KINTRO. TO COMP. ENG
CHAPTER XIV-1

\ PROGRAM CONTROL

]

[CHAPTER XIV

>

CHAPTER XIV

PROGRAM CONTROL, JUMPING, AND BRANCHING

READ BRANCHING FREE-DOC ON COURSE WEBPAGE

_

AN

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. PROGRAM CONTROL [‘PROGRAM CONTROL I

CHAPTER XIV-2 -INTRODUCTION
INTRODUCTION
PROGRAM CONTROL
N Y,

4 O

. So far we have discussed how the instruction set architecture for a machine

can be designed.
- Another important aspect is how to control the flow of a program execution.

« What order should instructions be executed?

» Are there times when we need to change the order of instruction
execution?

 How do we handle changes of the program flow and decide when to
change the program flow?

_ /

R.M. Dansereau; v.1.0

CHAPTER XIV-3
_ PROGRAM CONTROL PROGRAM COUNTER (PC) y

4 O

- How should a program or list of instructions be executed?

/" INTRO. TO COMP. ENG] PROGRAM CONTROL [F>F_elc§$§égﬂu%%l\ﬁeOL I

* The most obvious choice is to execute the 32-bit instruction words In

sequential order.

PC i W $2, 0x00001004($0)
ond addi $15, $2, 0x00201003
ard xor $13. $15, $2 %tfggrag?
Ath add $3 $13 $2 Execution

5th sai $18, $3, 0x00000004
6th sw $18, 0x00001003($0)

* Would be useful to have a pointer to the next instruction.
« We will call this the program counter (PC).

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. PROGRAM CONTROL [‘PROGRAM CONTROL I

CHAPTER XIV-4 -INTRODUCTION
-PROGRAM COUNTER (PC)
\ PROGRAM CONTROL PC AND MEMORY MAP

/
4)

- We can consider the program counter as pointing into memory at the next

instruction to be executed.

PC > 0x80
0xC9
0x40
0x00
PC + 4 > 0x??
Ox?7?
Ox?7?
Ox?7?
PC +8 > Ox??
Ox?7?
Ox??
Ox?7?

Instruction n
(ex: add $3, $2, $5)

Instruction n + 1

Instruction n + 2

 Instructions are 32-bits (4 bytes), so add 1 to get next instruction.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. PROGRAM CONTROL [‘PROGRAM CONTROL I

CHAPTER XIV-5 -INTRODUCTION
-PROGRAM COUNTER (PC)
\ PROGRAM CONTROL PC AND MEMORY MAP -PC AND MEMORY MAP /
4 h

- To make the memory map representation a little more compact, we will

make each address location 32-bits with the PC incremented by 4..

Instruction n
PC > Ox80C94000 g’ (ex: add $3, $2, $5)
PC + 4 > OX??2?2?2?7?7?7 % Instruction n + 1
PGB .| 0x?77727777 % Instruction n + 2
OX?7??27?7?7?777

®

®

®

g /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. PROGRAM CONTROL [‘PROGRAM CONTROL I

CHAPTER XIV-6 -INTRODUCTION
-PROGRAM COUNTER (PC)
u PROGRAM CONTROL PC IN SINGLE CYCLE DPU -PC AND MEMORY MAP)

- The PC register can be added as follows to our single cycle DPU.

31 0 0
+ Program Counter (PC) addrc
} < S
| 31 0 % —
4 i 5
° ° data &
o o
o e r’'w msel
ZyaXra Yra Im vVa addr
5 15 |5 16
= S
< ®©
X O
DPU - » data
r/'w msel
N /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. PROGRAM CONTROL [‘PROGRAM CONTROL I

CHAPTER XIV-7 -PROGRAM COUNTER (PC)
-PC AND MEMORY MAP
k PROGRAM CONTROL PC IN SINGLE CYCLE DPU -PC IN SINGLE CYCLE DPU/

- At the beginning of the clock cycle

« Current contents of IR used and decoded as the current instruction.

 PC addresses the instruction memory to fetch the next instruction.

* The next instruction is output from the intruction memory and applied to
the input of the IR, though, not loaded until the end of the clock cycle.

« PC + 4 is calculated and applied to the PC, though, not loaded until the
end of the clock cycle. A +4 is used so that the next 32-bit (4-byte) word
IS addressed which is the next instruction to be addressed.

