
1

ECE 3055
Quiz-2 Review

Computer-System Operation

• I/O devices and the CPU can execute concurrently.

• Each device controller is in charge of a particular
device type.

• Each device controller has a local buffer.

• CPU moves data from/to main memory to/from local
buffers

• I/O is from the device to local buffer of controller.

• Device controller informs CPU that it has finished its
operation by causing an interrupt.

2

Common Functions of Interrupts

• Interrupt transfers control to the interrupt service
routine generally, through the interrupt vector,
which contains the addresses of all the service
routines.

• Interrupt architecture must save the address of the
interrupted instruction.

• Incoming interrupts are disabled while another
interrupt is being processed to prevent a lost
interrupt.

• A trap is a software-generated interrupt caused either
by an error or a user request.

• An operating system is interrupt driven.

3

2

Interrupt Handling

• The operating system preserves the state of the CPU
by storing registers and the program counter.

• Determines which type of interrupt has occurred:

– polling

– vectored interrupt system

• Separate segments of code determine what action
should be taken for each type of interrupt

• “Trap” - a software driven interrupt

4

I/O Structure
• Synchronous - After I/O starts, control returns to user

program only upon I/O completion.

– wait instruction idles the CPU until the next interrupt

– wait loop (contention for memory access).

– At most one I/O request is outstanding at a time, no
simultaneous I/O processing (for a single “thread”) .

• Asynchronous - After I/O starts, control returns to user
program without waiting for I/O completion.

– System call – request to the operating system to allow user
to wait for I/O completion.

– Device-status table contains entry for each I/O device
indicating its type, address, and state.

– Operating system indexes into I/O device table to
determine device status and to modify table entry to
include interrupt.

5

Dual-Mode Operation
• Sharing system resources requires operating system

to ensure that an incorrect program cannot cause
other programs to execute incorrectly.

• Provide hardware support to differentiate between at
least two modes of operations.

1. User mode – execution done on behalf of a user.

2. Monitor mode (also supervisor mode or system
mode) – execution done on behalf of operating
system.

monitor user

Interrupt/fault

set user mode

6

3

Process Management

• A process is a program in execution. A process
needs certain resources, including CPU time,
memory, files, and I/O devices, to accomplish its
task.

• The operating system is responsible for the
following activities in connection with process
management.

– Process creation and deletion.

– process suspension and resumption.

– Provision of mechanisms for:

• process synchronization

• process communication
7

Main-Memory Management

• Memory is a large array of words or bytes, each with
its own address. It is a repository of quickly
accessible data shared by the CPU and I/O devices.

• Main memory is a volatile storage device. It loses its
contents in the case of system failure.

• The operating system is responsible for the
following activities in connections with memory
management:

– Keep track of which parts of memory are
currently being used and by whom.

– Decide which processes to load when memory
space becomes available.

– Allocate and deallocate memory space as needed.
8

Secondary-Storage Management

• Since main memory (primary storage) is volatile and
too small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to back up main memory.

• Most modern computer systems use disks as the
principle on-line storage medium, for both programs
and data.

• The operating system is responsible for the following
activities in connection with disk management:

– Free space management

– Storage allocation

– Disk scheduling
9

4

I/O System Management

•The I/O system consists of:
– A buffer-caching system

– A general device-driver interface

– Drivers for specific hardware devices

10

Command-Interpreter System
• Many commands are given to the operating system by control

statements which deal with:

– process creation and management

– I/O handling

– secondary-storage management

– main-memory management

– file-system access

– protection

– networking
• The program that reads and interprets control statements is

called variously:

– control-card interpreter

– command-line interpreter

– shell (in UNIX)

– GUI = Desktop + Window Manager

 Its function is to get and execute the next command statement.
11

Operating System Services

• Program execution – system capability to load a program into
memory and to run it.

• I/O operations – since user programs cannot execute I/O
operations directly, the operating system ust provide some
means to perform I/O.

• File-system manipulation – program capability to read, write,
create, and delete files.

• Communications – exchange of information between processes
executing either on the same computer or on different systems
tied together by a network. Implemented via shared memory or
message passing .

• Error detection – ensure correct computing by detecting errors
in the CPU and memory hardware, in I/O devices, or in user
programs.

12

5

System Calls

• System calls provide the interface between a running
program and the operating system.

– Generally available as assembly-language instructions.

– Languages defined to replace assembly language for
systems programming allow system calls to be made
directly (e.g., C. Bliss, PL/360)

• Three general methods are used to pass parameters between a
running program and the operating system.

– Pass parameters in registers.

