtual memory — separation of user logical memory from
physical memory.

@ Only part of the program needs to be in memory for execution.

® Logical address space can therefore be much larger than physical
address space.

® Allows address spaces to be shared by several processes.
® Allows for more efficient process creation.

M Virtual memory can be implemented via:
©® Demand paging
©® Demand segmentation

A

Operating Sy stem Concepts with Java 102 Siberschatz, Galvin and Gagne €203

&

g Virtual Memory That is Larger Than Physical Memory

page 0

page 1

page 2

memory
map

page n physical
memory

virtual
memory

A

Operating Sy stem Concepts with Java 103 Siberschatz, Galvin and Gagne €203

} Virtual-address Space

Operating Sy stem Concepts with Java

Max

stack

heap

data

code

s

104

Siberschatz, Galvin and Gagne €203

Virtual Memory has Many Uses

B It can enable processes to so share memory

Operating Sy stem Concepts with Java

105

s

Siberschatz, Galvin and Gagne €203

"‘ Shared Library Using Virtual Memory

stack

}

shared library

stack

shared
pages

t

shared library

A

heap

data

code

Operating Sy stem Concepts with Java

106

s

Siberschatz, Galvin and Gagne €203

Demand Paging

B Bring a page into memory only when it is needed
® Less I/O needed
® Less memory needed
® Faster response
® More users

B Page is needed = reference to it
® invalid reference = abort
® not-in-memory = bring to memory

A

Siberschatz, Galvin and Gagne €203

Operating Sy stem Concepts with Java 107

+
&Transfer of a Paged Memory to Contiguous Disk Space
S—
orogram swap out ol 10 2[J 30J
A 4 5 6 7|
8] e[J10J 1]
12[]13J14[]15[]
Dro%ram ~__swapin 1607 ‘7I;_| ‘BIM
20[J21[]22[]23[]
v
main
Operating Sy stem Concepts with Java 108 Silberschatz, Galvin and Gagne €2003

Valid-Invalid Bit

B With each page table entry a valid—invalid bit is associated
(1 = in-memory, 0 = not-in-memory)

B |Initially valid-invalid but is set to 0 on all entries
B Example of a page table snapshot:

Frame # valid-invalid bit

o

0
0
e
B During address translation, if valid—invalid bit in page table entry

is 0 = page fault

A

Siberschatz, Galvin and Gagne €203

Operating Sy stem Concepts with Java 109

valid-invalid

o F
page table o
icont "
12
1
14
15
physical memory
¢
Operating System Concepts with Java 1010 Siberschatz, Galvin and Gagne €2003
B [f there is ever a reference to a page, first reference will trap to
OS = page fault
B OS looks at another table to decide:
@ |Invalid reference = abort.
® Just not in memory.
B Get empty frame.
B Swap page into frame.
B Reset tables, validation bit = 1.
B Restart instruction: Least Recently Used
@ block move
@ auto increment/decrement location
¢
Operating System Concepts with Java 1011 Siberschatz, Galvin and Gagne €2003
N .
Steps in Handling a Page Fault
) Ppageison
(3) " backing store
operating
system
veﬁevfnce
(1)
load M
restart | page table
instruction
froe —
(s
reset page
table missing page
physical
memory
¢
Operating System Concepts with Java 1012 Siberschatz, Galvin and Gagne €2003

What happens if there is no free frame?

B Page replacement — find some page in memory, but not really in
use [i.e., “least recently used”], swap it out
® algorithm (logic process for deciding which to choose)

® performance — want an algorithm which will result in minimum
number of page faults

B Same page may be brought into memory several times [if page
faults are occurring]

A

Siberschatz, Galvin and Gagne €203

Operating Sy stem Concepts with Java 1043

Performance of Demand Paging

B Page FaultRate 0= p<1.0
@ if p =0 no page faults
® if p =1, every reference is a fault

B Effective Access Time (EAT)
EAT = (1 — p) x memory access
+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

“swap page out” = “swap page in” x “probablity it has been changed’,
-

Operating System Concepts with Java 1014 Siberschatz, Galvin and Gagne 62003

Demand Paging Example

B Memory access time = 1 microsecond (usec)

B 50% of the time the page that is being replaced has been modified and
therefore needs to be swapped out

B Swap Page Time = 10 msec = 10,000 usec

EAT = (1 — p) x usec + p (1+ 0.50) 10000 usec
1+14999xp (in usec)

If page fault rate p = 0.1% (0.001), then
EAT = 16 usec (16 times the memory access time)

Page faults can be zero for small data sizes that fit in memory.