- At the end of the clock cycle.

* The next instruction is clocked into the IR.
* The address for the following instruction is clocked into the PC.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. PROGRAM CONTROL [‘PROGRAM CONTROL I

CHAPTER XIV-8 -PROGRAM COUNTER (PC)
-PC AND MEMORY MAP
k PROGRAM CONTROL CHANGING PROGRAM FLOW -PC IN SINGLE CYCLE DPU/

- While executing instructions in sequential order is a good default mode, it
IS desirable to be able to change the program flow.

« Two main classifications for deviation from sequential order are
o absolute versus relative instruction addressing
 and
« conditional versus unconditional branching/jumping
- The MIPS R3000/4000 uses only

 unconditional absolute instruction addressing and
e conditional relative instruction addressing

_ /

R.M. Dansereau; v.1.0

KINTRO. TO COMP. ENG. PROG RAM CONTROL *PROGRAM CONTROL

CHAPTER XIV-9 -PC AND MEMORY MAP

\ PROGRAM CONTROL -CHANGING FLOW

ABSOLUTE ADDRESSING -PC IN SINGLE CYCLE DPU

~

- Absolute instruction addressing, generally known as jumping.

« A specific address, or absolute address, is given where the next
Instruction is located.
« PC =address
» This allows execution of any instruction in memory.
« Jumps are good if you have a piece of code that will not be relocated to
another location in memory.
e For instance, ROM BIOS code that never moves.
e Main interrupt service routines that will always be located in a set
Instruction memory location.
» Different MIPS instructions will use byte or word addressing such that
« PC =Dbyte address or PC = (word_address<<2)

_

94
<

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. PROGRAM CONTROL [‘PROGRAM CONTROL I

CHAPTER XIV-10 -PC IN SINGLE CYCLE DPU

-CHANGING FLOW
\ PROGRAM CONTROL RELATIVE ADDRESIING -ABSOLUTE ADDRESSING

/
4)

- Relative instruction addressing, generally known as branching.

* An offset to the current address is given and the next instruction
address is calculated, in general, as PC = PC + byte offset.

* For MIPS, and many other processors, since PC has already been
updated to PC + 4 when loading in the current instruction, it is actually
calculated as

« PC=PC +inst_size +inst_offset = PC + 4 + (word_offset << 2)

* Note that the offset can be positive or negative.

» Useful since a program can therefore be loaded anywhere in the
Instruction memory and still function correctly.

 Move a program around in memory, and it can still branch within
itself since the branching is relative to the current PC value.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. PROGRAM CONTROL (PRoGRAM CoNTROL N

CHAPTER XIV-11

-ABSOLUTE ADDRESSING
\ PROGRAM CONTROL (UN)CONDITI ONAL -RELATIVE ADDRESSING/
4 N

- For unconditional program control instructions

» The absolute jump or relative branch is ALWAYS performed when that

Instruction IS encountered.
- For conditional program control instructions

« A condition is first tested.
 |f the result is true, then the branch/jump is taken.
« PC =Dbyte_address or PC = (word_address<<2) for a jump or
« PC=PC +4 + (word_offset<<2) for a branch.
 If the result is false, then the branch/jump is NOT taken and
program execution continues
 ie. PC=PC + 4.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. JUMPING PROGRAM CONTROL
CHAPTER XIV-12 -ABSOLUTE ADDRESSING

-RELATIVE ADDRESSING
PROGRAM CONTROL JUMP W/ REGISTER (JR) -(UN)CONDITIONAL
- <

. The first form of program control is the absolute jump is as follows

e |r <register>

« The jr instruction changes PC to the value contained in the register.

* For example, if R10 contains 0x00004400 then after executing the
following jr instruction, the next instruction executed is the add.

PC—» 0x00001000 jr $10
0x00001004 sub $15, $2, $8

next PC —» 0x00004400 add $3 $13 $2
0x00004404

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. JUMPING \PROGRAM CONTROL

CHAPTER XIV-13 *JUMPING

-JUMP W/ REGISTER (JR
L PROGRAM CONTROL JUMP W/ IMMEDIATE (J) ()/

4 O

- We can also have an immediate form of the jump instruction

e] <instruction address>

* The j instruction changes PC to the given instruction address.

