

 1

10.1 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Chapter 10: Virtual MemoryChapter 10: Virtual Memory
 Background
 Demand Paging
 Process Creation
 Page Replacement
 Allocation of Frames
 Thrashing
 Demand Segmentation
 Operating System Examples

10.2 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

BackgroundBackground
 Virtual memory – separation of user logical memory from

physical memory.
 Only part of the program needs to be in memory for execution.
 Logical address space can therefore be much larger than physical

address space.
 Allows address spaces to be shared by several processes.
 Allows for more efficient process creation.

 Virtual memory can be implemented via:
 Demand paging
 Demand segmentation

10.3 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Virtual Memory That is Larger Than Physical MemoryVirtual Memory That is Larger Than Physical Memory

⇒

 2

10.4 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Virtual-address SpaceVirtual-address Space

10.5 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Virtual Memory has Many UsesVirtual Memory has Many Uses
 It can enable processes to so share memory

10.6 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Shared Library Using Virtual MemoryShared Library Using Virtual Memory

 3

10.7 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Demand PagingDemand Paging
 Bring a page into memory only when it is needed

 Less I/O needed
 Less memory needed
 Faster response
 More users

 Page is needed ⇒ reference to it
 invalid reference ⇒ abort
 not-in-memory ⇒ bring to memory

10.8 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Transfer of a Paged Memory to Contiguous Disk SpaceTransfer of a Paged Memory to Contiguous Disk Space

10.9 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Valid-Invalid BitValid-Invalid Bit
 With each page table entry a valid–invalid bit is associated

(1 ⇒ in-memory, 0 ⇒ not-in-memory)
 Initially valid–invalid but is set to 0 on all entries
 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry
is 0 ⇒ page fault

1
1
1
1
0

0
0

M

Frame # valid-invalid bit

page table

 4

10.10 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page Table When Some Pages Are Not in Main MemoryPage Table When Some Pages Are Not in Main Memory

10.11 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page FaultPage Fault

 If there is ever a reference to a page, first reference will trap to
OS ⇒ page fault

 OS looks at another table to decide:
 Invalid reference ⇒ abort.
 Just not in memory.

 Get empty frame.
 Swap page into frame.
 Reset tables, validation bit = 1.
 Restart instruction: Least Recently Used

 block move

 auto increment/decrement location

10.12 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Steps in Handling a Page FaultSteps in Handling a Page Fault

 5

10.13 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

What happens if there is no free frame?What happens if there is no free frame?

 Page replacement – find some page in memory, but not really in
use [i.e., “least recently used”], swap it out
 algorithm (logic process for deciding which to choose)
 performance – want an algorithm which will result in minimum

number of page faults
 Same page may be brought into memory several times [if page

faults are occurring]

10.14 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Performance of Demand PagingPerformance of Demand Paging
 Page Fault Rate 0 ≤ p ≤ 1.0

 if p = 0 no page faults
 if p = 1, every reference is a fault

 Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

“swap page out” = “swap page in” x “probablity it has been changed”

10.15 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Demand Paging ExampleDemand Paging Example
 Memory access time = 1 microsecond (usec)
 50% of the time the page that is being replaced has been modified and

therefore needs to be swapped out

 Swap Page Time = 10 msec = 10,000 usec

EAT = (1 – p) x 1usec + p (1+ 0.50) 10000 usec
1 + 14999 x p (in usec)

If page fault rate p = 0.1% (0.001), then
EAT = 16 usec (16 times the memory access time)

Page faults can be zero for small data sizes that fit in memory.

 [Why will adding more memory speed up your PC?]

 6

10.16 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Process CreationProcess Creation
 Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

10.17 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Copy-on-WriteCopy-on-Write
 Copy-on-Write (COW) allows both parent and child processes to

initially share the same pages in memory

If either process modifies a shared page, only then is the page
copied [parent and child processes use different versions]

 COW allows more efficient process creation as only modified
pages are copied

 Free pages are allocated from a pool of zeroed-out pages

10.18 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page ReplacementPage Replacement
 Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk

 Page replacement completes separation between logical
memory and physical memory – large virtual memory can be
provided on a smaller physical memory

 7

10.19 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Need For Page ReplacementNeed For Page Replacement

10.20 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Basic Page ReplacementBasic Page Replacement
Find the location of the desired page on disk

Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement

algorithm to select a victim frame

Read the desired page into the (newly) free frame. Update the
page and frame tables.

