
R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-1

PROGRAM CONTROL

•CHAPTER XIV

CHAPTER XIV

PROGRAM CONTROL, JUMPING, AND BRANCHING

READ BRANCHING FREE-DOC ON COURSE WEBPAGE

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-2

PROGRAM CONTROL
INTRODUCTION

PROGRAM CONTROL

•PROGRAM CONTROL
-INTRODUCTION

• So far we have discussed how the instruction set architecture for a machine

can be designed.

• Another important aspect is how to control the flow of a program execution.

• What order should instructions be executed?

• Are there times when we need to change the order of instruction

execution?

• How do we handle changes of the program flow and decide when to

change the program flow?

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-3

PROGRAM CONTROL
PROGRAM COUNTER (PC)

PROGRAM CONTROL

•PROGRAM CONTROL
-INTRODUCTION

• How should a program or list of instructions be executed?

• The most obvious choice is to execute the 32-bit instruction words in

sequential order.

• Would be useful to have a pointer to the next instruction.

• We will call this the program counter (PC).

lw $2, 0x00001004($0)
addi $15, $2, 0x00201003
xor $13, $15, $2
add $3 $13 $2
sai $18, $3, 0x00000004
sw $18, 0x00001003($0)

1st
2nd
3rd
4th
5th
6th

......

PC

Standard
Order of

Execution

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-4

PROGRAM CONTROL
PC AND MEMORY MAP

PROGRAM CONTROL

•PROGRAM CONTROL
-INTRODUCTION
-PROGRAM COUNTER (PC)

• We can consider the program counter as pointing into memory at the next

instruction to be executed.

• Instructions are 32-bits (4 bytes), so add 1 to get next instruction.

PC

Instruction n

Instruction n + 1

Instruction n + 2

PC + 4

PC + 8

(ex: add $3, $2, $5)

0x80
0xC9
0x40
0x00

0x??

0x??

0x??
0x??

0x??

0x??

0x??
0x??

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-5

PROGRAM CONTROL
PC AND MEMORY MAP

PROGRAM CONTROL

•PROGRAM CONTROL
-INTRODUCTION
-PROGRAM COUNTER (PC)
-PC AND MEMORY MAP

• To make the memory map representation a little more compact, we will

make each address location 32-bits with the PC incremented by 4..

PC
Instruction n

PC + 4

PC + 8

(ex: add $3, $2, $5)0x80C94000

0x????????

0x????????

0x????????

Instruction n + 1

Instruction n + 2

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-6

PROGRAM CONTROL
PC IN SINGLE CYCLE DPU

PROGRAM CONTROL

•PROGRAM CONTROL
-INTRODUCTION
-PROGRAM COUNTER (PC)
-PC AND MEMORY MAP

• The PC register can be added as follows to our single cycle DPU.

031

5 5 5

im va

16

DPU

IR

R
A

M

addr

data
r/w msel

D
at

a

YraZwaXra

R
A

M

addr

data
r/w msel

In
st

ru
ct

io
ns

031
Program Counter (PC)

4

+A B

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-7

PROGRAM CONTROL
PC IN SINGLE CYCLE DPU

PROGRAM CONTROL

•PROGRAM CONTROL
-PROGRAM COUNTER (PC)
-PC AND MEMORY MAP
-PC IN SINGLE CYCLE DPU

• At the beginning of the clock cycle

• Current contents of IR used and decoded as the current instruction.

• PC addresses the instruction memory to fetch the next instruction.

• The next instruction is output from the intruction memory and applied to

the input of the IR, though, not loaded until the end of the clock cycle.

• PC + 4 is calculated and applied to the PC, though, not loaded until the

end of the clock cycle. A +4 is used so that the next 32-bit (4-byte) word

is addressed which is the next instruction to be addressed.

• At the end of the clock cycle.

• The next instruction is clocked into the IR.

