\qquad

HW-7. Finite State Machine - Circuit Design

Design the logic to implement the following FSM. This is the state diagram for a Mealy machine with 3 states that outputs a " 1 " on every third " 1 " received as input, no matter how many " 0 "s are intermingled. For example:

Input: 010110100101110110110
Output: $0000 \overline{1} 000000 \overline{1} 000 \overline{1} 000 \overline{10} 0$

This is the truth table for the logic that is needed. $\mathrm{P} 1, \mathrm{P} 0$ is the present state, Number the states such that $2 * \mathrm{P} 1+\mathrm{P} 0$ is the number of 1's seen in the present sequence of 3 . N1,N0 the next state.

P1	P0	Input	N1	N0	Output
0	0	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
0	0	1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
0	1	0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
0	1	1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
1	0	0	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
1	0	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Answer \qquad
$\mathrm{N} 1=\mathrm{P} 1 \cdot \mathrm{I}^{\prime}+\mathrm{P} 0 \cdot \mathrm{I}$

Input (I) - P1,P0	00	01	11	10
0	0	0	x	1
1	0	1	x	0

$\mathrm{N} 0=\mathrm{P} 0 \bullet \mathrm{I}^{\prime}+\mathrm{P} 1^{\prime} \bullet \mathrm{P} 0^{\prime} \bullet \mathrm{I}$

Input (I) - P1,P0	00	01	11	10
0	0	1	x	0
1	1		0	x

Output $=\mathrm{P} 1 \bullet \mathrm{P} 0^{\prime} \bullet \mathrm{I}$

Input (I) - P1,P0	00	01	11	10
0	0	0	x	0
1	0	0	x	1

\qquad

$$
\begin{aligned}
& \mathrm{N} 1=\mathrm{P} 1 \bullet \mathrm{I}^{\prime}+\mathrm{P} 0 \bullet \mathrm{I} \\
& \mathrm{~N} 0=\mathrm{P} 0 \cdot \mathrm{I}^{\prime}+\mathrm{P} 1^{\prime} \cdot \mathrm{P} 0^{\prime} \cdot \mathrm{I} \\
& \text { Output }=\mathrm{P} 1 \cdot \mathrm{P} 0^{\prime} \cdot \mathrm{I}
\end{aligned}
$$

Not-Connected Lines

Connected Lines

