
R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-1

PROCEDURE CALLS

•CHAPTER XV

CHAPTER XV

PROCEDURE CALLS AND SUBROUTINES

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-5

MIPS ASSEMBLY
MIPS REGISTER NAMES

ISA

•ISA
•PROGRAM PATH

-TRANSLATING CODE
-EXECUTING CODE

• For MIPS assembly, many registers have alternate names or specific uses.

Register Name(s) Use
0 $zero always zero (0x00000000)
1 reserved for assembler
2-3 $v0-$v1 results and expression evaluation
4-7 $a0-$a3 arguments
8-15 $t0-$t7 temporary values
16-23 $s0-$s7 saved values
24-25 $t8-$t9 temporary values
26-27 reserved for operating system
28 $gp global pointer
29 $sp stack pointer
30 $fp frame pointer
31 $ra return address

John Copeland
Copied from slide set 13

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-2

PROCEDURE CALLS
INTRODUCTION

PROCEDURE CALLS

•PROCEDURE CALLS
-INTRODUCTION

• Branches and jumps are important program control constructs, but another

important extension of program control are procedure calls, often referred

to as subroutines.

• Three basic steps form of a subroutine call

• Program control is changed

• from the current routine

• to the beginning of the subroutine code.

• Subroutine code is executed.

• Program control is changed

• from end of subroutine

• to the calling routing immediately* after subroutine call

instruction.

* Note: Not quite accurate for the MIPS architecture.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-3

PROCEDURE CALLS
PROGRAM FLOW

PROCEDURE CALLS

•PROCEDURE CALLS
-INTRODUCTION

• We can illustrate how subroutine calls change program flow as follows.

n
n + 1
n + 2

subroutine call (Sample 1)
n + 4
n + 5

...
n + m

n + m + 1
subroutine call (Sample 2)

n + m + 3
...

p
p + 1

...
p + k

return from subroutine

Sample 1 subroutine code

q
q + 1

...
q + r

return from subroutine

Sample 2 subroutine code

Main routine instructions
PC

PC+4
PC+8

PC+12
PC+16
PC+20

PC+4*m
PC+4*(m+1)
PC+4*(m+2)
PC+4*(m+3)

*

*

* Note: Not quite accurate for the MIPS architecture.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-4

MACHINE STATE
SAVING MACHINE STATE

PROCEDURE CALLS

•PROCEDURE CALLS
-INTRODUCTION
-PROGRAM FLOW

• How can program flow be changed to a subroutine?

• PC = address of 1st instruction of subroutine

• And then returned from a subroutine call?

• PC = address of instruction after subroutine call instruction

• The idea is to save the state of the machine.

• In the most basic microprocessor, saving the state means to save the PC

in a known location!

• Some microprocessors also save other registers during a procedure call.

• MIPS only saves the PC and then restores the PC after the subroutine.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-5

MACHINE STATE
SAVING STATE TO $RA

PROCEDURE CALLS

•PROCEDURE CALLS
•MACHINE STATE

-SAVING MACHINE STATE
-MIPS REGISTER NAMES

• For MIPS, the primary location for saving the PC is in $31/$ra.

• MIPS uses the instruction jal <imm> (jump and link)

• jal is J-format type instruction.

• Stores the return address in $ra, i.e. $ra = PC + 4*.

• Performs jump such as with the j instruction.

• At the end of the subroutine, the instruction jr $ra is executed to return to

calling routing.

• This causes the contents of $ra to be put into PC

• i.e. PC = $ra which after the original jal instruction is PC = PC + 4*.

* Note: Not quite accurate for the MIPS architecture.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-6

MACHINE STATE
EXAMPLE PROCEDURE CALL

PROCEDURE CALLS

•MACHINE STATE
-SAVING MACHINE STATE
-MIPS REGISTER NAMES
-SAVING STATE TO $RA

• Below is an example piece of pseudo-code that has been translated in

assembly with a main routine and a square root subroutine.

b = 6;

a = sqrt(b);
move $a0, $s1

move $s0, $v0
add $s0, $s0, $s1

lwi $s1, 0x06

Pseudo-Code MIPS Assembly

jal sqrt

...
a = a + b;

sqrt: ...

main routine

...
jr $ra

(use $s0 for a, $s1 for b)
square root subroutine

(argument in $a0, result in $v0)

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-7

MACHINE STATE
SAVING STATE TO REGISTER

PROCEDURE CALLS

•MACHINE STATE
-MIPS REGISTER NAMES
-SAVING STATE TO $RA
-EXAMPLE PROC. CALL

• Another approach to saving the PC is the in the form jalr $<dest>, $<src>

(jump and link register) instruction.