• The address for the following instruction is clocked into the PC.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-8

PROGRAM CONTROL
CHANGING PROGRAM FLOW

PROGRAM CONTROL

•PROGRAM CONTROL
-PROGRAM COUNTER (PC)
-PC AND MEMORY MAP
-PC IN SINGLE CYCLE DPU

• While executing instructions in sequential order is a good default mode, it

is desirable to be able to change the program flow.

• Two main classifications for deviation from sequential order are

• absolute versus relative instruction addressing

• and

• conditional versus unconditional branching/jumping

• The MIPS R3000/4000 uses only

• unconditional absolute instruction addressing and

• conditional relative instruction addressing

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-9

PROGRAM CONTROL
ABSOLUTE ADDRESSING

PROGRAM CONTROL

•PROGRAM CONTROL
-PC AND MEMORY MAP
-PC IN SINGLE CYCLE DPU
-CHANGING FLOW

• Absolute instruction addressing, generally known as jumping.

• A specific address, or absolute address, is given where the next

instruction is located.

• PC = address

• This allows execution of any instruction in memory.

• Jumps are good if you have a piece of code that will not be relocated to

another location in memory.

• For instance, ROM BIOS code that never moves.

• Main interrupt service routines that will always be located in a set

instruction memory location.

• Different MIPS instructions will use byte or word addressing such that

• PC = byte_address or PC = (word_address<<2)

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-10

PROGRAM CONTROL
RELATIVE ADDRESSING

PROGRAM CONTROL

•PROGRAM CONTROL
-PC IN SINGLE CYCLE DPU
-CHANGING FLOW
-ABSOLUTE ADDRESSING

• Relative instruction addressing, generally known as branching.

• An offset to the current address is given and the next instruction

address is calculated, in general, as PC = PC + byte_offset.

• For MIPS, and many other processors, since PC has already been

updated to PC + 4 when loading in the current instruction, it is actually

calculated as

• PC = PC + inst_size + inst_offset = PC + 4 + (word_offset << 2)

• Note that the offset can be positive or negative.

• Useful since a program can therefore be loaded anywhere in the

instruction memory and still function correctly.

• Move a program around in memory, and it can still branch within

itself since the branching is relative to the current PC value.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-11

PROGRAM CONTROL
(UN)CONDITIONAL

PROGRAM CONTROL

•PROGRAM CONTROL
-CHANGING FLOW
-ABSOLUTE ADDRESSING
-RELATIVE ADDRESSING

• For unconditional program control instructions

• The absolute jump or relative branch is ALWAYS performed when that

instruction is encountered.

• For conditional program control instructions

• A condition is first tested.

• If the result is true, then the branch/jump is taken.

• PC = byte_address or PC = (word_address<<2) for a jump or

• PC = PC + 4 + (word_offset<<2) for a branch.

• If the result is false, then the branch/jump is NOT taken and

program execution continues

• ie. PC = PC + 4.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-12

JUMPING
JUMP W/ REGISTER (JR)

PROGRAM CONTROL

•PROGRAM CONTROL
-ABSOLUTE ADDRESSING
-RELATIVE ADDRESSING
-(UN)CONDITIONAL

• The first form of program control is the absolute jump is as follows

• jr <register>

• The jr instruction changes PC to the value contained in the register.

• For example, if R10 contains 0x00004400 then after executing the

following jr instruction, the next instruction executed is the add.

jr $10
sub $15, $2, $8
...
add $3 $13 $2
...
...

0x00001000
0x00001004
...
0x00004400
0x00004404
...

PC

next PC

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-13

JUMPING
JUMP W/ IMMEDIATE (J)

PROGRAM CONTROL

•PROGRAM CONTROL
•JUMPING

-JUMP W/ REGISTER (JR)

• We can also have an immediate form of the jump instruction

• j <instruction address>

• The j instruction changes PC to the given instruction address.

• For example, with the following j instruction, the next instruction executed

is the add.

j 0x00004400
sub $15, $2, $8
...
add $3 $13 $2
...
...

0x00001000
0x00001004
...
0x00004400
0x00004404
...

