Name	
GT#	

Bring this homework to class on Friday March 26.

HW-7. Finite State Machine - Circuit Design

1. Design a synchronous circuit with a two-bit counter (output is C1,C0, negative-edge triggered) that counts the number of 1's in a row (from input X). When X=0, or a third "1" in a row is detected, resets the counter output, C1, C0, to 0,0.

You will need two

Example Input (X) and output (Ci):

X:	0	1	1	1	1	0	0	1	0	1	1	0	1	1	1	0
C1,C0	0	01	10	00	01	00	00	01	00	01	10	00	01	10	00	00

X --->

Input		C0
	COUNTER	
Reset		C1

Clock ---->

Input (X))	Q
Edge-Ti	riggered La	itch
Enable	Clock	Q'

Name	
GT#	

2. Complete the table below. A "2M x 16" memory has 2M words of 16 bits.

Memory	Total Bits	# of addresses	# of address lines	# of data lines
4M x 8				
1M x 32				
128K x 16				
1K x 4				

B. 3. Show how to connect these 1M x 16 chips to make a 2M by 16 memory.

