
HW-7. Finite State Machine - Circuit Design

Design the logic to implement the following FSM. This is the state diagram for a Mealy machine with 3 states that outputs a "1" on every third "1" received as input, no matter how many "0"s are intermingled. For example:

Input: 010110100101110110110
Output: 00001000001000100010

This is the truth table for the logic that is needed. P1,P0 is the present state, Number the states such that 2*P1 + P0 is the number of 1's seen in the present sequence of 3. N1,N0 the next state.

P1	P0	Input	N1	N0	Output
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	0	0	1

_____ Answer _____

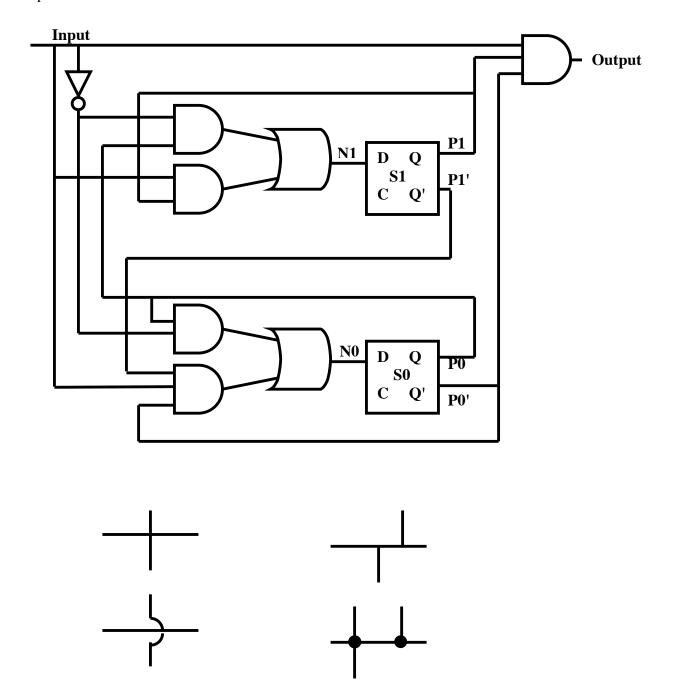
 $N1 = P1 \bullet I' + P0 \bullet I$

Input (I) - P1,P0	00	01	11	10	
0	0	0 0		1	
1	1 0		X	0	

 $N0 = P0 \bullet I' + P1' \bullet P0' \bullet I$

Input (I) - P1,P0	00	01	11	10	
0	0	1	X	0	
1	1	0	X	0	

Output = $P1 \cdot P0' \cdot I$


Input (I) - P1,P0	00	01	11		10	
0	0	0	X	0		
1	0	0	X		1	

$$N1 = P1 \bullet I' + P0 \bullet I$$

$$N0 = P0 \bullet I' + P1' \bullet P0' \bullet I$$

Not-Connected Lines

Output = $P1 \cdot P0' \cdot I$

Connected Lines