
Instruction Set Architecture 1

 Instruction Set
Architecture

This chapter moves the level of abstraction at which the datapath is programmed up above the micro-
code level to the assembly language level. Microinstructions are replaced by assembly instructions that
specify operations and data rather than the value of every control signal. As a result the datapath must
be augmented with control logic that generates the control signals that implement each assembly
instruction. This chapter describes the set of instructions and the modifications to the single cycle data-
path to decode these instructions. It is now possible to describe how programs written in C or Java are
implemented - by translating them into programs comprised of the assembly instructions.

Raising the Level of Abstraction

To this point we have written microcode by taking a computation, breaking it up into a sequence of ele-
mentary steps such that each step can be executed in one cycle on this datapath. Our description of the
behavior of each step can be expressed in a register transfer level (RTL) notation of the following form.

The notation specifies that the contents of registers R2 and R3 are to be added and the result placed in
register R1. We can see that such a level of description is clearly preferable to specifying the values of

R1 R2 R3+=

Instruction Set Architecture

2 Instruction Set Architecture

30 control signals that would implement this step in the datapath. It is compact, easier to remem-
ber, can be written with less knowledge of the hardware and is generally less error prone. This is
the level at which we would prefer to describe the operation of the datapath. Describing computa-
tions at this level rather than microcode also serves as an implementation independent description.
Automated tools could then translate such RTL descriptions into microcode for a specific datapath.

While the preceding expression is an easy way to write RTL expressions machine readable forms
generally look quite different. The syntax used for the assembly language of the MIPS R3000/4000
series of processors is the following.

add $10, $8, $9

The 32 registers in the register file are denoted as $0, $1, $2,...,$31. This above construct is
referred to as an instruction. Additional information is necessary to determine which of the regis-
ters correspond to sources of data and which register will be the destination of the operation. A typ-
ical convention followed in the MIPS R3000/4000 processors is the following: $8 and $9 are the
sources of data or source operands. Register $10 is the destination of the result or destination
operand and add is the operation. This instruction signifies that the contents of $8 should be
added to the contents of $9 and the result should be placed in $10. From the operation of the data-
path we know that such an instruction can be implemented in one control word. We can similarly
introduce instructions for other arithmetic and logical operations. These additional instructions will
also have source operands and destination operands in registers.

How about accesses to memory? There are two basic operations with respect to memory. The
access of data from memory and the storage of data to memory. The former is referred to as mem-
ory load operation and can be expressed with the following instruction.

lw $10, $8

Register $8 contains the address of a location in memory. This address is treated as a word address,
The 32-bit value stored at that address is loaded into register $10. Storage of data to memory is
achieved with the memory store operation and can be expressed with the following instruction.

sw $10, $8

Register $8contains the address of a location in memory. This address is treated as a word address,
The 32-bit value in register $10 stored at that address.

We now have the beginnings of a set of instructions or instruction set, namely that of the MIPS/
R3000/4000.

Instruction Set Architecture 3

Raising the Level of Abstraction

The Instruction Set

Some of the instructions supported in the single cycle GT SPIM datapath are shown in Table 1. We will
refer to these instructions as native instructions since each instruction can be implemented with a single
microinstruction. In fact the datapath can implement 21 native operations: addition, subtraction, shift
logical, shift arithmetic, rotate, and 16 logical operations. Each of these operations can be performed
with a pair of source registers and a single destination register resulting in 21 native instructions. To this
set we can add the lw and sw memory instructions raising the total number of native instructions to 23.
Note that Table 1 only shows three logic instructions and the logic unit will support thirteen more possi-
ble combinations for which corresponding assembly language mnemonics and instructions could be
defined.

While the basic operations in the datapath are fixed, flexibility in choice of operands increases the num-
ber of native instructions we might define. For example, an addi $10, $8, 4 instruction can be added
where one of the source operands is the contents of the immediate value register. Other such instruc-
tions such as subi, xori and roti can also be defined. These instructions can also be executed in a single
microinstruction. In principle for each of the 23 native instructions we can define another native instruc-
tion where one of the operands is drawn from the immediate value register. Of course the utility of hav-
ing all of these additional instructions is another matter! Note that Table 1 does not show these
additional instructions with an immediate operand.