– Store the parameters in a table in memory, and the table
address is passed as a parameter in a register.

– Push (store) the parameters onto the stack by the program,
and pop off the stack by operating system.

13

System Programs

• System programs provide a convenient environment for
program development and execution. The can be divided into:

– File manipulation

– Status information

– File modification

– Programming language support

– Program loading and execution

– Communications

– Application programs

• Most users’ view of the operation system is defined by system
programs, not the actual system calls.

14

UNIX System Structure

(GUI, Mouse & Keyboard Controllers)

15

6

Virtual Machines

• A virtual machine takes the layered approach to its
logical conclusion. It treats hardware and the
operating system kernel as though they were all
hardware.

• A virtual machine provides an interface identical to
the underlying bare hardware.

• The operating system creates the illusion of multiple
processes, each executing on its own processor with
its own (virtual) memory.

16

Process Concept
• An operating system executes a variety of programs:

– Batch system – jobs

– Time-shared systems – user programs or tasks

• Textbook uses the terms job and process almost interchangeably.

• Process – a program in execution; process execution must progress in
sequential fashion.

• A process includes:

– program counter

– stack

– data section

• As a process executes, it changes state

– new: The process is being created.

– running: Instructions are being
executed.

– waiting: The process is waiting for
some event to occur.

– ready: The process is waiting to be
assigned to a process.

– terminated: The process has finished
execution.

17

Process Control Block (PCB)

18

7

Context Switch

• When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process.

• Context-switch time is overhead; the system does no
useful work while switching (frequently the major
bottleneck in modern systems)

• Time dependent on hardware support.

19

Threads
• A thread (or lightweight process) is a basic unit of

CPU utilization; it consists of:

– program counter

– register set

– stack space

• A thread shares with its peer threads its:

– code section

– data section

– operating-system resources

collectively know as a task.

• A traditional or heavyweight process is equal to a
task with one thread

20

• Responsiveness (Blocked and non-blocked)

• Resource Sharing

• Economy

• Utilization of Multi-Proc. Architectures

• User and Kernal-supported threads
– Many-to-One

– One-to-One

– Many-to-Many

Threads

21

8

Module 9: Memory
Management

• Logical versus Physical Address Space

• Swapping

• Contiguous Allocation

• Paging

• Segmentation

• Segmentation with Paging

22

Binding of Instructions and Data to Memory

• Compile time: If memory location known a priori,
absolute code can be generated; must recompile code
if starting location changes. Locations on Stack
(address = offset from Stack Point).

• Load time: Must generate relocatable code if
memory location is not known at compile time.

• Execution time: Binding delayed until run time if
the process can be moved during its execution from
one memory segment to another. Need hardware
support for address maps (e.g., base and limit
registers).

Address binding of instructions and data to memory addresses can
happen at three different stages.

23

• The concept of a logical address space that is bound
to a separate physical address space is central to
proper memory management.

– Logical address – generated by the CPU; also
referred to as virtual address.

– Physical address – address seen by the memory
unit.

• Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme.

Logical vs. Physical Address Space

24

9

Swapping

• A process can be swapped temporarily out of memory to a
backing store , and then brought back into memory for continued
execution.

• Backing store – fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access to
these memory images.

• Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed.

• Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

• Modified versions of swapping are found on many systems, i.e.,
UNIX and Microsoft Windows.

25

Paging Example

26

Segmentation

• Memory-management scheme that supports user view
of memory.

• A program is a collection of segments. A segment is a
logical unit such as:

main program,

procedure,

function,

local variables, global variables,

common block,

stack,

symbol table, arrays

27

10

Module 10: Virtual Memory

• Background

• Demand Paging

• Performance of Demand Paging

• Page Replacement

• Page-Replacement Algorithms (Optimal, FIFO,
LRU)

• Allocation of Frames

• Thrashing

• Other Considerations

• Demand Segmentation

28

• Virtual memory – separation of user logical
memory from physical memory.

– Only part of the program needs to be in
memory for execution.

– Logical address space can therefore be
much larger than physical address space.

– Need to allow pages to be swapped in and
out.

• Virtual memory can be implemented via:

– Demand paging

– Demand segmentation

29

Demand Paging

• Bring a page into memory only when it is needed.

– Less I/O needed

– Less memory needed

– Faster response

– More users

• Page is needed ⇒ reference to it

– invalid reference ⇒ abort

– not-in-memory ⇒ bring to memory

30

11

Page Fault
• If there is ever a reference to a page, first reference

will trap to
OS ⇒ page fault

• OS looks at another table to decide:
– Invalid reference ⇒ abort.

– Just not in memory.