• jalr is roughly an R-format type instruction.

• Stores the return address in $<dest>, i.e. $5 = PC + 4*.

• Performs jump such as with the jr <$src> instruction.

• At the end of the subroutine, to return from the subroutine the following can

be executed.

• jr $<dest> (i.e. jr $5)

• Another option for returning from a subroutine is to execute

• jalr $0, $5,

• or even jalr $<new dest>, $5.

* Note: Not quite accurate for the MIPS architecture.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-8

MACHINE STATE
EXAMPLE PROCEDURE CALL

PROCEDURE CALLS

•MACHINE STATE
-SAVING STATE TO $RA
-EXAMPLE PROC. CALL
-SAVING STATE TO REGIS.

• Another example where jalr is used and the subroutine is completely given.

b = 6;

a = decr(b);
move $a0, $s1

move $s0, $v0
add $s0, $s0, $s1

lwi $s1, 0x06

Pseudo-Code MIPS Assembly

jalr $s7, decr

...
a = a + b;

decr: subi $v0,$a0,1

main routine

jr $s7

(use $s0 for a, $s1 for b)
decrement subroutine

(argument in $a0, result in $v0)

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-9

MACHINE STATE
EXAMPLE PROCEDURE CALL

PROCEDURE CALLS

•MACHINE STATE
-EXAMPLE PROC. CALL
-SAVING STATE TO REGIS.
-EXAMPLE PROC. CALL

• A more complicated example could be as follows.

a = 6;

c = 10;
lwi $s1, 0x04

move $a0, $s1
move $a1, $s2

lwi $s0, 0x06

Pseudo-Code MIPS Assembly

lwi $s2, 0x0A

move $a2, $s0

func: sub $v0,$a1,$a2

Main routine

add $v0,$a0,$v0

(use $s0-3 for a,b,c,d)
func subroutine

(arguments in $a0-2,

b = 4;

d = func(b,c,a);

int func(x,y,z)
return x+y-z;

...

result in $v0)

jr $ra

jal func
move $s3, $v0
...

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-10

MACHINE STATE
PROBLEMS

PROCEDURE CALLS

•MACHINE STATE
-EXAMPLE PROC. CALL
-SAVING STATE TO REGIS.
-EXAMPLE PROC. CALL

• Two problems exist with the subroutine approach discussed so far.

• Problem 1:

• What if we want to call a subroutine within a subroutine?

• Only one $ra, so only one return address is stored with jal.

• If we call a nested subroutine, the return address in $ra is lost.

• Problem 2:

• What if we need many temporary registers within the subroutine?

• We don’t want to lose the contents of registers that the calling

function might still need!

• Solution: Stacks

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-11

STACKS
PUSHING AND POPPING

PROCEDURE CALLS

•MACHINE STATE
-SAVING STATE TO REGIS.
-EXAMPLE PROC. CALL
-PROBLEMS

• A stack is a LIFO (Last-In, First-Out) data structure.

• Consider the example of a stack of plates at a cafeteria.

• A plate can be added to the top of the stack, called a push.

• A plate can be removed from the top of the stack, called a pop.

stack

before
push

after
push

before
pop

after
pop

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-12

STACKS
STACK OPERATION

PROCEDURE CALLS

•MACHINE STATE
•STACKS

-PUSHING AND POPPING

• Which way should a stack grow in memory?

• It is customary for a stack to grow from larger memory addresses

to smaller memory addresses.

• Use a stack pointer (SP) to point to top of stack. This is $29/$sp on MIPS.

• push: To place a new item onto the stack

• first decrement SP,

• then store item at the new location pointed to by SP.

• pop: To retrieve an item from the stack

• first copy item pointed to by SP into desired destination,

• then increment SP.

• Many processors deviate slightly from this, but with the same idea.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-13

STACKS
MEMORY MODEL

PROCEDURE CALLS

•MACHINE STATE
•STACKS

-PUSHING AND POPPING
-STACKS IN MEMORY

• Following the previous slide, we can think of our memory model as follows

if SP = 0x00FFFFF4 and the bottom of the stack is 0x01000000.

• We can see that the stack grows from larger address to smaller address.

SP

0x00FFFFE0
0x00FFFFE4
0x00FFFFE8
0x00FFFFEC
0x00FFFFF0

0x777777770x00FFFFF4
0x012345670x00FFFFF8
0x765432100x00FFFFFC
0x455533230x01000000

push: SP = SP - 4

pop: SP = SP + 4

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-14

STACKS
PUSH AND POP ON MIPS

PROCEDURE CALLS

•STACKS
-PUSHING AND POPPING
-STACKS IN MEMORY
-MEMORY MODEL

• The following instructions perform a push of R15 onto the stack.