Restart [continue] the process

10.21 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page ReplacementPage Replacement

 8

10.22 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page Replacement AlgorithmsPage Replacement Algorithms
 Want lowest page-fault rate
 Evaluate algorithm by running it on a particular string of memory

references (reference string) and computing the number of page
faults on that string

 In all our examples, the reference string is
2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 [1 is LRU]

10.23 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Graph of Page Faults Versus The Number of FramesGraph of Page Faults Versus The Number of Frames

10.24 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

First-In-First-Out (FIFO) AlgorithmFirst-In-First-Out (FIFO) Algorithm
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 3 frames (3 pages can be in memory at a time per process)

 4 frames

 FIFO Replacement – Belady’s Anomaly
 more frames (can) ⇒ more page faults (but not generally)

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

 9

10.25 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

FIFO Page ReplacementFIFO Page Replacement

10.26 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

FIFO Illustrating BeladyFIFO Illustrating Belady’’s Anomalys Anomaly
(Not the general case, but it can happen.)

10.27 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Optimal AlgorithmOptimal Algorithm
 Replace page that will not be used for longest period of time
 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?
 Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

 10

10.28 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Optimal Page ReplacementOptimal Page Replacement

-LRU

-LRU

-LRU

(Look Ahead - FIF = Farthest in Future)

LRU = 2 FIF = 0

10.29 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Least Recently Used (LRU) AlgorithmLeast Recently Used (LRU) Algorithm
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation
 Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter
 When a page needs to be changed, look at the counters to

determine which are to change. [inefficient -why?]

1

2

3

5

4

4 3

5

Previous values

10.30 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

LRU Page ReplacementLRU Page Replacement

 11

10.31 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

LRU Algorithm (Cont.)LRU Algorithm (Cont.)
 Stack implementation – keep a stack of page numbers in a

double link form:
 Page referenced:

move it to the top
requires 6 pointers to be changed

 No search for replacement (page at bottom of stack replaced)

10.32 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Use Of A Stack to Record The Most Recent Page ReferencesUse Of A Stack to Record The Most Recent Page References

Top

Bottom

Top

Linked List Pointers Changed

10.33 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

LRU Approximation AlgorithmsLRU Approximation Algorithms
 Reference bit

 With each page associate a bit, initially = 0
 When page is referenced bit set to 1 [indicates a second reference]
 Replace the first one which is 0 (if one exists). We do not know the

order, however. [move through pages in a circular manner]

 Second chance
 Need reference bit
 Clock replacement
 If page to be replaced (in clock order) has reference bit = 1 then:

 set reference bit 0
 leave page in memory
 replace next page (in clock order), subject to same rules

 12

10.34 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Reference Bit Page-Replacement AlgorithmReference Bit Page-Replacement Algorithm

Set to 0

Set to 0

Replace

“2nd Chance” replaces oldest (by clock) rather than “circular pointer”

10.35 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Counting AlgorithmsCounting Algorithms
 Keep a counter of the number of references that have been

made to each page

 LFU Algorithm: replaces page with smallest count

 MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be
used

10.36 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Allocation of FramesAllocation of Frames
 Each process needs minimum number of pages
 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to

 Two major allocation schemes
 fixed allocation
 priority allocation

 13

10.37 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Fixed AllocationFixed Allocation

 Equal allocation – e.g., if 100 frames and 5 processes,
give each 20 pages

 Proportional allocation – Allocate according to the size of
process

m
S

s
pa

m

sS

ps

i
ii

i

ii

!==

=

"=

=

 for allocation

frames of number total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2

!"=

!"=

=

=

=

a

a

s

s

m

i

10.38 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Priority AllocationPriority Allocation
 Use a proportional allocation scheme using priorities rather than

size

 If process Pi generates a page fault,
 select for replacement one of its frames - or -
 select for replacement a frame from a process with lower priority

number

10.39 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Global vs. Local AllocationGlobal vs. Local Allocation
 Global replacement – process selects a replacement frame

from the set of all frames; one process can take a frame from
another

 Local replacement – each process selects from only its own
set of allocated frames

 14

10.40 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

ThrashingThrashing
 If a process does not have “enough” pages, the page-fault rate

is very high. This leads to:
 low CPU utilization
 operating system thinks that it needs to increase the degree of

multiprogramming
 another process added to the system

 Thrashing ≡ a process is busy swapping pages in and out

10.41 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

ThrashingThrashing

 Why does paging work?
Locality model
 Process migrates from one locality to another
 Localities may overlap

 Why does thrashing occur?
Σ size of locality > total memory size

10.42 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Locality In A Memory-Reference PatternLocality In A Memory-Reference Pattern

 15

10.43 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Working-Set ModelWorking-Set Model
 Δ ≡ working-set window ≡ a fixed number of page references

Example: 10,000 instruction
 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent Δ (varies in
time)
 if Δ too small will not encompass entire locality
 if Δ too large will encompass several localities
 if Δ = ∞ ⇒ will encompass entire program

 D = Σ WSSi ≡ total demand frames
 if D > m ⇒ Thrashing
 Policy if D > m, then suspend one of the processes

10.44 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Working-set modelWorking-set model

10.45 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Keeping Track of the Working SetKeeping Track of the Working Set
 Approximate with interval timer + a reference bit
 Example: Δ = 10,000