[Why will adding more memory speed up your PC?]

A

Siberschatz, Galvin and Gagne €203

Operating Sy stem Concepts with Java 1015

Process Creation

B Virtual memory allows other benefits during process creation:
- Copy-on-Write

- Memory-Mapped Files (later)

A

Operating System Concepts with Java 1016 Siberschatz, Galvin and Gagne 62003

Copy-on-Write

B Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

If either process modifies a shared page, only then is the page
copied [parent and child processes use different versions]

B COW allows more efficient process creation as only modified
pages are copied

B Free pages are allocated from a pool of zeroed-out pages

Operating System Concepts with Java 1017 Siberschatz, Galvin and Gagne 62003

Page Replacement

B Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement

B Use modify (dirty) bit to reduce overhead of page transfers —
only modified pages are written to disk

B Page replacement completes separation between logical
memory and physical memory — large virtual memory can be
provided on a smaller physical memory

A

Operating System Concepts with Java 1018 Siberschatz Galvin and Gagne 62003

Need For Page Replacement

valid—invalid
frame, Bt

logical memory page table
for user 1 for user 1

valid—invalid

frame, bt

physical
memory
L]

logical memory page table
for user 2 for user 2
¢
Operating System Concepts with Java 1019 Siberschatz, Galvin and Gagne €2003

Basic Page Replacement

==.Find the location of the desired page on disk

== Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

v=. Read the desired page into the (newly) free frame. Update the
page and frame tables.

v~ Restart [continue] the process

s

Operating Sy stem Concepts with Java 1020 Siberschatz, Galvin and Gagne €203

Page Replacement

frame. valid—invalid bit

swap out
change victim
toinvalid @ page
1] victim
reset page
table for
page table
new page
swap
desired
page in

physical
memory

s

Operating System Concepts with Java 1021 Siberschatz Galvin and Gagne 62003

ﬁ Page Replacement Algorithms

B Want lowest page-fault rate

B Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page
faults on that string

B In all our examples, the reference string is
2,3,4,1,2,5,1,2,3,4,5 [1isLRU]

A

Operating System Concepts with Java 1022 Siberschatz, Galvin and Gagne 62003

/‘Graph of Page Faults Versus The Number of Frames

16 [~
14
2
3 12f
)
g 10f
g
5 gl
5
3
£ 6
5
2
4k
2k
| | | | | |
1 2 3 4 5 6
number of frames
%ﬁ
Pl
Operating Sy stem Concepts with Java 1023 Siberschatz, Galvin and Gagne €2003

‘ First-In-First-Out (FIFO) Algorithm

B Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
B 3 frames (3 pages can be in memory at a time per process)

1]1]4 5
2121 3 9page faults
33|12 4
H 4 frames
11115 4
2 12| 1 5 10 page faults
3|32
4|43
B FIFO Replacement — Belady’s Anomaly %
® more frames (can) = more page faults (but not generally) (s &

Operating System Concepts with Java 1024 Siberschatz Galvin and Gagne 62003

reference string

page frames

s

Operating Sy stem Concepts with Java 1025 Siberschatz, Galvin and Gagne €203

FIFO lllustrating Belady’s Anomaly

(Not the general case, but it can happen.)

16
14
2
3 12
° - B
g 10
3 (\
g 8
k<) _//\
E 6
5
2
4
2
1 2 3 4 5 6 7
number of frames
s
Operating Sy stem Concepts with Java 1026 Siberschatz, Galvin and Gagne €2003

Optimal Algorithm

B Replace page that will not be used for longest period of time
B 4 frames example
1,2,8,4,1,2,5,1,2,8,4,5

1]
2

6 page faults

B How do you know this?
B Used for measuring how well your algorithm performs

s

Operating System Concepts with Java 1027 Siberschatz Galvin and Gagne 62003

Optimal Page Replacement

(Look Ahead - FIF = Farthest in Future)

reference string LRU =2 FIF=0
—
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

page frames

Operating Sy stem Concepts with Java 1028 Siberschatz, Galvin and Gagne €203

ﬁ Least Recently Used (LRU) Algorithm

B Reference string: 1,2,83,4,1,2,5,1,2,3,4,5
Previous values

B Counter implementation

® Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

® When a page needs to be changed, look at the counters to
determine which are to change. [inefficient -why?]

