
R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-1

ISA

•CHAPTER XIII

CHAPTER XIII

INSTRUCTION SET ARCHITECTURE (ISA)

READ INSTRUCTIONS FREE-DOC ON COURSE WEBPAGE

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-2

ISA
INTRODUCTION

ISA

•ISA
-INTRODUCTION

• We have now considered the beginnings of the internal architecture of a

computer.

• With this, we considered microcode operations for performing simple

data routing and calculations in one clock cycle.

• As a programmer, we don’t want to interface with the microprocessor and

manually send each and every control signal as is done with microcode.

• We would prefer to abstract the instruction sent to the microprocessor.

• Let the microprocessor designer handle the decoding of the abstracted

instruction into the microcode control operations.

• Start to define an assembly langauge! MIPS R3000/4000!

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-3

PROGRAM PATH
TRANSLATING CODE

ISA

•ISA
-INTRODUCTION

• Below is the process for translating a program to machine opcodes.

High level program
e.g. C, C++,

add $10, $8, $9
xor $13, $11, $12
lw $15,0($16)

01011000101011101001001
10010101001101011101101
00101110100101010111011

Assembly language
program

Machine instructions

Pascal, Java
Compiler translates
program

Assembler converts
to machine code

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-4

PROGRAM PATH
EXECUTING CODE

ISA

•ISA
•PROGRAM PATH

-TRANSLATING CODE

• Once the opcodes are given to the microprocessor, it translates the opcode

instructions to the microcodes operations we discussed.

01011000101011101001001
10010101001101011101101
00101110100101010111011

Machine

Microprocessor

Machine opcodes
sent to

microprocessor

DPU

Instruction decoder
translates opcodes
to the microcodes

Instruction Decoder

Instructions

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-5

MIPS ASSEMBLY
MIPS REGISTER NAMES

ISA

•ISA
•PROGRAM PATH

-TRANSLATING CODE
-EXECUTING CODE

• For MIPS assembly, many registers have alternate names or specific uses.

Register Name(s) Use
0 $zero always zero (0x00000000)
1 reserved for assembler
2-3 $v0-$v1 results and expression evaluation
4-7 $a0-$a3 arguments
8-15 $t0-$t7 temporary values
16-23 $s0-$s7 saved values
24-25 $t8-$t9 temporary values
26-27 reserved for operating system
28 $gp global pointer
29 $sp stack pointer
30 $fp frame pointer
31 $ra return address

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-6

MIPS ASSEMBLY
BASIC INST. FORMAT

ISA

•ISA
•PROGRAM PATH
•MIPS ASSEMBLY

-MIPS REGISTER NAMES

• Need to consider an assembly language example. We will use the MIPS

R3000/4000 assembly so that you can refer to the Instruction free-doc.

• MIPS R3000/4000 assembly instruction format:

• The majority of MIPS instructions have the following assembly language

instruction format.

• <inst mnemonic> <destination>, <source 1>, <source 2>

• You can see that this instruction format fits the register transfer level

notation discussed with the single cycle DPU

R18 R12 R15+=

source 1 source 2destination

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-7

MIPS ASSEMBLY
REGISTER FORMAT INST.

ISA

•PROGRAM PATH
•MIPS ASSEMBLY

-MIPS REGISTER NAMES
-BASIC INST. FORMAT

• Register format (R-format) instructions

• Many MIPS instructions have the following format for register to register

type binary operations.

• <instr> $<write register>, $<read register 1>, $<read register 2>

• An example of this is

• add $10, $8, $9

• This is the same as with our register transfer level operation

• R10 = R8 + R9

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-8

MIPS ASSEMBLY
REGISTER INSTRUCTIONS

ISA

•MIPS ASSEMBLY
-MIPS REGISTER NAMES
-BASIC INST. FORMAT
-REGISTER INST. FORMAT

• Below is the basic list of register format MIPS instructions.