» For example, with the following j instruction, the next instruction executed
IS the add.

PC —— 0x00001000] 0x00004400
0x00001004 sub $15, $2, $8

next PC —» 0x00004400 add $3 $13 $2
0x00004404

Note: assembler will convert to 0x0001100 so that 0x0001100<<2=0x00004400.
_ %

R.M. Dansereau; v.1.0

~

KlNTRO. TO COMP. ENG. J U M P I NG *PROGRAM CONTROL
CHAPTER XIV-14 JR-FORMAT .JUB\AUPA;I\;GW/ REGISTER (JR)
g PROGRAM CONTROL i _JUMP W/ IMMEDIATE (J) .

4 O

- Both jump instructions have one implied destination, the PC, and one
source, either a register or an immediate value.

. We therefore need some new instruction formats.

* The jr instruction can essentially use the R-format, but need the jr
opcode route Z,,5 to Y,5 and route Y bus to the PC so that the address in

the register is loaded in the PC.

31 25 20 0

JR-format opcode y4

» The jump can go anywhere in memory using the 32-bit register value.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. JUMPING -JUMPING I

CHAPTER XIV-15 -JUMP W/ REGISTER (JR)
JFORMAT -JUMP W/ IMMEDIATE (J)

\ PROGRAM CONTROL -JR-FORMAT)

>

- The j instruction only needs the opcode and the immediate address for the

new value of the PC.
« Unfortunately, the PC is 32 bits and using a 6-bit opcode, this leaves
only 26 bits in our 32-bit instruction.

31 25 0

J-format opcode word_address

 If we assume the immediate address is for 4 byte words, then our 26-

bits can effectively address 28-bit bytes.
» Update PC with PC[27:0] = (word_address<<2) leaving PC[31:28]

unchanged. Therefore, cannot jump anywhere in memory, but almost.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. JUMPING

CHAPTER XIV-16
\ PROGRAM CONTROL ASSIGNED OPCODES

*JUMPING
-JUMP W/ IMMEDIATE (J)
-JR-FORMAT
-J-FORMAT

~

>

- As seen, the MIPS R3000/4000 has two basic forms of a jump or absolute

Instruction addressing.

. Assigned .
|nstruction J |nterpretation
Opcode
] 0x00004028 000010 The next instruction fetched is at
B address 0x00004028.

Restriction: addressisa 26-bit
addressto 4 bytewords.

jr $10 000011 Thenext instruction fetched is at
the 32-bit address stored in R10

_

/
\

R.M. Dansereau; v.1.0

John Copeland
Byte Address is
0x?00100A0
4 msb from PC

/" INTRO. TO COMP. ENG. BRANCHING -JUMPING I

CHAPTER XIV-17 j_RF-ggm?T
u PROGRAM CONTROL BRANCHES AND CONDITIONS ASSIGNED OPCODES)

- As mentioned, branching uses an offset from the current instruction to
determine the next instruction.
- For the MIPS, the only branching is with conditional branches.

» Conditional branches typically compare two items, such as two registers,
to test a condition.
» This comparison is usually done by simply subtracting one number from
the other and setting the appropriate N, V, C, Z flags.
o |e. for MIPS
e <pranch mnemonic> <register 1> <register 2> <branch offset>
* Here, the calculation <register 1> - <register 2> is performed with
the flags N, V, C, Z set accordingly (the subtraction result is not
stored).

_ /

R.M. Dansereau; v.1.0

\

KINTRO. TO COMP. ENG.

CHAPTER XIV-18
PROGRAM CONTROL

BRANCHING
BRANCH TYPES

*JUMPING
*BRANCHING
-BRANCHES AND COND.

~

>

_

- Below is a list of some possible branch types (many of these do not exist for
the MIPS R3000/4000).