A

Operating Sy stem Concepts with Java 1029 Siberschatz, Galvin and Gagne €203

LRU Page Replacement

reference string

7 01 2 0 3 0 4 2 3 0 8 2 1 2 0 1t 7 0 1
Rk E N B E R R
Ll Lof [of [of el ol o] [2] o] [o]
HRRAERE

page frames

A

Operating Sy stem Concepts with Java 1030 Siberschatz, Galvin and Gagne €203

10

& LRU Algorithm (Cont.)

B Stack implementation — keep a stack of page numbers in a
double link form:

® Page referenced:
» move it to the top
» requires 6 pointers to be changed
® No search for replacement (page at bottom of stack replaced)

Operating System Concepts with Java 1031 Siberschatz, Galvin and Gagne 62003

reference string
4 7 0 7 1 0 1 2 1 2 7 1 2
Linked List Pointers Changed T T
e > a b
Top
Bottom —_
stack before a stack after b
Operating System Concepts with Java 1032 Siberschatz, Galvin and Gagne €2003

LRU Approximation Algorithms

B Reference bit
©® With each page associate a bit, initially = 0
©® When page is referenced bit set to 1 [indicates a second reference]

©® Replace the first one which is 0 (if one exists). We do not know the
order, however. [move through pages in a circular manner]

B Second chance
©® Need reference bit
® Clock replacement
@ |If page to be replaced (in clock order) has reference bit = 1 then:
» set reference bit 0
» leave page in memory
» replace next page (in clock order), subject to same rules

Operating Sy stem Concepts with Java 1033 Siberschatz, Galvin and Gagne €203

11

Reference Bit Page-Replacement Algorithm

“2nd Chance” replaces oldest (by clock) rather than “circular pointer”

reference pages reference pages
bits its
[o] [o]
¥ v
[o] Setto0 [o]
v v
next
vicum === 1 Setto0 [o]
v v
[1] Replace [o]
¥ 2
L[] »>6] []
o [
v v
K|
circular queue of pages circular queue of pages 4
(a) (b) [P ¢
Operating Sy stem Concepts with Java 1034 Siberschatz, Galvin and Gagne €2003

Counting Algorithms

B Keep a counter of the number of references that have been
made to each page

B LFU Algorithm: replaces page with smallest count

B MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be
used

A

Operating Sy stem Concepts with Java 1035 Siberschatz, Galvin and Gagne €203

& Allocation of Frames

B Each process needs minimum number of pages
B Example: IBM 370 — 6 pages to handle SS MOVE instruction:
@ instruction is 6 bytes, might span 2 pages
® 2 pages to handle from
® 2 pages to handle fo
B Two major allocation schemes
@ fixed allocation
® priority allocation

Operating Sy stem Concepts with Java 1036 Siberschatz, Galvin and Gagne €203

A

12

Fixed Allocation

B Equal allocation — e.g., if 100 frames and 5 processes,
give each 20 pages

B Proportional allocation — Allocate according to the size of

process
—s; =size of process p;
—S=3s;
—m = total number of frames m =64
) s s; =10
—a; =allocation for p; :gxm s, =127
10
- x64=5
AT
127
=_——x64 =59
T

A

Siberschatz, Galvin and Gagne €203

Operating Sy stem Concepts with Java 1037

Priority Allocation

M Use a proportional allocation scheme using priorities rather than
size

B |f process P, generates a page fault,
® select for replacement one of its frames - or -

® select for replacement a frame from a process with lower priority
number

A

Siberschatz, Galvin and Gagne €203

Operating Sy stem Concepts with Java 1038

Global vs. Local Allocation

B Global replacement — process selects a replacement frame
from the set of all frames; one process can take a frame from
another

B Local replacement — each process selects from only its own
set of allocated frames