Instruction Interpretation
add $10, $8, $9 R10 = R8 + R9

sub $10, $8, $9 R10 = R8 - R9

and $10, $8, $9 R10 = R8 and R9

or $10, $8, $9 R10 = R8 or R9

xor $10, $8, $9 R10 = R8 xor R9

sa $10, $8, $9 (shift arithmetic) Shift R8 by R9 and store in R10

sl $10, $8, $9 (shift logical) Shift R8 by R9 and store in R10

rot $10, $8, $9 (rotate) Rotate R8 by R9 and store in R10

lw $10, 0($8) R10 = M[0+R8]

sw $10, 0($8) M[0+R8] = R10

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-9

MIPS ASSEMBLY
IMMEDIATE INST. FORMAT

ISA

•MIPS ASSEMBLY
-BASIC INST. FORMAT
-REGISTER INST. FORMAT
-REGISTER INSTRUCTIONS

• Immediate format (I-format) instructions

• Many MIPS instructions have the following format for register to register

type binary operations.

• <instr> $<write register>, $<read register>, <immediate value>

• An example of this is

• addi $10, $8, 4

• This is the same as with our register transfer level operation

• R10 = R8 + 4

Note: No $ for last argument

Note: Include “i” to indicate an immediate value is used.

Again, no $ for immediate value

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-10

MIPS ASSEMBLY
IMMEDIATE INSTRUCTIONS

ISA

•MIPS ASSEMBLY
-REGISTER INST. FORMAT
-REGISTER INSTRUCTIONS
-IMMEDIATE INST. FORMAT

• Below is the basic list of immediate format MIPS instructions.

Instruction Interpretation
addi $10, $8, 4 R10 = R8 + 4

subi $10, $8, 4 R10 = R8 - 4

andi $10, $8, 4 R10 = R8 and 4

ori $10, $8, 4 R10 = R8 or 4

xori $10, $8, 4 R10 = R8 xor 4

sai $10, $8, 4 (shift arithmetic) Shift R8 by 4 and store in R10

sli $10, $8, 4 (shift logical) Shift R8 by 4 and store in R10

roti $10, $8, 4 (rotate) Rotate R8 by 4 and store in R10

lw $10, 4($0) R10 = M[4+R0]

sw $10, 4($0) M[4+R0] = R10

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-11

INST. SET ARCH.
INSTRUCTION FORMATS

ISA

•MIPS ASSEMBLY
-REGISTER INSTRUCTIONS
-IMMEDIATE INST. FORMAT
-IMMEDIATE INSTRUCTIONS

• How should the assembly be translated to machine code?

• Have to consider what control signals the DPU requires!

• How do we abstract from the DPU’s requirements?

????????????????????
Machine

Microprocessor

Instructions
sent to

microprocessor

DPU

Instruction Decoder

Instructions

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-12

INST. SET ARCH.
OPCODES

ISA

•MIPS ASSEMBLY
•INSTRUCTION SET ARCH.

-INSTRUCTION FORMATS

• First important part of a machine instruction is known as the operational

codes (opcodes).

• An opcode indicates what major operation to perform.

• Example major operations:

 add, subtract, AND, OR, NOT, XOR, shift

• Once all major operations are identified for a processor design,

assign binary codes to each of the operation.

• For example, say that we want to design a machine that can perform

40 different types of major operations.

• Then we would require at least 6 bits to represent all of the opcodes.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-13

INST. SET ARCH.
SAMPLE MIPS OPCODES

ISA

•MIPS ASSEMBLY
•INSTRUCTION SET ARCH.

-INSTRUCTION FORMATS
-OPCODES

• Some example opcodes used in the MIPS processors are as follows.

• Note: Different opcodes for add and addi. Why?

Instruction Assigned Opcode Value
add $10, $8, $9 100000

sub $10, $8, $9 100010

and $10, $8, $9 100100

or $10, $8, $9 100101

lw $10, 0($8) 100011

sw $10, 0($8) 101011

addi $10, $8, 4 001000

nop (no operation) 000000

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-14

INST. SET ARCH.
CONTROLLER SIGNALS

ISA

•INSTRUCTION SET ARCH.
-INSTRUCTION FORMATS
-OPCODES
-SAMPLE OPCODES

• Once you have assigned opcodes to all of your major functions, now need

to decode the opcodes to the appropriate controller signals.