Instruction Interpretation

add $10, $8, $9 $10 = $8 + $9

sub $10, $8, $9 $10 = $8 - $9

and $10, $8, $9 $10 = $8 and $9

or $10, $8, $9 $10 = $8 or $9

xor $10, $8, $9 $10 = $8 xor $9

sa $10, $8, $9 (shift arith-
metic)

The contents of $8 are shifted by the
amount in $9 and placed in $10

sl $10, $8, $9 (logical) The contents of $8 are rotated by the
amount in $9 and placed in $10

rot $10, $8, $9 (rotate) The contents of $8 are shifted by the
amount in $9 and placed in $10

lw $10, $8 $10 = M[$8]

sw $10, $8 M[$8] = $10

TABLE 1. Native Instructions supported by the GT SPIM datapath

Instruction Set Architecture

4 Instruction Set Architecture

The Big Picture

So where do these assembly instructions exist in our everyday experience of writing and executing
C or Java programs? This is best captured in Figure 1. High level language programs written in,
say C or Java, are first translated into sequences of assembly language instructions. This process is
referred to as compilation and is performed by a compiler. In this process variables in the source
program become registers or memory locations in the assembly program. Note that we manipulate
variables and abstract data structures in a source program. In contrast assembly instructions manip-
ulate hardware entities such as registers, adder/subtractors, and memories. Thus, we see that the
compiler is burdened with the task of taking variables and data structure elements from the source
program and placing them in registers or memory and generating the instructions that perform the
operations described in the source program. Each of these assembly instructions may now be
decoded to produce the control signals that cause that assembly instruction to be executed. The
design of this decoding logic will be the last topic that we address in this chapter after we have
completed a discussion of a few more elements of this datapath. In particular, before we can begin
decoding instructions we must understand how these assembly instructions are encoded in the first
place.

Instruction Formats

Several different types of instructions were defined in the previous section. From Figure 1 it is
apparent that these instructions must eventually be translated into the microinstructions that drive
the datapath. The decode logic that performs this translation operates on an instruction to produce
the correct values of the control signals. How are these instructions stored? Like everything else in
digital systems, an instruction is stored as a binary pattern. Since the GT SPIM datapath operates
on 32-bit quantities there is an inherent advantage in encoding each instruction into 32-bit words.
The specific rules for encoding instructions into 32-bit words is captured in the instruction format.
At this point we can distinguish two basic instruction formats: register format and immediate for-
mat.

Register Format

Just as control words have fields and formats, instructions are encoded in binary according to a for-
mat fixed by the machine designers. Consider the following register-to-register instruction.

add $10, $8, $9

An encoding into a 32-bit binary number must record the operation (addition) the source operands
(registers $8 and $9) and the destination operand (register $10). The R-format used to encode

Instruction Set Architecture 5

Instruction Formats

such register-to-register instructions is shown in Figure 2. The opcode is a 6-bit field that encodes the
type of operation, for example, an addition operation. A 6-bit opcode enables us to define up to 64
instructions. The source and destination operands are specified using 5-bit fields since each field can
specify up to 32 registers. The remaining bits are currently unused but will find application later in the
development of the datapath. Let us assume that the opcode for register-to-register addition is 100100,
and that the unused bits have a value of 0. Registers $10, $8, and $9 are refer to registers numbered 10,

add $10, $8, $9
xor $13, $11, $12
lw $15, $16
..
..

101010111100110101010111010101
101010111100110101010110001101
101111111100110101010111010101
101010111100110101010110000101
101101011100110101010111010101

high level language
program, e.g., Java

assembly language program

control words

 Datapath

FIGURE 1. Implementing high level language programs

compiler performs
this translation

assembler performs
the encoding

Instruction Set Architecture

6 Instruction Set Architecture

8, and 9. With 32 registers in the datapath 5 bits are required to encode each of the registers used in
the instruction. The resulting encoding of the above instruction is 0x91484800. All register-to-reg-
ister operations are encoded in this manner producing a 32-bit binary encoding.