• Get empty frame.

• Swap page into frame.

• Reset tables, validation bit = 1.

• Restart instruction: Least Recently Used

– block move

31

Demand Paging Example

• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced has been
modified and therefore needs to be swapped out.

• Swap Page Time = 10 msec = 10,000 usec

EAT = (1 – p) x 1us + p (15000us)

1 + 15000 P (in usec)

Obviously we would like P to be much less than 1

If P = 0.0001, then EAT = 1 + 1.5 = 2.5 usec

32

Module 11: File-System Interface

• File Concept

• Access Methods

• Directory Structure

• Protection

• File-System Structure

• Allocation Methods

• Free-Space Management

• Directory Implementation

• Efficiency and Performance

• Recovery

33

12

File Attributes

• Name – only information kept in human-readable
form.

• Type – needed for systems that support different
types.

• Location – pointer to file location on device.

• Size – current file size.

• Protection – controls who can do reading, writing,
executing.

• Time, date, and user identification – data for
protection, security, and usage monitoring.

• Information about files are kept in the directory
structure, which is maintained on the disk.

34

File Operations

• create

• write

• read

• reposition within file – file seek

• delete

• truncate

• open(Fi) – search the directory structure on disk for
entry Fi, and move the content of entry to memory.

• close (Fi) – move the content of entry Fi in memory
to directory structure on disk.

35

36

Two-Level Directory

• Separate directory for each user.

• Path name

• Can have the same file name for different user

• Efficient searching

• No grouping capability

13

Acyclic-Graph Directories

• Have shared subdirectories and files (no circle paths -
versus a “General-Graph Directory)

37

Various Disk-Caching Locations

38

Module 12: I/O Systems

• I/O hardware

• Application I/O Interface

• Kernel I/O Subsystem

• Transforming I/O Requests to Hardware
Operations

• Performance

39

14

Interrupts
• CPU Interrupt request line triggered by I/O device

• Interrupt handler receives interrupts

• Maskable to ignore or delay some interrupts

• Interrupt vector to dispatch interrupt to correct
handler

– Based on priority

– Some unmaskable

• Interrupt mechanism also used for exceptions

40

• I/O system calls encapsulate device behaviors in generic classes

• Device-driver layer hides differences among I/O controllers
from kernel

• Devices vary in many dimensions

– Character-stream or block

– Sequential or random-access

– Sharable or dedicated

– Speed of operation

– read-write, read only, or write only

• Block devices include disk drives

– Commands include read, write, seek

– Raw I/O or file-system access

– Memory-mapped file access possible

• Character devices include keyboards, mice, serial ports

– Commands include get, put

– Libraries layered on top allow line editing

41

Improving Performance

• Reduce number of context switches, page faults

• Reduce data copying

• Reduce interrupts by using large transfers, smart
controllers, polling

• Use DMA

• Balance CPU, memory, bus, and I/O performance for
highest throughput

42

15

Module 13: Secondary-Storage

• Disk Structure

• Disk Scheduling

• Disk Management

• Swap-Space Management

• Disk Reliability

• Stable-Storage Implementation

• Tertiary Storage Devices

• Operating System Issues

• Performance Issues

43

Disk Scheduling
• The operating system is responsible for using hardware

efficiently — for the disk drives, this means having a fast
access time and disk bandwidth.

• Access time has two major components

– Seek time is the time for the disk are to move the heads
to the cylinder containing the desired sector.

– Rotational latency is the additional time waiting for the
disk to rotate the desired sector to the disk head.

– - 7200 rpm / 60 - 120 rps -> 8 ms per rotation

• Minimize seek time

• Seek time ≈ seek distance

• Disk bandwidth is the total number of bytes transferred,
divided by the total time between the first request for service
and the completion of the last transfer.

• Access algorithms: FCFS (FIFO), SSTF, SCAN, C-SCAN,
LOOK, C-LOOK)

44

Swap-Space Management
• Swap-space — Virtual memory uses disk space as an

extension of main memory.

• Swap-space can be carved out of the normal file system,or,
more commonly, it can be in a separate disk partition.

• Swap-space management

– 4.3BSD allocates swap space when process starts; holds
text segment (the program) and data segment.

– Kernel uses swap maps to track swap-space use.

– Solaris 2 allocates swap space only when a page is
forced out of physical memory, not when the virtual
memory page is first created.

• Disk striping uses a group of disks as one storage unit.

• RAID schemes improve performance and improve the
reliability of the storage system by storing redundant data.

– Mirroring or shadowing keeps duplicate of each disk.

– Block interleaved parity uses much less redundancy.
45