• i.e. we no longer want to control the DPU manually.

• Recall that we used the following DPU signals when performing

• = 0 and en = 1 for AU.

• en = 0 for LU, en = 0 for SU.

• st_en = 0, ld_en = 0, r/w = X, msel = 0.

• Xra = 01000, Yra = 01001, Zwa = 01010, and rwe = 1 for RF.

• Note: We will pass Xra, Yra, and Zwa from the outside.

• Refer to Table 3 in Instruction free-doc for other examples.

R10 R8 R9+=

a s⁄

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-15

INST. SET ARCH.
CONTROLLER SIGNALS

ISA

•INSTRUCTION SET ARCH.
-OPCODES
-SAMPLE OPCODES
-CONTROLLER SIGNALS

• In general, these control signals can be burned into a ROM.

• Each opcode has its own set of general control signals for the DPU.

ROM

opcode
n

control
signals

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-16

INST. SET ARCH.
CONTROLLER SIGNALS

ISA

•INSTRUCTION SET ARCH.
-OPCODES
-SAMPLE OPCODES
-CONTROLLER SIGNALS

• For our DPU, the control signals are as follows.

ROM

opcode
6

rwe
imm en
au en
a/s
lu en
lf (4 bits)
su en
st (2 bits)
st en
ld en
r/w
msel

(OPCODES)

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-17

INST. SET ARCH.
DPU W/ CONTROLLER

ISA

•INSTRUCTION SET ARCH.
-OPCODES
-SAMPLE OPCODES
-CONTROLLER SIGNALS

• Now, an input opcode will send appropriate control signals to the DPU for

that major operation.

• Notice that we still need register addresses and the immediate value.

Zdi

Xdo

Ydo

YraZwaXra

32x32
RF

5 5 5

rwe

32

32 X bus Y bus

Z bus

Clk immediate register

im en im va
32

addr

data

ROM

opcode
6

Opcodes

DPU

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-18

INSTRUCTIONS
INSTRUCTION FORMATS

ISA

•MIPS ASSEMBLY
-REGISTER INSTRUCTIONS
-IMMEDIATE INST. FORMAT
-IMMEDIATE INSTRUCTIONS

• While instructions can come in many different shapes and forms, we will

consider the following 32-bit instruction formats to loosely follow the MIPS

R3000/4000 format.

R-format

I-format

opcode Z X Y other potential bits

opcode Z X immediate value

015202531

015202531 10

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-19

INSTRUCTIONS
R-FORMAT W/ DPU

ISA

•MIPS ASSEMBLY
-IMMEDIATE INST. FORMAT
-IMMEDIATE INSTRUCTIONS
-INSTRUCTION FORMATS

• If we have an R-format instruction, we link the bits as follows.

opcode Z X Y

015202531 10

Zdi

Xdo

Ydo

YraZwaXra

32x32
RF

5 5 5

rwe

32

32 X bus Y bus

Z bus

Clk immediate register

im en im va
32

addr

data

ROM

6

Opcodes

DPU

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-20

INSTRUCTIONS
I-FORMAT W/ DPU

ISA

•MIPS ASSEMBLY
-IMMEDIATE INSTRUCTIONS
-INSTRUCTION FORMATS
-R-FORMAT W/ DPU

• If we have an I-format instruction, we link the bits as follows.

opcode Z X

015202531

Zdi

Xdo

Ydo

YraZwaXra

32x32
RF

5 5 5

rwe

32

32 X bus Y bus

Z bus

Clk sign extension

im en im va
16

addr

data

ROM

6

Opcodes

DPU

immediate
Notice sign
extension of
16-bit value.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER XIII-21

INSTRUCTIONS
INSTRUCTION REGISTER

ISA

•MIPS ASSEMBLY
-INSTRUCTION FORMATS
-R-FORMAT W/ DPU
-I-FORMAT W/ DPU

• Use a general instruction register that can act as R- or I-Format.
031

5 5 5

im va

16
ROM

6

Opcodes

DPU

Instruction Register (IR)

R
A

M
/

addr

data

r/w msel

R
O

M

YraZwaXra

Control
Signals

Opcode