A second class of instructions are the memory operations. The load word instruction, lw, requires
two registers. For example, an instruction that loads a register with a word from memory is written
as

lw $10, $28

In this case the register $10 is loaded with the contents of memory at the address given by the con-
tents of register $28. The load instruction can be encoded using the R-format. The register contain-
ing the address is encoded in the X field while the destination register is encoded in the Z field. The
bits in the remaining fields are set to 0.

The store instruction is structured similarly and can also be encoded using the same format.

sw $10, $28

The contents of $10 are stored in memory at the address given by the contents of $28.

Immediate Format

Often we encounter operations where one of the operands is a constant. For example, it is common
to increment a value by 1 or to multiply a number by 2. In these cases it would be convenient to
define an instruction format wherein one of the operands is a constant rather than a register. One
such format is the I-format shown in Figure 2. To understand how this format is used consider the
following instruction.

FIGURE 2. Instruction formats

opcode X YZR-format

opcode Z X ImmediateI-format

TBD (To Be Defined)

01015202531

015202531

Instruction Set Architecture 7

Instruction Formats

addi $10, $8, 4

This instruction will cause the value of 4 to be added to the contents of $8 with the resulting value
stored in $10. Note the instruction mnemonic. The “i” in addi stands for immediate signifying that this
value is immediately available rather than having to be read from a register or memory. In this case the
value can be encoded with the instruction using the I-format and thus accounting for the 16-bit immedi-
ate field in the instruction format. If the opcode for the addi instruction is 001000, using the I-format,
the encoded value of the instruction addi $10, $8, 4 is 0x21480004. We can similarly conceive of
immediate versions of all of the instructions shown in Table 1. For example, subi, sai, and sli.

Writing Programs

With the instructions defined so far we can write programs of the following form.

lw $10, $28

addi $28, $28, 4

lw $8, $28

add $9, $10, $8

addi $28, $28, 4

sw $9, $28

The preceding program loads two words from successive locations in memory, and computes the sum in
$9 and stores the result back in memory. It is evident that writing programs comprised of such instruc-
tions is certainly preferable to writing microcode and is equivalent to describing computations using the
RTL expressions presented at the beginning of this chapter.

Consider what we have learned so far. From the chapter on Memory Systems we can write sequences of
data directives to store data in memory. We can also now write sequences of instructions that can pro-
cess this data. Collectively these two program components permit us to write programs at the register
transfer or assembly language level. At this level we deal with hardware entities such as registers and
memory as opposed to variables and abstract data types that we find in high level languages such as
Java or C. The programmer’s view of the machine is as a group of registers, a linear memory address
space and a set of operations permitted using data stored in registers. If you are given a list of instruc-
tions and the operations they perform, you can be off and running writing interesting assembly language
programs for all manner of computations. At this point the only capability missing is the ability to input
data values from files or the keyboard and output data values to the files or the screen. Such operations
are usually a function of the specific language and associated programming tools and can be found in
documentation available with the specific programming tools being used. We will be using the SPIM

Instruction Set Architecture

8 Instruction Set Architecture

simulator to execute programs written in SPIM, a subset of the MIPS R3000/4000 assembly lan-
guage.

The set of instructions and the hardware entities that the instructions manipulate, such as registers,
is collectively referred to as the Instruction Set Architecture (ISA). We now continue with the
development of the datapath to include the decoding of the assembly instructions and the logic
required for the execution of programs comprised of assembly language instructions and data
directives.

The Instruction Register and the Datapath

Since we would rather not write microinstructions, the assembly instructions form the interface
between ourselves and the hardware. How are the encoded assembly instructions integrated into
the datapath? How is the instruction encoding used to derive the control signals that implement the
instruction? Solutions to these questions lead to the definition of the remaining components of the
GT SPIM datapath.