A

Operating System Concepts with Java 1039 Siberschatz Galvin and Gagne 62003

13

g Thrashing

B If a process does not have “enough” pages, the page-fault rate
is very high. This leads to:

® low CPU utilization

® operating system thinks that it needs to increase the degree of
multiprogramming

® another process added to the system

B Thrashing = a process is busy swapping pages in and out

Operating Sy stem Concepts with Java 1040 Siberschatz, Galvin and Gagne €203

Thrashing

thrashing

CPU utiization

degree of multiprogramming

B Why does paging work?
Locality model
® Process migrates from one locality to another
® Localities may overlap

B Why does thrashing occur?
3 size of locality > total memory size

Operating System Concepts with Java 1041 Siberschatz, Galvin and Gagne 62003

B

i
5
;
:

IS o

el
R L e
L i

page numbers.

18 B i

Operating System Concepts with Java 1042 Siberschatz Galvin and Gagne 62003

14

Working-Set Model

B A = working-set window = a fixed number of page references
Example: 10,000 instruction
B WSS, (working set of Process P) =
total number of pages referenced in the most recent A (varies in
time)
@ if A too small will not encompass entire locality
® if A too large will encompass several localities
® if A = = = will encompass entire program
B D=3 WSS, = total demand frames
if D> m = Thrashing

B Policy if D> m, then suspend one of the processes

A

Operating System Concepts with Java 1043 Siberschatz, Galvin and Gagne 62003

‘ Working-set model

page reference table
...2615777751623412344434344413234443444 ...

A A
4 t
WS(t,) ={1,2,5,6,7} WS(t,) = {3,4}
%
(s §
Operating Sy stem Concepts with Java 1044 Siberschatz, Galvin and Gagne €203

ﬁ Keeping Track of the Working Set

B Approximate with interval timer + a reference bit
B Example: A = 10,000

® Timer interrupts after every 5000 time units

® Keep in memory 2 bits for each page

©® Whenever a timer interrupts copy and sets the values of all
reference bits to 0

@ If one of the bits in memory = 1 = page in working set
B Why is this not completely accurate?
B Improvement = 10 bits and interrupt every 1000 time units

A

Operating Sy stem Concepts with Java 1045 Siberschatz, Galvin and Gagne €203

15

‘ Page-Fault Frequency Scheme

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

number of frames

B Establish “acceptable” page-fault rate
® If actual rate too low, process loses frame
@ If actual rate too high, process gains frame

Operating System Concepts with Java 1046 Siberschatz, Galvin and Gagne 62003

Memory-Mapped Files

B Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

B Afile is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

m Simplifies file access by treating file I/O through memory rather
than read() write() system calls

B Also allows several processes to map the same file allowing the
pages in memory to be shared

Operating System Concepts with Java 1047 Siberschatz, Galvin and Gagne 62003

Memory Mapped Files

IEEEEEE
1 v
2 3 ' e E
i
R s -
III'I
6 >
Ty
Pary
R
'
1 o AR
process A 5 le=1-111 processB
virtual memory ' :vmualmemury
L
- ==
4 1
2 feH4---4

physical memory

1[2]3[4]5]6

disk file

Operating Sy stem Concepts with Java 1048 Siberschatz, Galvin and Gagne €203

Memory-Mapped Files in Java

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class MemoryMapReadOnly
{
/I Assume the page size is 4 KB
public static final int PAGE SIZE = 4096;
public static void main(String args[]) throws IOException {
RandomAccessFile inFile = new RandomAccessFile(args[0],"r");
FileChannel in = inFile.getChannel();
MappedByteBuffer mappedBuffer =
in.map(FileChannel.MapMode.READ ONLY, 0, in.size());
long numPages = in.size() / (long)PAGE SIZE;
if (in.size() % PAGE SIZE > 0)

++numPages;
(%q

Operating System Concepts with Java 1049 Siberschatz, Galvin and Gagne 62003

i Memory-Mapped Files in Java (cont)

/I we will "touch" the first byte of every page

int position = 0;

for (long i = 0; i < numPages; i++) {
byte item = mappedBuffer.get(position);
position += PAGE SIZE;

}

in.close();

inFile.close();

}
B The API for the map() method is as follows:
map(mode, position, size)