Common
M REMOni CS Branch Type Flags
beq Branch if equal Z=1
bneor bng Branch if not equal Z=0
bpl Branch if positive N=0
bmi Branch if negative N=1
bcc Branch on carry clear C=0
bcs Branch on carry set C=1
bvc Branch on overflow clear V=0
bvs Branch on overflow set V=1

/
\

R.M

. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. BRANCHING -JUMPING I

CHAPTER XIV-19 .BI?BASAcﬁcIﬁES AND COND
PROGRAM CONTROL BRANCH TYPES "BRANCH TYPES |
. %
o <
. continued...
common Branch Type Flags
Mnemonics y
blt Branch on lessthan NOV
ble Branch on lessthan or equal Z+(NOV)
bge Branch on greater than or equal NV
bgt Branch on greater Z+(NOV)
bra Branch always No flags needed
bsr Branch to subroutine No flags needed
N J

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. BRANCHING -JUMPING I

CHAPTER XIV-20 *BRANCHING

BRANCH IF EQUAL -BRANCHES AND COND.

k PROGRAM CONTROL -BRANCH TYPES

94

- One MIPS instruction is the branch if equal (beq) instruction that checks if
the contents of two registers are equal and branches if they are equal.

- For example, consider the following code

°C—— dtart: beq $1, $2, skip
(false) next PC —— sub $15, $2, $8
R1!=R2

(true) next PC —— skip: add $3 $13 $2
R1=R2

. Notice that the branch is taken if $1 = $2.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. BRANCHING -BRANCHING N\

CHAPTER XIV-21 -BRANCHES AND COND.

BRANCH IF NOT EQUAL -BRANCH TYPES

\ PROGRAM CONTROL -BRANCH IF EQUAL /

- Another MIPS instruction is the branch if not equal (bne) instruction that
checks if two registers are NOT equal.

- For example, consider the following code

°C——» start: bne $1, $2, skip
(false) next PC —— sub $15, $2, $8
R1=R2

(true) next PC—— skip: add $3 $13 $2
R1!=R2

. Notice that the branch is taken if $1 1= $2.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. BRANCHING “BRANCHING I

CHAPTER XIV-22 BRANGH IF EQUAL
PROGRAM CONTROL ASSIGNED OPCODES -BRANCH IF NOT EQUAL
> Y,

« As seen, the MIPS R3000/4000 has two basic forms of a branch
Instruction.
|nstruction Opcode Interpretation
beq $10, $8, label 000100 |f contentsof R10 isequal to con-

tents of R8, next instruction that is
fetched istheinstruction labeled
“label”. Otherwise, the next
Instruction fetched is after the beg.

bne $10, $8, label 000101 If contents of R10 isnot equal to
contentsof R8, next instruction that
Isfetched istheinstruction labeled
“label”. Otherwise, the next
Instruction fetched is after the bne.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. BRANCHING -BRANCHING N\

CHAPTER XIV-23 -BRANCH IF EQUAL

-BRANCH IF NOT EQUAL
\ PROGRAM CONTROL INSTRUCTION FORMAT -ASSIGNED OPCODES

>

/
\
- Branching requires two sources for comparison and the relative offset.

31 25 20 15 0

B-format opcode Y X relative word_offset

- This B-format is effectively the same as the I-format.
31 25 20 15 0

I-format opcode 7 X immediate value

- We can likely make the instruction decoder simpler if we take the B-format
to be the same as the I-format.

« This might take a bit of extra decoding elsewhere in our DPU.

_ /

R.M. Dansereau; v.1.0

CHAPTER XIV-24 -BRANCH IF NOT EQUAL
LOOP ABSTRACTION

-ASSIGNED OPCODES
k PROGRAM CONTROL -INSTRUCTION FORMAT
/

/" INTRO. TO COMP. ENG] HIGHER LANGUAGES [BRANCHING I

94
<

- Consider the following pseudo-code for a loop.

Pseudo-Code MIPS Assembly Register Transfer
Notation
add $26, $0, $0 R26=0
a=0 add $14, $0, Ox05 | R14=5
do loop: ...
a=a+1 add $26, $26, 0x01 R26 = R26 + 1
while(al!l=5) bne $26, $14, loop| PC=PC + 4
+word_offset<<2

- Notice how a conditional branch is used for the while loop.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. HIGHER LANGUAGES [‘BRANCHING N\

CHAPTER XIV-25 *HIGHER LANGUAGES

: _ -LOOP ABSTRACTION
. PROGRAM CONTROL |IF-THEN-ELSE ABSTRACTION

/
<
- Consider the following pseudo-code for an if-then-else statement.

Pseudo-Code MIPS Assembly
(assume x in $5, y in $6)

if (x 1=y) then beq $5, $6, else
dse i endif

. else ..
endif endif: ...