FIGURE 3. Single cycle datapath with an instruction register

ld en

memory

register
file

32 x 32

555

rwe

au en
-a/sarithmetic

unit

im en

lu en
logical

unit

lf4lf4
su en

shift
unit

st2st2

addr

data

r/-wmsel

st en

sign extension

Z X Yop

Instruction Set Architecture 9

Next Instruction Logic and the Complete Single Cycle Datapath

Each instruction is encoded into a 32-bit pattern and stored in a special register referred to as the
instruction register (IR). The instruction register is integrated into the datapath as shown in Figure 3.
The X, Y, and Z fields of the instruction are connected to the corresponding inputs of the register file. In
other words, bits 25-21of the IR are connected to the Z address port of the register file, bits 20-16 of the
IR are connected to the X address port of the register file, and bits 15-11 of the IR are connected to the
Y address port of the register file. Therefore when an encoded R-format instruction is placed in the IR
the X, Y, and Z fields of the instruction provide the addresses of the registers whose contents are placed
on the X and Y buses as well as the address of the register which receives the contents of the result of
the operation.

I-format instructions contain a 16-bit immediate value. This value serves as one of the operands and
must be available on the Y bus. The ALU, logical unit and the shift units operate on 32-bit operands.
The 16-bit immediate value must be extended to a 32-bit quantity. For positive numbers this is quite
easy. We simply add leading zeros. For example, 0x1664 is equivalent to 0x00001664. However what if
the number is a twos complement number where the most significant bit is 1 to signify a negative num-
ber? In this case the leading 16 bits that are added must be 1s (remember binary arithmetic!). Such an
operation is referred to as sign extension since the sign bit of the 16-bit number is effectively
“extended” to fill the remaining 16 bits. This relatively simple combinational logic block appears in
Figure 3 as the sign extension unit. Consider an addi instruction. The 16-bit immediate field of the
instruction now appears as a 32-bit operand on the Y bus. The imm en control signal enables the output
of the sign extension unit while inhibiting the output of the register file that would otherwise drive the Y
bus.

From the perspective of microcode the operation of the datapath has not changed. However, as a pro-
grammer it is now significantly easier to write programs although we are left with one problem. The
instruction register can only hold one instruction at a time. Where do we store the large number of
instructions that constitute a program? Why in memory of course! And how are these instructions trans-
ferred and placed in the IR? Instruction fetch logic is added to the datapath and we move one step closer
to a complete datapath.

Next Instruction Logic and the Complete Single Cycle Datapath

Just as 32-bit data quantities are stored in memory 32-bit encoded instructions can also be stored in
memory. We begin with the idea that we have a separate memory module for storing encoded instruc-
tions. Successive instructions are stored in contiguous words in memory. Given such an arrangement of
instructions we are interested in designing the logic that will cause each of these instructions to be
fetched and placed in the IR. A little thought will reveal the behavior of the instruction fetch logic. The
first instruction must be loaded or fetched into the IR. After this instruction has been executed, the next

Instruction Set Architecture

10 Instruction Set Architecture

instruction should be fetched and executed. This process is repeated until all of the instructions
have been executed. Implementation of this behavior can be realized as follows.

The datapath makes use of a special 32-bit register referred to as the program counter (PC). The
program counter contains the address of the next instruction to be fetched and executed. Let us
assume that the PC is initialized to the value 0x00000000 and we have a distinct memory module,
instruction memory, that is used to store the instructions. While the datapath is operational the con-
tents of the PC is sent to instruction memory and a read operation is asserted. The memory module
returns the contents of location 0x00000000 which is the first encoded instruction. This instruction
is stored in the instruction register. Now we wish to fetch the next instruction stored at location
0x00000004 (remember this is a byte addressed memory and each word take four bytes). The PC
must be incremented by 4 and the process repeated to fetch the next instruction. This cycle of
incrementing the PC by 4 and fetching instructions is repeated until the program terminates. The
behavior is quite intuitive and the logic to implement this is shown in Figure 4. Each time and
instruction is fetched the PC is incremented by 4 in preparation for the access of the next instruc-
tion. The implementation of the timing of the instruction fetch operation is described following the
description of the controller.