 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all

reference bits to 0
 If one of the bits in memory = 1 ⇒ page in working set

 Why is this not completely accurate?
 Improvement = 10 bits and interrupt every 1000 time units

 16

10.46 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Page-Fault Frequency SchemePage-Fault Frequency Scheme

 Establish “acceptable” page-fault rate
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

10.47 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Memory-Mapped FilesMemory-Mapped Files
 Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory

 A file is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

 Simplifies file access by treating file I/O through memory rather
than read() write() system calls

 Also allows several processes to map the same file allowing the
pages in memory to be shared

10.48 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Memory Mapped FilesMemory Mapped Files

 17

10.49 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Memory-Mapped Files in JavaMemory-Mapped Files in Java
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class MemoryMapReadOnly
{

// Assume the page size is 4 KB
public static final int PAGE SIZE = 4096;
public static void main(String args[]) throws IOException {

RandomAccessFile inFile = new RandomAccessFile(args[0],"r");
FileChannel in = inFile.getChannel();
MappedByteBuffer mappedBuffer =
 in.map(FileChannel.MapMode.READ ONLY, 0, in.size());
long numPages = in.size() / (long)PAGE SIZE;
if (in.size() % PAGE SIZE > 0)

++numPages;

10.50 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Memory-Mapped Files in Java (cont)Memory-Mapped Files in Java (cont)
// we will "touch" the first byte of every page
int position = 0;
for (long i = 0; i < numPages; i++) {

byte item = mappedBuffer.get(position);
position += PAGE SIZE;

}
in.close();
inFile.close();

}
}
 The API for the map() method is as follows:
map(mode, position, size)

10.51 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Other IssuesOther Issues
 Prepaging

 To reduce the large number of page faults that occurs at process startup
 Prepage all or some of the pages a process will need, before they are

referenced
 But if prepaged pages are unused, I/O and memory was wasted
 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than the cost of prepaging
s * (1- α) unnecessary pages?

 α near zero ⇒ prepaging loses
 Page size selection must take into consideration:

 fragmentation
 table size
 I/O overhead
 locality

 18

10.52 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Other Issues (Cont.)Other Issues (Cont.)

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB.
Otherwise there is a high degree of page faults.

TLB is Translation Look-aside Buffer

10.53 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Other Issues (Cont.)Other Issues (Cont.)

 Increase the Page Size. This may lead to an increase in
fragmentation as not all applications require a large page size.

 Provide Multiple Page Sizes. This allows applications that
require larger page sizes the opportunity to use them without an
increase in fragmentation.

10.54 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Other Issues (Cont.)Other Issues (Cont.)
 Program structure

 int A[][] = new int[1024][1024];
 Each row is stored in one page [page size = 4096 bytes]
 Program 1 for (j = 0; j < A.length; j++)

for (i = 0; i < A.length; i++)
A[i,j] = 0;

1024 x 1024 page faults

 Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults

[Moral: Inner loop should be over left-most array index.]

 19

10.55 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Other Considerations (Cont.)Other Considerations (Cont.)
 I/O Interlock – Pages must sometimes be locked into memory

 Consider I/O. Pages that are used for copying a file from a
device must be locked from being selected for eviction by a
page replacement algorithm.

10.56 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Reason Why Frames Used For I/O Must Be In MemoryReason Why Frames Used For I/O Must Be In Memory

10.57 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Demand SegmentationDemand Segmentation
 Used when insufficient hardware to implement demand paging.
 OS/2 allocates memory in segments, which it keeps track of

through segment descriptors
 Segment descriptor contains a valid bit to indicate whether the

segment is currently in memory.
 If segment is in main memory, access continues,
 If not in memory, segment fault.

 20

10.58 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Operating System ExamplesOperating System Examples
 Windows NT

 Solaris 2

10.59 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Windows XPWindows XP
 Uses demand paging with clustering. Clustering brings in

pages surrounding the faulting page.
 Processes are assigned working set minimum and working

set maximum
 Working set minimum is the minimum number of pages the

process is guaranteed to have in memory
 A process may be assigned as many pages up to its working set

maximum
 When the amount of free memory in the system falls below a

threshold, automatic working set trimming is performed to
restore the amount of free memory

 Working set trimming removes pages from processes that have
pages in excess of their working set minimum

10.60 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

SolarisSolaris
 Maintains a list of free pages to assign faulting processes
 Lotsfree – threshold parameter (amount of free memory) to

begin paging
 Desfree – threshold parameter to increasing paging
 Minfree – threshold parameter to being swapping
 Paging is performed by pageout process
 Pageout scans pages using modified clock algorithm
 Scanrate is the rate at which pages are scanned. This ranges

from slowscan to fastscan
 Pageout is called more frequently depending upon the amount

of free memory available

 21

10.61 Silberschatz, Galv in and Gagne ©2003Operating System Concepts with Java

Solaris 2 Page ScannerSolaris 2 Page Scanner