- Notice use of beq for if-then-else and j at end of if-then.

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. HIGHER LANGUAGES [‘BRANCHING N\

CHAPTER XIV-26 *HIGHER LANGUAGES

L proGRAM conTroL | |- THEN-ELSE ABSTRACTION | "R it XI-B“SQFI\IIQACTJ
\
- Problem with previous slide is that we cannot relocate assembly code
because of | instruction. Therefore, change assembly as follows.
Pseudo-Code MIPS Assembly
(assume x in $5, y in $6)
if (x!=y) then beq $5, $6, else
else beq $0, $0, endif
ese ...
endif endif: ...
N J

R.M. Dansereau; v.1.0

CHAPTER XIV-27 *HIGHER LANGUAGES

/" INTRO. TO COMP. ENG] HIGHER LANGUAGES [BRANCHING I

\ PROGRAM CONTROL SIMPLE EXAMPLE ::_F(?TOHPEANI?ESLTSR?XQSTI\IIQACTJ
/- Another example is given below. Note: $0 contains 0x00000000. h
Pseudo-Code MIPS Assembly (almost)
lwi $15, num
if (num<0) then bge $15, $0, endifO
num = -num sub $15, $0, $15
swi $15, num
end endifO: lwi $15, temperature
If (temperature>=25) then blt $15, 0x0019, else25
activity = “swim’ swim: ...
] endif25
else else?25: ..
activity = “cycle” cycle: ...
endif endif25: ...

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. BRANCHES ON MIPS [HIGHER LANGUAGES I

CHAPTER XIV-28 -LOOP ABSTRACTION

-IF- -ELSE ABSTRACT.
PROGRAM CONTROL GENERAL COMPARISONS SIMPLE EXAMPLE
- <

- The MIPS processor does not include all of the branches listed in the
branch types table. The assembly makes synthetic instructions available.

- It actually only has beq and bne as built-in instructions.

- To perform branches such as blt, ble, bgt, and bge, MIPS uses another

Instruction, slt or slti, in combination with beq or bne.

Instruction Opcode |nterpretation
dt $10, $8, $9 101010 If contents of $8 < contents of $9,
then $10 = 0x01, else $10 = Ox00.
dti $10,$8, 4 001010 |f contents of $8 < 4,
then $10= 0x01, else $10 = Ox00.

_ /

R.M. Dansereau; v.1.0

KINTRO. TO COMP. ENG.
CHAPTER XIV-29

\ PROGRAM CONTROL

BRANCHES ON MIPS
SLT AND SLTI

*HIGHER LANGUAGES
*BRANCHES ON MIPS

-GENERAL COMPARISONS

-SLT AND SLTI

~

94

>

- How can blt, ble, bgt, and bge effectively be performed using slt and slti?

Desired . Equivalent dlt MIPS
. Meaning . .

Instruction Condition Instructions

blt $10, $8, loop | Branch toloop if | Branch toloop if dt $5, $10, $8
$10< $8 $10< $8 bne $5, $0, loop

bge $10, $8, loop | Branch toloop if | Branch toloop if dt $5, $10, $8
$10>=%8 NOT ($10<$8) | beq $5, $0, loop

bgt $10, $8, loop | Branch toloop if | Branch to loop if dt $5, $8, $10
$10 > $8 $8 < $10 bne $5, $0, loop

ble $10, $8, loop | Branch toloop if | Branch toloop if dt $5, $8, $10
$10<=%8 NOT ($8 < $10) | beq $5, $0, loop

_

- Note: $0 contains 0x00000000.

R.M. Dansereau; v.1.0

/" INTRO. _ENG. :)
. PROGRAM CONTROL -SLT AND SLTI .
- Therefore, our previous example would actually be assembled as h
MIPS Assembly (almost)
lwi $15, num ot $5. $15. $0
b , $0, endifO
sub $15, $0, $15 &35, %
swi $15, num
endifO: lwi $15, temperature Jti $5. $15. 0x0019
. ! g bne $5, $0, else25
swim. ...
j endif25
else?s: ...
cycle: ...
endif25: ...
N J

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. SINGLE CYCLE DPU [“BRANCHES ON MiPS I

CHAPTER XIV-31 -GENERAL COMPARISONS
-SLT AND SLTI
k PROGRAM CONTROL PC UPDATE -EXAMPLE /

>

- Of course, maodifications are needed to the DPU* to allow updating the

program counter appropriately with these branches and jumps.