This model of execution, fetch-decode-execute, is referred to as the von Neuman model in recogni-
tion of mathematician John von Neuman who is credited with his colleagues for the formulation of
the model. Apart from special purpose machines the architectures of the vast majority of modern

FIGURE 4. Instruction fetch logic

+

address
Instruction Memory

PC 4

Instruction Register

+

address
Instruction Memory

PC 4

Instruction Register

Instruction Set Architecture 11

The Controller

computers are derived from this basic model. The datapath integrated with the instruction fetch logic is
shown in Figure 5.

The Controller

The remaining issue is the generation of the control signal values from the encoded instruction. The
instruction opcode encodes the operation to be performed on the operands specified by the instruction.
We require logic that decodes this opcode producing the corresponding control signals. This digital
logic component that performs this decoding operation is referred to as a controller and will appear
integrated into the datapath as shown in Figure 6.

As a prelude to this design we must provide a complete and unambiguous specification of the function-
ality of the control logic. Such a specification can be provided in a truth table. To simplify matters we

FIGURE 5. The single cycle datapath with instruction fetch logic

memory

register
file

32 x 32

555

rwe

au en
-a/sarithmetic

unit

im en

lu en
logical

unit

lf4lf4
su en

shift
unit

st2st2

addr

data

r/-wmsel

st en

sign extension

Next Instr
Logic

Next Instr
Logic

Z X Yop

Instruction Set Architecture

12 Instruction Set Architecture

will consider the design of a controller that supports only the instructions shown in Table 2. Asso-
ciated with the instructions are shown the values of the opcodes that used for each instruction. Note
the addition of the nop instruction. As the name suggests this instruction “does nothing”. It is often
quite useful to have such an instruction and one application will be shown in an implementation of
the controller.

FIGURE 6. The complete single cycle datapath

ld en

memory

register
file

32 x 32

555

rwe

au en
-a/sarithmetic

unit

im en

lu en
logical

unit

lf4lf4
su en

shift
unit

st2st2

addr

data

r/-wmsel

st en

sign extension

Next Instr
Logic

Next Instr
Logic

Z X Yop

ControllerController

Control
Signals

Instruction Set Architecture 13

The Controller

With these opcode values and knowing the values of the control signals required to implement each
instruction, the following truth table specification of the operation of the controller can be constructed
as shown in Table 3. The first column represents the truth table inputs, namely the 6-bit opcode. The
remaining columns provide the corresponding values of each control signal required to implement the

instruction. With 6-bit inputs there are actually 26=64 rows for this truth table. However, we have only
shown those rows that are relevant, that is, for the instructions from Table 2. These are the only instruc-
tions that we will implement for the example single cycle datapath. For the controller that we are
designing the operation of the datapath is undefined for other opcode values.

Instruction Opcode Value

add $10, $8, $9 100000

sub $10, $8, $9 100010

and $10, $8, $9 100100

or $10, $8, $9 100101

lw $10, $8 100011

sw $10, $8 101011

addi $10, $8, 4 001000

nop 000000

TABLE 2. Opcode values for selected instructions

Opcode (Instr) rwe
imm
en

au
en a/s

lu
en lf

su
en st

st
en

ld
en r/w msel

100000 (add) 1 0 1 0 0 0000 0 00 0 0 0 0

100010 (sub) 1 0 1 1 0 0000 0 00 0 0 0 0

100100 (and) 1 0 0 0 1 1000 0 00 0 0 0 0

100101 (or) 1 0 0 0 1 1110 0 00 0 0 0 0

100011 (lw) 1 0 0 0 0 0000 0 00 0 1 1 1

101011 (sw) 0 0 0 0 0 0000 0 00 1 0 0 1

001000 (addi) 1 1 1 0 0 0000 0 00 0 0 0 0

000000 (nop) 0 0 0 0 0 0000 0 00 0 0 0 0

TABLE 3. Controller truth table

Instruction Set Architecture

14 Instruction Set Architecture

There are several alternative implementations of this truth table. Two alternatives are discussed in
the following.