A

Operating Sy stem Concepts with Java 1050 Siberschatz, Galvin and Gagne €203

Other Issues

B Prepaging
@® To reduce the large number of page faults that occurs at process startup

©® Prepage all or some of the pages a process will need, before they are
referenced

@ But if prepaged pages are unused, I/0O and memory was wasted
©® Assume s pages are prepaged and « of the pages is used
» Is cost of s *a save pages faults > or < than the cost of prepaging
s *(1- @) unnecessary pages ?
» o near zero = prepaging loses
B Page size selection must take into consideration:
©® fragmentation
© table size
@ /O overhead
@ locality

A

Operating System Concepts with Java 1051 Siberschatz Galvin and Gagne 62003

Other Issues (Cont.)

B TLB Reach - The amount of memory accessible from the TLB

B TLB Reach = (TLB Size) X (Page Size)

B |deally, the working set of each process is stored in the TLB.
Otherwise there is a high degree of page faults.

TLB is Translation Look-aside Buffer

A

Operating System Concepts with Java 1052 Siberschatz, Galvin and Gagne 62003

Other Issues (Cont.)

B Increase the Page Size. This may lead to an increase in
fragmentation as not all applications require a large page size.

B Provide Multiple Page Sizes. This allows applications that
require larger page sizes the opportunity to use them without an
increase in fragmentation.

A

Operating System Concepts with Java 1053 Siberschatz, Galvin and Gagne 62003

Other Issues (Cont.)

B Program structure
@ int A[][] = new int[1024][1024];
® Each row is stored in one page [page size = 4096 bytes]

® Program 1 for (j = 0; j < A.length; j++)
for (i = 0; i < A.length; i++)
Ali,j] =0;
1024 x 1024 page faults
® Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)
Ali,j] =0;

1024 page faults

[Moral: Inner loop should be over left-most array index.]

A

Operating System Concepts with Java 1054 Siberschatz Galvin and Gagne 62003

18

Other Considerations (Cont.)

m /O Interlock — Pages must sometimes be locked into memory

B Consider I/0. Pages that are used for copying a file from a
device must be locked from being selected for eviction by a
page replacement algorithm.

A

Operating System Concepts with Java 1055 Siberschatz, Galvin and Gagne 62003

&
& Reason Why Frames Used For /O Must Be In Memory

buffer FL IS
| I magnetic-tape
drive
Operating System Concepts with Java 1056 Siberschatz, Galvin and Gagne €203

Demand Segmentation

B Used when insufficient hardware to implement demand paging.

B OS/2 allocates memory in segments, which it keeps track of
through segment descriptors

B Segment descriptor contains a valid bit to indicate whether the
segment is currently in memory.

® If segment is in main memory, access continues,
@ If not in memory, segment fault.

A

Operating System Concepts with Java 1057 Siberschatz Galvin and Gagne 62003

19

Operating System Examples

B Windows NT

B Solaris 2

A

Operating System Concepts with Java 108 Siberschatz, Galvin and Gagne 62003

Windows XP

B Uses demand paging with clustering. Clustering brings in
pages surrounding the faulting page.

B Processes are assigned working set minimum and working
set maximum

B Working set minimum is the minimum number of pages the
process is guaranteed to have in memory

B A process may be assigned as many pages up to its working set
maximum

B When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to
restore the amount of free memory

B Working set trimming removes pages from processes that have
pages in excess of their working set minimum

A

Operating System Concepts with Java 1059 Siberschatz, Galvin and Gagne 62003

Solaris

Maintains a list of free pages to assign faulting processes
Lotsfree — threshold parameter (amount of free memory) to
begin paging

Desfree — threshold parameter to increasing paging

Minfree — threshold parameter to being swapping
Paging is performed by pageout process
Pageout scans pages using modified clock algorithm

Scanrate is the rate at which pages are scanned. This ranges
from slowscan to fastscan

Pageout is called more frequently depending upon the amount
of free memory available

A

Operating System Concepts with Java 1080 Siberschatz Galvin and Gagne 62003

20

Solaris 2 Page Scanner

8192 |
fastscan
E]
e
c
§
g
3
100 |
islowscan
] |
T T T
minfree desfree lotsfree
amount of free memory
¢
Operating System Concepts with Java 1051 Siberschatz, Galvin and Gagne 62003

21

