
Review of Chap.s 6-8
Applied Operating System Concepts

-
Scheduling, Synchronization, Deadlocks

ECE3055a, Spring 3055

2

Module 5: Threads

• Thread Management Done
by User-Level Threads
Library

• Examples

- POSIX Pthreads

- Mach C-threads

- Solaris threads

• Supported by the Kernel

• Examples

- Windows 95/98/NT

 - Solaris

- Digital UNIX

3

Solaris 2 Threads

Java Thread Management

4

• suspend() – suspends execution of the currently running
thread.

• sleep() – puts the currently running thread to sleep for a
specified amount of time.

• resume() – resumes execution of a suspended thread.

• stop() – stops execution of a thread.

UNIX (POSIX) THREAD
MANAGEMENT

5

 MAIN() thread

ptread_create()

pthread_join()

thread-1 terminates

pthread_exit()

I/O block

I/O block

Classical Problems

6

Producer-Consumer (Bounded-Buffer)
Readers-Writers
Dining Philosophers
Resource Allocation

Mutual Exclusion
Critical Sections

7

Module 6: CPU Scheduling

• Basic Concepts

• Scheduling Criteria

• Scheduling Algorithms

• Multiple-Processor Scheduling

• Real-Time Scheduling

• Algorithm Evaluation

• Maximum CPU utilization obtained with multiprogramming

• CPU–I/O Burst Cycle – Process execution consists of a cycle of
CPU execution and I/O wait.

• CPU burst distribution

Histogram of CPU-burst Times

8

CPU Scheduler
• Selects from among the processes in memory that

are ready to execute, and allocates the CPU to one of
them.

• CPU scheduling decisions may take place when a
process:

1. Switches from running to waiting state.

2. Switches from running to ready state.

3. Switches from waiting to ready.

4. Terminates.

• Scheduling under 1 and 4 is nonpreemptive.

• All other scheduling is preemptive.

9

Find the order of processing and the run times for
 P1 (3 ticks), P2 (5 ticks), P3 (4 ticks), and P4 (1 tick)
 using (delta = 2 ticks, *where applicable)
 First-Come, First-Served (FCFS) Scheduling
 Shortest-Job-First (SJR) Scheduling

Preemptive*
Non-preemptive

 Round Robin*
 ===
Find the exponential average T of the last 5 burst lengths
(67, 89, 13, 56, 45) using a factor a =0.8 (67 is most recent)

 T = a*67 + a^2*89 + a^3*13 + a^4 * 56 + a^5 * 45
 = a * (67 + a*(89 + a*(13 + a*(56 + a*(45 + ...)))))
Find the next value if t=76 using one * and one + operation.

 T = a * (76 + <old value>) 10

Thread Scheduling

• Local Scheduling – How the threads library decides
which thread to put onto an available LWP.

• Global Scheduling – How the kernel decides which
kernel thread to run next.

• JAVA
– JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

– FIFO Queue is Used if There Are Multiple Threads With the
Same Priority.

JVM Schedules a Thread to Run When:
– The Currently Running Thread Exits the Runnable State.

– A Higher Priority Thread Enters the Runnable State
JVM Does Not Specify Whether Threads are Time-Sliced or Not.

11

Module 8: Deadlocks

 System Model
 Deadlock Characterization
 Methods for Handling Deadlocks
 Deadlock Prevention
 Deadlock Avoidance
 Deadlock Detection
 Recovery from Deadlock
 Combined Approach to Deadlock Handling

12

Deadlock can arise if four conditions hold simultaneously.

Mutual exclusion: only one process at a time can use a
resource.

Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other

processes.

No preemption: a resource can be released only voluntarily
by the process holding it, after that process has completed its

task.

Circular wait: there exists a set {P0,P1, ...,Pn} of waiting
processes such that P0 is waiting for a resource that is held by

P1, P1 is waiting for a resource that is held by P2, ...
13

Resource Allocation Graph

14

Example of a Graph With Cycle

15

Ensure that the system will never enter a deadlock state.

 Allow the system to enter a deadlock state and then recover.

 Ignore the problem and pretend that deadlocks never occur in
the system; used by most operating systems, including UNIX.

Methods for Handling Deadlocks

16

Requires that the system has some additional a priori information
available.

 Simplest and most useful model requires that each process
declare the maximum number of resources of each type that it
may need.

 The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

 Resource-allocation state is defined by the number of available
and allocated resources, and the maximum demands of the
processes.

Deadlock Avoidance

17

Example of Banker’s Algorithm

Which Order can P’s Run? (P1, P3, P4, P2, P0)
What resources are available after P3 runs? (7 4 3) 18

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

Deadlock Detection

Security

Must be considered in:
•Computer Hardware design
•Operating System Design
•Application Software Design
•All of the Above 19

