\qquad

Bring this homework to class on Monday Feb. 19 for discussion. Turn it in on Friday Feb. 23.

1. Combinatorial Logic - Name the building block that will do the following.
a. A 4-bit number (0-15) input selects one of 16 other inputs to appear at the single output. Multiplexer (Mux)
b. A 4-bit number (0-15) input causes only one of 16 outputs to be true or " 1 "

Decoder
c. A 4-bit number (0-15) input causes only one of 16 outputs to be equal to another input. Demultiplexer (Demux)
d. Sixteen inputs are labeled 0 to 15 . The two-bit output is the binary number of the lowestnumbered input that in true (two words).

Encoder

e. The input data bits to a 4-bit shifter are 1011. The control inputs are "E" Enable (0 -> straight through, $1->$ shift), "D" Direction ($0->$ left, $1->$ right), "R" Rotate ($1->$ be a Rotator). Fill in the following table. Q3 - Q0 are the four output bits.

Enable	Direction	Rotate	Q3	Q2	Q1	Q0
0	1	0	1	0	1	1
1	1	0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
1	0	1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
1	1	1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

2. Sequential Logic

The following is an negative edge triggered latch Shown are the Input "D" and Clock "C" signals as functions of time " t ". Draw in the output $\mathrm{Q}(\mathrm{t})$ signal.

\qquad
3. State Machine Draw a state diagram for a circuit that counts from 0 to 3 in binary and then repeats (input always "-", output Q0 Q1: 00, 01, 10, 11, 00, 01, 10, 11, 00, ...)

Fill in the truth table for the logic that is needed:
Present State Values [$\mathrm{P}_{0}(\mathrm{t}), \mathrm{P}_{1}(\mathrm{t})$] Next State Values Ni(t)

| Time | P0 | P1 | N0 | N1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\mathbf{0}$ | $\mathbf{1}$ |
| 1 | 0 | 1 | $\mathbf{1}$ | $\mathbf{0}$ |
| 2 | 1 | 0 | $\mathbf{1}$ | $\mathbf{1}$ |
| 3 | 1 | 1 | $\mathbf{0}$ | $\mathbf{0}$ |

For additional practice, see the problems on the ECE2030 Web Site, http://www.ece.gatech.edu/academic/courses/ece2030/