PC

next PC

Note: assembler will convert to 0x0001100 so that 0x0001100<<2=0x00004400.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-14

JUMPING
JR-FORMAT

PROGRAM CONTROL

•PROGRAM CONTROL
•JUMPING

-JUMP W/ REGISTER (JR)
-JUMP W/ IMMEDIATE (J)

• Both jump instructions have one implied destination, the PC, and one

source, either a register or an immediate value.

• We therefore need some new instruction formats.

• The jr instruction can essentially use the R-format, but need the jr

opcode route Zwa to Yra and route Y bus to the PC so that the address in

the register is loaded in the PC.

• The jump can go anywhere in memory using the 32-bit register value.

JR-format opcode Z

0202531

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-15

JUMPING
J-FORMAT

PROGRAM CONTROL

•JUMPING
-JUMP W/ REGISTER (JR)
-JUMP W/ IMMEDIATE (J)
-JR-FORMAT

• The j instruction only needs the opcode and the immediate address for the

new value of the PC.

• Unfortunately, the PC is 32 bits and using a 6-bit opcode, this leaves

only 26 bits in our 32-bit instruction.

• If we assume the immediate address is for 4 byte words, then our 26-

bits can effectively address 28-bit bytes.

• Update PC with PC[27:0] = (word_address<<2) leaving PC[31:28]

unchanged. Therefore, cannot jump anywhere in memory, but almost.

J-format opcode word_address

02531

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-16

JUMPING
ASSIGNED OPCODES

PROGRAM CONTROL

•JUMPING
-JUMP W/ IMMEDIATE (J)
-JR-FORMAT
-J-FORMAT

• As seen, the MIPS R3000/4000 has two basic forms of a jump or absolute

instruction addressing.

Instruction
Assigned
Opcode

Interpretation

j 0x00004028 000010 The next instruction fetched is at
address 0x00004028.

Restriction: address is a 26-bit
address to 4 byte words.

jr $10 000011 The next instruction fetched is at
the 32-bit address stored in R10

John Copeland
Byte Address is0x?00100A04 msb from PC

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-17

BRANCHING
BRANCHES AND CONDITIONS

PROGRAM CONTROL

•JUMPING
-JR-FORMAT
-J-FORMAT
-ASSIGNED OPCODES

• As mentioned, branching uses an offset from the current instruction to

determine the next instruction.

• For the MIPS, the only branching is with conditional branches.

• Conditional branches typically compare two items, such as two registers,

to test a condition.

• This comparison is usually done by simply subtracting one number from

the other and setting the appropriate N, V, C, Z flags.

• ie. for MIPS

• <branch mnemonic> <register 1> <register 2> <branch offset>

• Here, the calculation <register 1> - <register 2> is performed with

the flags N, V, C, Z set accordingly (the subtraction result is not

stored).

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-18

BRANCHING
BRANCH TYPES

PROGRAM CONTROL

•JUMPING
•BRANCHING

-BRANCHES AND COND.

• Below is a list of some possible branch types (many of these do not exist for

the MIPS R3000/4000).

Common
Mnemonics

Branch Type Flags

beq Branch if equal Z = 1

bne or bnq Branch if not equal Z = 0

bpl Branch if positive N = 0

bmi Branch if negative N = 1

bcc Branch on carry clear C = 0

bcs Branch on carry set C = 1

bvc Branch on overflow clear V = 0

bvs Branch on overflow set V = 1

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-19

BRANCHING
BRANCH TYPES

PROGRAM CONTROL

•JUMPING
•BRANCHING

-BRANCHES AND COND.
-BRANCH TYPES

• continued...

Common
Mnemonics

Branch Type Flags

blt Branch on less than

ble Branch on less than or equal

bge Branch on greater than or equal

bgt Branch on greater

bra Branch always No flags needed

bsr Branch to subroutine No flags needed

N V⊕

Z N V⊕()+

N V⊕

Z N V⊕()+

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-20

BRANCHING
BRANCH IF EQUAL

PROGRAM CONTROL

•JUMPING
•BRANCHING

-BRANCHES AND COND.
-BRANCH TYPES

• One MIPS instruction is the branch if equal (beq) instruction that checks if

the contents of two registers are equal and branches if they are equal.