31 0
Program Counter (PC) addr

32 =

A
structions

4 1S © é data &
é _= r/'w msel
—= I
jump
16 select
branch — jump jump reg 31 0
word offset beq z address address IR

_

RM. Dansereau; v.1.0 * Note: Not quite accurate for the MIPS architecture.

: N
/INTRO. TOCOMP.ENG. \ SINGLE CYCLE DPU “BRANCHES ON MIPS

CHAPTER XIV-32 e
\PROGRAM CONTROL MODIFICATIONS TO DPU y

- Note that branch instructions have two sources and an immediate value.
- Differs from I-format with one destination, one source, and an

Immediate value.

Yra © x
=
Zwa H| Lya Xra
RegSrc %5 %5 P
Y
Not very elegant. Clk ZyaXra Yra
Like hammering a square 132,
peg into a round hole. rwe32x32 Xdo X bus

32
But, it solves the special RF Yy~ Y bus
P 7 bus —37» do

case of a branch. Zdi

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. TARGET CALC. BRANCHESONMIPS

CHAPTER XIV-33 *SINGLE CYCLE DPU
-PC UPDATE
PROGRAM CONTROL JUMP TARGET CALCULATION -MODIFICATIONS TO DPU
- <

- To calculate jump target consider the following instruction

« | 0x00400040
- The encoding of the jump would be

31 25 0
opcode Instruction word address

0000 10 00 0001 0000 0000 0000 0001 0000

J-format

which gives an instruction encoding of 0x08100010 and not 0x08400040.
- Why? Because we need to encode with word addresses such that

* 0x00100010 << 2 = 0x00400040
« This gives the preferred 28-bits over 26-bits.
- Hence, PC[27:0] = (word_address << 2)

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. TARGET CALC. BRANCHESONMIPS

CHAPTER XIV-34 *SINGLE CYCLE DPU
_ procram contror | JIMPTARGET CALCULATION | "t ficercne.
4 | o | N
- Now consider the following instruction when R8=0x00400040,
o jr $8

- For this instruction, since the register R8 is already 32-bits, we do not need
to perform any shifting of the contents of R8.
- Hence, PC = R8, which is effectively PC = 0x00400040 in the case.

- The encoding of this instruction will look like

31 25 20 0
opcode Z

0000 11 {01 000 | X XXXX XXXX XXXX XXXX XXXX

JR-format

- This gives an instruction encoding of 0x0D000000 (for X=0).

_ /

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. TARGET CALC. BRANCHESONMIPS

CHAPTER XIV-35 *SINGLE CYCLE DPU
*TARGET CALCULATION
PROGRAM CONTROL BRANCH TARGET CALC. -JUMP TARGET CALC.
. <
- For branch target calculation, consider the following code fragment.
0x00001000 beq $1, $2, skip
0x00001004 sub $15, $2, $8
0x00001008
0x00004400 skip: add $3 $13 $2
- What is the value of the label skip? skip = 0x00004400
- We do not want to encode skip directly. We need word offset!!
« word offset = (0x00004400 - (0x00001000 + 0x04)) >> 2 = OXxOCFF
N J

R.M. Dansereau; v.1.0

/" INTRO. TO COMP. ENG. TARGET CALC. -SINGLE CYCLE DPU I

CHAPTER XIV-36 *TARGET CALCULATION

-JUMP TARGET CALC.
\ PROGRAM CONTROL BRANCH TARGET CALC. -BRANCH TARGET CALC.

>

- Using the word offset calculated on the previous slide of we can verify that

/
<
that this is the correct word offset since

PC =PC + 4 + (word offset << 2)
= 0x00001000 + 0x04 + (OXOCFF << 2)
= 0x00001000 + 0x04 + 0x000033FC = 0x00004400

- Therefore, the instruction encoding for the branch beq $1, $2, skip is

31 25 20 15 0

opcode Z X word offset
0001 00 {00 001| 0 0010 0000 1100 1111 1111

I-format

. This gives an instruction encoding of 0x10220CFF.

_ /

R.M. Dansereau; v.1.0