• The following instructions perform a pop from the stack into R15.

• Many processors actually have the instructions push and pop, but MIPS

removes these to have fewer opcodes (i.e. RISC).

sw $15, $sp
sub $sp, 0x04

add $sp, 0x04
lw $15, $sp

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-15

STACKS
PUSH ON MIPS

PROCEDURE CALLS

•STACKS
-STACKS IN MEMORY
-MEMORY MODEL
-PUSH AND POP ON MIPS

• A push on MIPS is performed and illustrated as follows.

SP

0x00FFFFF0
0x00FFFFF4

0x012345670x00FFFFF8
0x765432100x00FFFFFC
0x455533230x01000000

SP
0x00FFFFF0

0x777777770x00FFFFF4
0x012345670x00FFFFF8
0x765432100x00FFFFFC
0x455533230x01000000

Before push: R15=0x77777777

After push: R15=0x77777777sw $15, $sp
sub $sp, 0x04

Given that
 R15=0x77777777

Push of R15 onto stack

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-16

STACKS
POP ON MIPS

PROCEDURE CALLS

•STACKS
-MEMORY MODEL
-PUSH AND POP ON MIPS
-PUSH ON MIPS

• A pop on MIPS is performed and illustrated as follows.

SP

0x00FFFFF0
0x00FFFFF4

0x012345670x00FFFFF8
0x765432100x00FFFFFC
0x455533230x01000000

SP

0x00FFFFF0
0x00FFFFF4

0x012345670x00FFFFF8
0x765432100x00FFFFFC
0x455533230x01000000

Before pop: R15=0x????????

After pop: R15=0x01234567

Pop from stack to R15

Now R15=0x01234567

add $sp, 0x04
lw $15, $sp

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-17

STACKS
NESTED PROCEDURE CALLS

PROCEDURE CALLS

•STACKS
-PUSH AND POP ON MIPS
-PUSH ON MIPS
-POP ON MIPS

• Procedure calls can now be nested since $ra can be saved on the stack.

Main routine

...

...

...

func1

sub $sp, 0x04
sw $ra, $sp
...
jal func2
...
lw $ra, $sp
add $sp, 0x04
jr $ra

func2

...

...
jr $ra

Save return
address (push)

Restore return
address (pop)

jal func1
...
...
...

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-18

STACKS
NESTED PROCEDURE CALLS

PROCEDURE CALLS

•STACKS
-PUSH ON MIPS
-POP ON MIPS
-NESTED PROC. CALLS

• This example can be thought of in a higher level language as

complex Z addcomplex(complex X, complex Y) {
Z.real = X.real + Y.real;
Z.imaginary = X.imaginary + Y.imaginary;
return Z;

complex W funcAadd2B(complex U, complex V) {
W = addcomplex(U, V);
W = addcomplex(W, V);
return W;

main {

}

}

complex A = 5 + i6, B = 2 + i7, C;
C = funcAadd2B(A, B);

}

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-19

STACKS
EXAMPLE NESTED CALL

PROCEDURE CALLS

•STACKS
-POP ON MIPS
-NESTED PROC. CALLS
-EXAMPLE NESTED CALL

• Say that we want to write a function funcAadd2B that calculates A+2B

where A and B are complex numbers.

• ($a0,$a1) contains (real,imaginary) part of A.

• ($a2,$a3) contains (real,imaginary) part of B.

• ($v0,$v1) contains (real,imaginary) part of answer.

• To make life easier, also design function addcomplex that adds two

complex numbers X and Y.

• ($a0,$a1) contains (real,imaginary) part of X.

• ($a2,$a3) contains (real,imaginary) part of Y.

• ($v0,$v1) contains (real,imaginary) part of answer.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XV-20

STACKS
EXAMPLE NESTED CALL

PROCEDURE CALLS

•STACKS
-POP ON MIPS
-NESTED PROC. CALLS
-EXAMPLE NESTED CALL

• This example could be implemented as follows in assembly.

Main routine

...

...

...

funcAadd2B

sub $sp, 0x04
sw $ra, $sp
jal addcomplex
move $a0,$v0
move $a1,$v1
jal addcomplex
lw $ra, $sp
add $sp, 0x04

addcomplex

add $v0,$a0,$a2
add $v1,$a1,$a3

jal funcAadd2B
...
...
...

jr $ra

jr $ra