• For example, consider the following code

• Notice that the branch is taken if $1 = $2.

beq $1, $2, skip
sub $15, $2, $8
...

add $3 $13 $2
...
...

start:

skip:

PC

(true) next PC

(false) next PC
R1 != R2

R1 = R2

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-21

BRANCHING
BRANCH IF NOT EQUAL

PROGRAM CONTROL

•BRANCHING
-BRANCHES AND COND.
-BRANCH TYPES
-BRANCH IF EQUAL

• Another MIPS instruction is the branch if not equal (bne) instruction that

checks if two registers are NOT equal.

• For example, consider the following code

• Notice that the branch is taken if $1 != $2.

bne $1, $2, skip
sub $15, $2, $8
...

add $3 $13 $2
...
...

start:

skip:

PC

(true) next PC

(false) next PC
R1 = R2

R1 != R2

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-22

BRANCHING
ASSIGNED OPCODES

PROGRAM CONTROL

•BRANCHING
-BRANCH TYPES
-BRANCH IF EQUAL
-BRANCH IF NOT EQUAL

• As seen, the MIPS R3000/4000 has two basic forms of a branch

instruction.

Instruction Opcode Interpretation
beq $10, $8, label 000100 If contents of R10 is equal to con-

tents of R8, next instruction that is
fetched is the instruction labeled

“label”. Otherwise, the next
instruction fetched is after the beq.

bne $10, $8, label 000101 If contents of R10 is not equal to
contents of R8, next instruction that
is fetched is the instruction labeled

“label”. Otherwise, the next
instruction fetched is after the bne.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-23

BRANCHING
INSTRUCTION FORMAT

PROGRAM CONTROL

•BRANCHING
-BRANCH IF EQUAL
-BRANCH IF NOT EQUAL
-ASSIGNED OPCODES

• Branching requires two sources for comparison and the relative offset.

• This B-format is effectively the same as the I-format.

• We can likely make the instruction decoder simpler if we take the B-format

to be the same as the I-format.

• This might take a bit of extra decoding elsewhere in our DPU.

B-format opcode Y X relative word_offset

015202531

I-format opcode Z X immediate value

015202531

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-24

HIGHER LANGUAGES
LOOP ABSTRACTION

PROGRAM CONTROL

•BRANCHING
-BRANCH IF NOT EQUAL
-ASSIGNED OPCODES
-INSTRUCTION FORMAT

• Consider the following pseudo-code for a loop.

• Notice how a conditional branch is used for the while loop.

do
a = 0

while (a != 5)
a = a + 1
...

add $26, $0, $0 R26 = 0

...

add $26, $26, 0x01 R26 = R26 + 1
bne $26, $14, loop

add $14, $0, 0x05 R14 = 5

...

Pseudo-Code MIPS Assembly Register Transfer
Notation

PC = PC + 4
+word_offset<<2

loop:
...

...

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-25

HIGHER LANGUAGES
IF-THEN-ELSE ABSTRACTION

PROGRAM CONTROL

•BRANCHING
•HIGHER LANGUAGES

-LOOP ABSTRACTION

• Consider the following pseudo-code for an if-then-else statement.

• Notice use of beq for if-then-else and j at end of if-then.

if (x != y) then

else

... ...

j endif
...

beq $5, $6, else

endif

Pseudo-Code MIPS Assembly

else:

...

...
...

...

...
endif: ...

(assume x in $5, y in $6)

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-26

HIGHER LANGUAGES
IF-THEN-ELSE ABSTRACTION

PROGRAM CONTROL

•BRANCHING
•HIGHER LANGUAGES

-LOOP ABSTRACTION
-IF-THEN-ELSE ABSTRACT.