Implementation 1: Read Only Memory (ROM)

Imagine a memory module designed such that a 16-bit value is stored at each address. Further-
more, consider a special type of memory from which values can only be read but not written. Such
a memories are referred to as Read Only Memories (ROM). In this case values must be pro-
grammed into the memory module and once programmed can never be changed. We will use a
ROM to store the control signal values shown in Table 3 in the following manner.

Consider the values of the 16 bits stored at memory address 0x100000. This address corresponds to
the opcode signifying the addition operation. The contents of this memory location correspond to
the 16 values in row 1 of Table 3. Similarly the values of the 16 bits stored at memory address
100100 correspond to the values in row 3 of Table 3. The operation of the ROM is functionally
identical to that of a RAM. The opcode value is used as the address and the contents at that address
correspond to the values of the 16 control signals required to implement the corresponding instruc-
tion. With a 6-bit opcode the ROM will have 64, 16-bit words. However not all of the memory
locations will correspond to valid (according to Table 3) instructions. Those locations that do not
correspond to valid instructions can be filled with values corresponding to the nop instruction.

rwe
imm en
au en
a/s
lu en
lf (4 bits)
su en
st (2 bits)
st en
ld en
r/w
msel

6 bits

opcode

ROM

FIGURE 7. Controller ROM

Instruction Set Architecture 15

Putting It All Together

The opcode field of the instruction register can drive the address lines of the ROM. Each of the outputs
of the ROM will be connected to the corresponding control signal in the datapath as shown Figure 7. As
long as the ROM is correctly initialized to the correct values at each memory address this ROM will
essentially serve as the mechanism for the translation of the opcode into control signal values. Each
time a new instruction is loaded into the instruction register a new set of signals will be delivered to the
datapath.

Implementation 2: Hardware Implementation

From the design of combinational logic systems the implementation of the truth table of Table 3 can be
pursued via logic minimization with K-Maps and a hardware implementation using gates or program-
mable logic arrays (*material to be added*).

Putting It All Together

Now we can take a step back and with an example program take a look at the big picture. Let us start
with the example program shown in Figure 8. This program is comprised of two main components. The
first part is a set of data directives that describe the placement of data in memory. The data directives are
preceded with a.data command to indicate to the assembler (reference Figure 1) that the following text
is to be interpreted as data directives. The second component of the program is the assembly language
instructions. These instructions are preceded by the.text command. The program simply reads two num-
bers from memory stored at consecutive locations and computes their sum. The sum is stored in mem-

.data

.word 0x22

.word 0x44

.text
lw $10, $28
addi $28, $28, 4
lw $9, $28
add 11, $10, $9
addi $28, $28, 4
sw $11, $28

FIGURE 8. An example assembly language program

Instruction Set Architecture

16 Instruction Set Architecture

ory at the third location. The first location in data memory and instruction memory is address is
assumed to be 0x00000000 in this example. Let us start with the creation of this program and trace
its behavior through execution on the datapath of Figure 6.

We might write such a program using a text editor and saving it to a file. Alternatively we may
have written a simple program in C and the program shown in Figure 8 could have been generated
by a compiler from this C program. In either case the textual representation of the program must be
translated into the binary form suitable for storage and execution. This is the function of the assem-
bler. An assembler will process the program in Figure 8 and encode each instruction into a 32-bit
pattern according to the format definitions provided in Figure 2. Each data directive will be pro-
cessed to cause the appropriate values to be loaded into data memory. For example, in the sample
program the assembler will cause the value of 0x22 to be stored in data memory at address
0x00000000 and the value 0x44 to be stored in data memory at location 0x00000004. Each of the
instructions will be stored in a single word at successive locations starting at address 0x00000000
in instruction memory. In practice another program called the loader will take the output of the
assembler and perform the task of loading instruction and data memory. The memory contents
resulting from this assembly procedure is shown in Figure 9. The assembler’s job is now done we
proceed to the execution of the program.