• Problem with previous slide is that we cannot relocate assembly code

because of j instruction. Therefore, change assembly as follows.

if (x != y) then

else

... ...

beq $0, $0, endif
...

beq $5, $6, else

endif

Pseudo-Code MIPS Assembly

else:

...

...
...

...

...
endif: ...

(assume x in $5, y in $6)

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-27

HIGHER LANGUAGES
SIMPLE EXAMPLE

PROGRAM CONTROL

•BRANCHING
•HIGHER LANGUAGES

-LOOP ABSTRACTION
-IF-THEN-ELSE ABSTRACT.

• Another example is given below. Note: $0 contains 0x00000000.

bge $15, $0, endif0

swi $15, num
lwi $15, temperature

lwi $15, num

endif0:

sub $15, $0, $15

blt $15, 0x0019, else25

else25:

...

...

endif25:
...
...

num = -num

if (temperature>=25) then
activity = “swim”

if (num<0) then

end

else
activity = “cycle”

endif

Pseudo-Code MIPS Assembly (almost)

cycle:

swim:
j endif25

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-28

BRANCHES ON MIPS
GENERAL COMPARISONS

PROGRAM CONTROL

•HIGHER LANGUAGES
-LOOP ABSTRACTION
-IF-THEN-ELSE ABSTRACT.
-SIMPLE EXAMPLE

• The MIPS processor does not include all of the branches listed in the

branch types table. The assembly makes synthetic instructions available.

• It actually only has beq and bne as built-in instructions.

• To perform branches such as blt, ble, bgt, and bge, MIPS uses another

instruction, slt or slti, in combination with beq or bne.

Instruction Opcode Interpretation
slt $10, $8, $9 101010 If contents of $8 < contents of $9,

then $10 = 0x01, else $10 = 0x00.

slti $10,$8, 4 001010 If contents of $8 < 4,
then $10= 0x01, else $10 = 0x00.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-29

BRANCHES ON MIPS
SLT AND SLTI

PROGRAM CONTROL

•HIGHER LANGUAGES
•BRANCHES ON MIPS

-GENERAL COMPARISONS
-SLT AND SLTI

• How can blt, ble, bgt, and bge effectively be performed using slt and slti?

• Note: $0 contains 0x00000000.

Desired
Instruction

Meaning
Equivalent slt

Condition
MIPS

Instructions
blt $10, $8, loop Branch to loop if

$10 < $8
Branch to loop if

$10 < $8
slt $5, $10, $8

bne $5, $0, loop

bge $10, $8, loop Branch to loop if
$10 >= $8

Branch to loop if
NOT ($10 < $8)

slt $5, $10, $8
beq $5, $0, loop

bgt $10, $8, loop Branch to loop if
$10 > $8

Branch to loop if
$8 < $10

slt $5, $8, $10
bne $5, $0, loop

ble $10, $8, loop Branch to loop if
$10 <= $8

Branch to loop if
NOT ($8 < $10)

slt $5, $8, $10
beq $5, $0, loop

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-30

BRANCHES ON MIPS
EXAMPLE

PROGRAM CONTROL

•HIGHER LANGUAGES
•BRANCHES ON MIPS

-GENERAL COMPARISONS
-SLT AND SLTI

• Therefore, our previous example would actually be assembled as

bge $15, $0, endif0

swi $15, num
lwi $15, temperature

lwi $15, num

endif0:

sub $15, $0, $15

blt $15, 0x0019, else25

else25:

...

...

endif25:
...
...

MIPS Assembly (almost)

cycle:

swim:

slt $5, $15, $0
beq $5, $0, endif0

slti $5, $15, 0x0019
bne $5, $0, else25

j endif25

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-31

SINGLE CYCLE DPU
PC UPDATE

PROGRAM CONTROL

•BRANCHES ON MIPS
-GENERAL COMPARISONS
-SLT AND SLTI
-EXAMPLE

• Of course, modifications are needed to the DPU* to allow updating the

program counter appropriately with these branches and jumps.