Let us assume that the PC is initialized to the value 0x00000000. This is the address that is sent to
memory. The the 32-bit word from that address is fetched into the IR. This word is the encoding of

Data Memory Contents

0x00

0x00

0x00

0x22

0x00

0x00

0x00

0x44

Instruction Memory Contents

0x00

0x00

0x44

0x8c

0x00

0x00

0x42

0x20

0x00

0x00

0x62

0x8c

0x00000000

0x00000004

0x00000008

0x00000000

0x00000004

0x00000008

FIGURE 9. Storage pattern resulting from the assembly of the program in Table 8

Instruction Set Architecture 17

Datapath Timing

the lw $10, $28 instruction. The opcode field of the instruction drives the address inputs to the control-
ler ROM. The set of control signal values that are read from the ROM drive the datapath causing the
contents of $28 (whose value is assumed to be initially 0x00000000) to be sent to the address input of
data memory. The contents of this location are fetched and placed in $10. Now the program counter is
incremented by 4 (refer to Figure 4) and the encoded value of the next instruction is fetched and placed
in the IR. This instruction is an immediate instruction. The lower sixteen bits of this instruction contains
the value 0x0004. This value forms the input to the sign extension unit which makes available the value
0x00000004 at the output of the sign extension unit. The opcode field will cause the corresponding con-
trol word to be fetched which will have the value of imm en equal to 1. This will cause the immediate
value to be placed on the Y bus and form one of the two inputs to the adder/subtractor unit whose output
is written to $28. The value of $28 is now 0x00000004. The following instruction will use the contents
of $28 as an address into data memory which contains the value 0x00000044. The fetch-decode-exe-
cute process is repeated until the program execution is completed.

Datapath Timing

Consider how the single cycle datapath operates. An instruction is fetched from instruction memory and
placed in the IR. The fields of this instruction now drive several datapath components. The X, Y, and Z
fields drive the address inputs to the register file. The opcode drives the input to the controller and the
lower 16 bits of the address drives the sign extension unit. How do each of the datapath components
respond to their respective inputs?

The controller uses the opcode input to produce the values of all of the corresponding control signals.
These values are available after a period of time corresponding to the delay to access the contents of the
control ROM. Now each of the control signals can set the behavior of the corresponding datapath com-
ponents. The X and Y address inputs of the register file cause the contents of these two registers to
become available on the X and Y buses respectively where they can be processed by one of the individ-
ual datapath units with the resulting value placed on the Z bus if necessary (if it is not a memory store
operation). The values of the register file control signals will determine if the Z bus value is to be writ-
ten into the destination register. When all of this activity has ceased the next instruction can be fetched
and the process is repeated.

Clearly the next instruction cannot be fetched until the execution of the previous instruction has been
completed although we do wish to fetch it as soon as possible to ensure the highest possible rate of exe-
cution of instructions. The solution to the “when” an instruction can be fetched can be described with
the respect to the next instruction logic in Figure 4. Note that whenever the PC is changed a new
instruction is fetched. The PC is immediately incremented by 4 and this new value is available at the
inputs to the PC. Since the IR is loaded as a consequence of loading the PC, a new instruction cycle
starts with the loading of the PC with the next value. The loading of the PC can be controlled with the

Instruction Set Architecture

18 Instruction Set Architecture

clock signals as portrayed in Figure 10. It is necessary to ensure that the clock periods are long
enough to ensure that any instruction will complete execution prior to the loading of the PC with
the address of the next instruction.

It is instructive to trace the execution of an instruction during a cycle, that is, between successive
instruction fetch operations. Familiarity with the internal design of all of the datapath components
makes this possible and leads to a detailed understanding of the datapath operation.

Instruction Set Architectures (ISA)

A programmers view of the datapath is comprised of the set of registers R0-R31 and the set of
instructions that can operate on data in the registers as well as transfer data between registers and
memory. The register set and instruction set do form a specification of the hardware that can serve
as target for compilers and programmers. It can also serve as a starting point for computer archi-
tects and logic designers who would then proceed to design the hardware datapath that would exe-
cute programs written using this instructions set. This view of the datapath referred to as the
Instruction Set Architecture or ISA.

FIGURE 10. Two phase non-overlapping clocks for controlling the datapath

PC is updated on a pair of edges

phi1

phi2