031
IR

R
A

M

addr

data
r/w msel

In
st

ru
ct

io
ns

031
Program Counter (PC)

4

branch

jump

jump
word offset

+

M
U

X0
1<<2

beq Z
M

U
X0

1
address

<<2
selectj/jr

M
U

X0
1

jump reg
address

26

28

32

32

32

16

* Note: Not quite accurate for the MIPS architecture.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-32

SINGLE CYCLE DPU
MODIFICATIONS TO DPU

PROGRAM CONTROL

•BRANCHES ON MIPS
•SINGLE CYCLE DPU

-PC UPDATE

• Note that branch instructions have two sources and an immediate value.

• Differs from I-format with one destination, one source, and an

immediate value.

Zdi

Xdo

Ydo

YraZwaXra

32

32

32
32x32

RF

5 5 5

rwe

Clk

Z bus

X bus

Y bus

RegSrc

M
U

X0
1

Yra

Zwa Zwa Xra

Not very elegant.
Like hammering a square
peg into a round hole.
But, it solves the special
case of a branch.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-33

TARGET CALC.
JUMP TARGET CALCULATION

PROGRAM CONTROL

•BRANCHES ON MIPS
•SINGLE CYCLE DPU

-PC UPDATE
-MODIFICATIONS TO DPU

• To calculate jump target consider the following instruction

• j 0x00400040

• The encoding of the jump would be

which gives an instruction encoding of 0x08100010 and not 0x08400040.

• Why? Because we need to encode with word addresses such that

• 0x00100010 << 2 = 0x00400040

• This gives the preferred 28-bits over 26-bits.

• Hence, PC[27:0] = (word_address << 2)

J-format
0000 10 00 0001 0000 0000 0000 0001 0000

02531
opcode instruction word address

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-34

TARGET CALC.
JUMP TARGET CALCULATION

PROGRAM CONTROL

•BRANCHES ON MIPS
•SINGLE CYCLE DPU
•TARGET CALCULATION

-JUMP TARGET CALC.

• Now consider the following instruction when R8=0x00400040,

• jr $8

• For this instruction, since the register R8 is already 32-bits, we do not need

to perform any shifting of the contents of R8.

• Hence, PC = R8, which is effectively PC = 0x00400040 in the case.

• The encoding of this instruction will look like

• This gives an instruction encoding of 0x0D000000 (for X=0).

JR-format
opcode Z

0202531

0000 11 01 000 X XXXX XXXX XXXX XXXX XXXX

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-35

TARGET CALC.
BRANCH TARGET CALC.

PROGRAM CONTROL

•BRANCHES ON MIPS
•SINGLE CYCLE DPU
•TARGET CALCULATION

-JUMP TARGET CALC.

• For branch target calculation, consider the following code fragment.

• What is the value of the label skip? skip = 0x00004400

• We do not want to encode skip directly. We need word offset!!

• word offset = (0x00004400 - (0x00001000 + 0x04)) >> 2 = 0x0CFF

beq $1, $2, skip
sub $15, $2, $8
...

add $3 $13 $2skip:

0x00001000

0x00004400

0x00001004
0x00001008

...

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIV-36

TARGET CALC.
BRANCH TARGET CALC.

PROGRAM CONTROL

•SINGLE CYCLE DPU
•TARGET CALCULATION

-JUMP TARGET CALC.
-BRANCH TARGET CALC.

• Using the word offset calculated on the previous slide of we can verify that

that this is the correct word offset since

• Therefore, the instruction encoding for the branch beq $1, $2, skip is

• This gives an instruction encoding of 0x10220CFF.

= 0x00001000 + 0x04 + 0x000033FC = 0x00004400

= 0x00001000 + 0x04 + (0x0CFF << 2)

PC = PC + 4 + (word offset << 2)

I-format
0001 00 0 0010

word offset

015202531

opcode XZ
00 001 0000 1100 1111 1111

